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SUMMARY 
A geometrically nonlinear dynamic analysis formulation is 

presented for general space structures which may be subjected 
to finite rotations in J-dimensional space. The proposed 
method has its base on the computer-oriented method reported 
by one of the authors [1 ], in which equilibrium equations 
are represented directly by nodal coordinates instead of 
conventional nodal displacements. The governning dynamic 
equations for each member are derived from the static 
equations by adding the inertia term [2]. To obtain numerical 
solution, the two-step approximation and iterative correction 
solution procedure developed for static analysis is adopted 
and combined with Newmark's f3 time integration scheme. The 
proposed formulation utilizes so called floating frame method, 
in contrast with Simo [J] where fixed frame expression has 
been preferred. 

Equations of Motion 

Equations of motion of an element in a global coordinate 

system at time t can be expressed as the following: 

d{[M(t)l{i'.i(t)){/dt + {R(t)} = {F(t)} (1) 

where [M(t)], (R(t)'}, (F(t)} and (u(t)} are a mass matrix, a 

restoring force・vector, an applied load vector and a 

displacement vector, respectively. A mark• represents 

differentiation with respect to time. The first term in Eq.(1) 

can be rewritten as 

d{[M(t)J.{u(t)};}/dt = [M(t)){.ii(t)} + [M(t)J{u(t)'} 

= f[T(t) l町が(t)J [T(t) Jtは(t)}

= {d{ [T(t))T[M*(t)) [T(t)) }/dt} {u(t)} 

(2) 

where [M*(t)J, [T(t)J are a mass matrix of the element 

expressed in the element coordinate system, and a coordinate 

transformation matrix from the global coordinate system to the 
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element coordinate system, respectively. A superscript T 

represents transposition of a matrix.The second term of Eq.(1) 

corresponds to the internal force term of the static 

equilibrium equations presented in [1), if a dumping term is 

neglected for simplicity, and can be shown as 

{R(t)} = [T(t)]T(K褐,(t)] { [T(t)] [G] ({ u(t) }+{Z(t)}) 

-[ T (0) ][ G ].{ Z (0) } } (3) 

＊ 
where, [K (t)], [G], are a secant stiffness matrix expressed 

in the element coordinate system, a constant matrix which 

shifts the origin of the element coordinate system to the 

element's first node, respectively. And {Z(t)}.T = <{x(o)}T 

{-r(t) }T> , where x(O) and r(t) are an initial coordinate 

vector, and a rigid body rotation vector at time t, 

respectively, of the element. Presenting equations of motion 

can be obtained by subs ti tut ion of Eqs.(2) and (3) into Eq.(1) 

Incremental Equations of Motion 

Subtracting the equations of motion at time t from those at 

time t+△ t and making some calculations, we obtain next 

equations 

[T(t+△ t)JT[が(t+△t)] [T(t+△ t) ]{丘｝

+ {[T(t)J町が(t)][△ Tl + [△ T]T(町(t)J[T(t)J

+ [△ T)T[が(t)][tiTJ}伍(t)}

+ [T(t+△ t) J町パ](T(t+△t)J{ii(t)} 

+ { [T(t+△ t) J叶が(t+/J.t) J [T(t+△ t)J 

+ [T(t+△ t) JT [が(t+△t)] [T(t+△ t)J 

+ [ T (t +tit)] T [ M門t+△tl J [ t(t+△ t) ]'}・｛△ u} 

+ { [T(t+△ t)]T(M*(t+△ t) ][△ Tl + [T(t+△ t)戸［△炉 J[T(t)J 

+ [ATJ叶炉(t+tit)J[T(t)J + [T(t+△ t)JT[が(t+△t) ][△ Tl 

+ [T(t+. △ t)JT[AがJ[T(t)J + [△ .T] T[が(t)][ T(t) J 

+ [T(t+△ t)JT[M*(t+△ t) ][△ 釘 +[T(t+△ t)] T [△叫 HT(tlJ

＋ ［ △  r1rcM*(tJJCf(tJJ Hu(tJ} 

+ [T(t+△ t) J叶が(t+tit)] [ T(t+ti t) ]{△ u} 

+ [T(t+tit)JT[K*(t+△ t)]{[T(t+△ t) ]{△ z} 
+ [△ T ] ({ u (t) } + { Z (t) }・) }. 

+ [T(t+△ t)]T[△ ぐJ{u*(t)} + [△ T]T{,F*(t)} 

{t,..F・} (4) 

Eq.(4) is the incremental equations of motion of an element 

from time t to time t+t:,t. The first four lines represent 

ordinary inertia terms, next eight lines are generated from 

the rigid body rotation of the element. The remaining lines 

correspond to the restoring force. 
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If strains are small, the stiffness matrix and mass matrix 

in each element coordinates system can be assumed constant, 

when sufficiently fine mesh is adopted, Moreover', if time mesh 

is also as small as the second term in Eq.(2) can be neglected 

with respect to the first term, Eq,(4) may finally be written 

as 

[T(t+△ t)JT[M*][T(t+△ t) ]{△ ii} 

+ { [T(t)JT[M*][t::.T] + [△ T]T[M*][T(t)] 

+ [△ T]T[M*][△ T]}{i.i(t)} 

+ [ T(t+△ t)]T[K*] [T(t+!:::.t)]{△ u} 

+ [ T(t+△ t)]T[K*]{[T(t+△ t) ]{△ z} + [△ T] ({ u (t) } + { Z (t)'}) } 

+ [△ T]T{F*(t)} 

[M(t+△ t) l{ぷi} + {g(t+△ t) } 

+ [ K(t+△ t) l {, △ u} + {h(t+△ t)} 

= {'△ F} 

where [M(t+D.t)]=[T(t+△ t)]T(M*](T(t+△ t)] 

[K(t+<lt)]=(T(t+△ t)]T(K*](T(t+△ t) l 

and 

{g(t+△ t) }={(T(t)]T(M*][△ Tl+ (△ T]T[M*](T(t)] 

+ [△ T]T(町］［△T]}{ii(t)} 

fh(t+△ t)}=(T(t+D.t)]T[K*]{ [T(t+△ t) ]{△ Z} 

+ [△ Tl ({ u (t) }+ { z (t、)}) } + (△ T]T{F*(t)} (5) 

Solution Procedure for the Incremental Equations of Motion 

The time-integration scheme to he used here is one of the 

simplest one, namely, Newmark1s $-method with 6=1/4. Thus, the 

velocity and displacement within a time step are assumed to 

vary according to the next relations. 

｛砂｝●={?(t+, △ t J } -{u (t J } = { u (t) }△ t+{b,.i.i}t,.t/2 

｛△ u }={ u(t+b.t)ド{u(t) }={ u(t)・}△ t+ { ii }b. t2 /2+{狐}131::.t2 (6) 

Firstly, Eq.(5) is linearized with respect to displacement 

and acceleration increments l t::.u }. and l△叫， then Eq.(6) is 

introduced to eliminate the displacement increment to give an 

equation including only the acceleration increment as 

unknowns. After superposition of the obtained element 

equations on whole the structure, the first approximation of 

the acceleration increment, and then, of the displacement 

increment can be calculated. Similarly, processes combined 

with the method presented in [1 J gives the second 

approximating solution and the following corrected solutions, 

until pre-set convergence criteria are satisfied. 
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Geometrically Nonlinear Vibration of Cable 
Structures Considering Stress-Unilateral 
Behaviours 

Y. Hangai and T. Yamagami 
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0.0 1.0 2.0 

Maximum「esponcein vertical displacemnt of the loaded point (cm) 

Dynamic re平 匹 ofa two-l::ar truss applied a step-1四 atits top 

Numerical Example 

Dynamic response analyses are conducted on shallow two-bar-

truss loaded with a vertical step load at its top. The result 

is shown in the figure above. For this simple problem, 

theoretical solution can be easily obtained, if the system 
stops entirely at its maximum response and the lost potential 
of external force is assumed to be converted into strain 

energy without any loss. Present results and the above 

theoretical results show good accordance. The solid line in 

the figure indicates the static load-displacement relation. 

Qonc 1 us i on_s 

The geometrically nonlinear finite element static analysis 

method developed by the authors, based on the coordinate 

representation, has been expanded to dynamic analyses. Though 

the numerical example treated here is very simple one, the 

method presented here is also valid for plate and shells as 
well as for frames. 
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Summary 
The geometrically nonlinear dynamic behaviour of cable structures is 
discussed from the view point of stress-unilateral discrete system. In the 
first part of the paper, the geometrically nonlinear equations of motion 
considering the slackness of cables are derived by the variational 
inequality formulation, and in the latter part, the free vibrations and the 
forced vibrations to the harmonic applied force are numerically analyzed 
for a cable structure of hyperbolic paraboloidal shape. 

Geometrical] Nonlinear E uations of Motion 

Cable structures as well as membrane structures reveal the structural 

characteristics such that materials used for these structures cannot 

transmit the compression stress, and then these structures belong to the 

stress-unilateral structure system. Also, cable structures are naturally 

unstable structures so that the initial prestressing is usually introduced 

to add the initial stiffness, and in order to estimate the amount of the 

initial pres tressing _to be introduced, the geometrically nonlinear analyses 

are required considering the slackness of cables. 

Let us consider a cable member'a'whose nodal points are i and j in a 

Cartesian coordinate system(x,y,z). Let t xi=(xi,Yi,zi) and txj=(xj,Yj,zj) 

be the coordinates of i and j (Fig.l). Then, direction cosines are 

obtained in the vector form as入a=(xj―xi)/lxj―xiJ• Let ui,uj and fi,fj be 

the displacement vectors and the force vectors for i and j nodal points, 

respectively. The elongation of a-member is derived considering the first 

and the second terms of displacement as 
1 t 

(U n)a =入. (u jーu;)+ー (u;-u;)N (u;-u;) 
2 

where N=[ 1-t入ふa]/L。in which L。denotes the initial member length, 

As shown in Fig,2, the axial force-elongation law for a member has the 

following relation: 

(1) 


