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MODELING ELASTO-PLASTIC HYSTERETIC BEHAVIORS OF STRUCTUUAL 
STEEL AND APPLICATIONS TO STRUCTURAL MEMBERS 

M, Minagawa, T. Nishiwaki and N. Masuda 
Musashi Institute of Technology 
1-28-1 Tamazutumi, Setagaya-ku, Tokyu 158, JAPAN 

SUMMARY 

We propose a cyclic plasticity model for predicting quasi-
static hysteretic behaviors of steel. The model is based on 
the''infinite surface model" proposed by Dr. Popov et. al .. It 
is applied to predictions of te11sio11-compression stress-strain 
relations of mild steel and high strength steel as well as 
moment-curvature relations of steel i.Jeams. Comparing these 
relations with experimental results, we confirm the validity 
of the model proposed here. 

l. INTRODUCTION 

When elasto-plastic hysteretic behaviors of structures 
or structural members is predicted with numerical methods 
such as the finite element method, assumptions introduced in 
calculation procedures and quality of modeling affect on 
predicted results. Especially, for local analyses such as 
local buckling analyses or crack propagation analyses, a 
proper stress-strain model is needed in order to make 
predictions accurate. 

In order to complement shortcomings of primary models 
such as the isotropic: hardening model [1] and the kinematic 
hardening model [2,3], a lot of constitutive models had been 
presented. A model of a field of work hardening moduli, 
introduced by Mr6z [4], corresponds to an extension of the 
sub-layer model [5] to multi axial stress conditions. In this 
model, the change in the strain hardening modulus is 
represented by the concept of movements of multi surfaces 
defined in the stress field. lH this model, a piecewise linear 
stress-strain relation under proportional loading is assumed 
[6], and a lot of surfaces should be dealt with in calculating 
hysteretic behaviors. 

The two surface model was presented by Dafalias and 
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Popov [7,8,9] and Krieg [6] individually in order to prevent 
the shortcoming. In this model, a bound surface, as a state 
surface corresμunding to an extreme strain state, is 
introduced in addition to the yield surface. The strai11 
hardening modulus is defined by the cuufigurations and 
l_ocations of these two surfaces. After tlie presentation of the 
two surface model, some amendments areμresented [10,11]. But 
it was pointed out by one of the presenters that''if load 
reversals take place before any noticeable plastic flow took 
place in the opposite sense, the updating of the key parameter 
cann,it. be done correctly. In this case a progressively greater 
and greater overshoot.ing of the probable stress path develops 
-----." (12]. In order to prevent this weak point, Petersson 
a11d PopovμresentP.d an improved model [12,13]. In this model, 
infinite intermediate sU1・faces were introduced between these 
two surfaces and the complication due to treatment of many 
surfaces was prevented wit.h an interpolation procedure. It 
was, however, shown by the authors'i11vest.igations that the 
validity for material with yield plateau and conspicuous 
st.rain hardening characteristic was doubtful. Moreover 
numerical trial-and-error must be done in order to estimate 
all of material property parameters introduced in the model 
and then a mor・e rational method for evaluating them should be 
found. 111 this paper we propose a modified cyclic plasticity 
model. As appl icatiuns of the model, tens1on-compress1on 
stress-strain relations of structural steel and moment-
curvature relations of H-shaped steel are predicted and 
compared with experimental results. 

2. PETERSSON-POPOV MODEL (12,13] 

Stress-strain relations represented by the Petersson-
Popov Model are expressed by means of loading surfaces. Fig.I 
explains the concept of this model by combinations of uniaxial 
stress-strain relations and behaviors of bi-axial multi 
surfaces for pre-loaded material. In the left figure, a 
difference between stress-strain relations of the tension path 
q a b f ---c rom a reversed point q and those of the compression 
path q'-a'I'' -J -c is represented by movements and expansions 
and/or reduct.ions of the surfaces f。,f1 and so on. 
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Fig.1 Tension-compression stress-strain relations and 
corresponding loading surfaces in bi-axial stress space. 
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Fig.2 Definitions of times t。,tc and ti 
in Eq. (2). 

Each loading surfaces are defined by a size function 
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and a vector { a } indicating those central coordinates [ 12]. 
The size function is evaluated as the weighted summation of 
two functions Ka and Ku, which are size functions 
corresponding to two fundamental loading phases: 

K=WKa+(l-W)Kb (1) 

where Ka is the fuuction in the case where no hysleretic 
effect exists and Kb is that in the case where the hysteretic 
effect becomes stationary. These functions are referred to as 
fundamental size functions in・this paper. The weighting 
function W represents the change in the size function from Ka 
to Kb・The functions Ka an<l Kb are cletermiue<l from 
experimental results obtained from a tension test and a 
te11s1on-compress1on test and the function Wis estimated by 
means of numerical trial and error. 

The following state variables describe the degree of 
hysteretic effect in this model (see Fig.2): 

む=fie d tp, ら=Lt'd£p, 
to 

(2) 

where 百p is cumulative equivalent plastic strain from the 
start time (t0) of loading to the time (tel of the last 
reversal, and e pi is equivalent plastic strain increment from 
the time (tc) to the time (ti) when the stress-strain re lat ion 
is to be predicted. 

3. PROPOSED CYCLIC PLASTICITY MODEL 

The model proposed by the authors is constructed by 
modifications of the Petersson-Popov Model. Important 
features of this model are referred to in this section. 

3.1 Evaluation of Cumulative E uivale11t Plastic Strain 

Fig.3 shows two stress-strain curves obtained by 
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Fig.3 Stress-strain curves fig.4 Stress-strain paths for 
with unloading. accumulating plastic strarn. 

experiments. In each test unloadi11g took place at the point R 
and the poi11t R'respectively. If plastic strain is 
accumulated over all paths, the cumulative plastic strain at. 
the pui11t I< is fairly greater than that at the point R'. But, 
the stress-strain curve on the path aft.er the poiut R is much 
the same as that 011 the path after the point!<'. Therefore we 
can u11derstand the fact that the plast.ic strai11 produced in 
repetitive loading processes has to be separated in two 
c:ompouents: one has an effect. 011 following stress-strai11 
relations and the other does uot. Basing on this phenomenon, 
the cumulative equivalent. plastic strain is evaluated under 
the assumption that the plastic strain beyond the precedi11g 
plastic strain amplitude is effective. Thick lines in Fig.4 
show the paths on which the plastic strains are to be 
accumulated in the case of uni-axial loading. 

3.2 Choice of Fundamental Size Functions and Institutiou of 
Weiii;htinii; Fu11ctions 

K expressing enlargement and reduction of loading 
surfaces is defined Ly the following equation: 

K = 町 K j + (1一町） K j+l ; j =1,Nb (3) 

where K j and K j+~are fundamental size functions and Wj is 
a weighting function expressing the variation in the size of 
surfaces according to loading histories. The equation means 

that the variation in the size function in a certain limited 

f ― range o c p can be expressed using the fundamental size 
functions K j and K j+I defined as size functions at the 
boundaries determining the range and the weighting function均
for the range. When the number of boundaries is taken as Nb, 
an Nb number of weighting functions and an Nb+l number of 
fundamental size functions are required. 

3.3 Estimation of Material Pro erties 

All of the material properties of the proposed model can 
be estimated by a combination of a monotonous tension test and 
several tension-compression tests each including only one 

01 first path Virg,n二u::_••
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Fig.5 Evaluation of size functions. 

reversed point. A procedure evaluating material properties is 
as follows. 

（） a Determ111ation of K l. 
Virgin stress-plastic strain curve represents IC l・ 

(b) Determ1nat ion of・ ・f t・ size unc ions IC・s. J 
Size functions K・'s corresponding to the cumulative 

-J '  plastic strains E・s  have to be determined. Using the p,J 
virgin stress-plastic strain curve and the stress-plastic 
strain curve obtained by unloading from the point where 
the I cumulative plastic stra1u_reac1es E p,j, I(j is 
evaluated as the function of E・Fig.5 shows how to Pl' 
evaluate IC j corresponding to the reversed plastic strain 
E 

（） 
P,J .. 

c Determ111at1on of K Nb+l 
IC j corresponding to the state in which the hysteretic 
effect becomes stationary is IC Nb+l・The stationary state 
in hysteretic effect means that no difference is found 
among each IC・'s. In the case where IC・'s do nut converge J J 
within the experiments, K・for ti 1e measured max 1mum c ・  J P,J 
1s adopted as K Nb+l・

(d)Determination of W・ 
J 

By means of K 1, K z, ... , K Nbtli weighting values for the 
evaluation of the function K・corresponding to the values 

- J 
of E P,J ・s are determined by the next equation. 

Wj = (K - K j+l) / (K j - K j+l) (4) 

Weighting functions are determined by the formula which 
shows the relation of the weighting values and the 
corresponding c p・ 

4. PREDICTION OF TENSION-COMPRESSION STRESS-STRAIN RELATIONS 

4.1 Specimens and Testing Apparatus 

Structural steels of SM41A, SM50A and HT70 were used. 
Table 1 shows the mechanical properties of the steels 
presented by the steel makers. The configuration of the test 
specimens used is illustrated in Fig.6. A testing machine with 



726 

Y. P. T. S . El. 
(MPa) (MPa) (%) 

7

8

 

3

2

 

1
9
1
 

2
2
6
 

4
5
6
 

4
3
2
 

8
5
2
 

2
3
6
 

A

A

 

1
0
0
 

4
5
7
 

S
M
S
M
H
T
 Fig.6 

Configuration of test specime11s. Table.l Mechanical properties. 

30 t.onf capacity t. ens1on-compress1on actuator was employed a11d 
the oi I pressure chucking system with 20 tonf c:apaci ty wa8 
used for sett. ing the specimens. The load was detected by a 
load-cell attached to the testing machine and t.he strain was 
detected by strain gauges. The loadi11g is controlled by t.he 
strain at the central section of the test specimens w1t.h the 
strain rate of O.OOOlmm/mm/sec. 

4.2 Numerical Calculation Met.hod 

Elasto-plastic finite element analyses were carried out 
for round-bar steel specimPns subjected tot. ens1on-compres81011 
repetitive loading under strain control (14,F] ,) . Assumptions 
introduced in the analyses are as follows; 

(l)constant strain triangular finite elements were used, 
(2)init.ial yielding complies with vou Mises yield 

criterion, 

(3)yieldiug was judged wit.h the r-min method (16], 
(4)incremental method was used as a nonlinear calculation 

procedure. 

4.3 Com arisons of Ex erimental and Calculated Results 

In order to estimate the size function K in strain 
hardening region of t.wo types of steel of SM41A aud HT70, 
three fundamental size functions and two weighting functions 
shown by Fig.7 and Fig.8 d were eternuned. The fundamental size 
functions K 1 and K 2 correspond to Ka and Kb of the 
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Fig.7 Fundamental size functions 
of SM41A and HT70. 
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Fig.8 Weighting functions of 
SM41A and HT70. 

2
 

8
 

-aoo・_,, , i =: 丘or{ z.,0% l -aoJ i' 戸0~: i4'5% HT70 
STRAIN (%) STRAIN (%) 

Fig.9 Comparisons of stress-strain relatious; 
the case of strain hardeuing region. 

Petersson-Popov Model, while K 2 is the function of materials 
with loading history corresponding to a start point of the 
strain hardening. One of the weightiug function W1 is assumed 
to decrease lineary and the other was measured from 
experimental results. Fig.9 shows stress-strain relations 
predicted by the proposed model aud those gained by the 
corresponding experiments. 

For prediction of stress-strain relations iu plastic 
flow region of SM50A steel, five fundamental size functions 
and four linear weighting functions were employed. Fig:10 
shows fundamental size functions measured. In addition to 
three functions used in predicting stress-strain relations in 
the strain hardening region, two more functious were measured 
and directly used as additional fundamental size functions. 

CMP4oaol i Nb=4 T pt ,st:pl ast1. c strain • at 
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ー••一 K 4 for e p=百p,st I 
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Fig.10 
Fundamental size functions of 
SM50A in plastic flow region. 

Fig.11 
Weighting functions assumed for 
SM50A. 
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the case of plastic flow region. 

Therefore all of the weighting functions were defiuec..l as ， 
linear functions as shown i11 rig. ll. Fig.12 shows stress-

strain relations and those relations obtainec..1 by exμenmeuts. 
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The error measure shown in Fig.9 and Fig.12 is defined 

the following equation: 

as 

● II P&thS 
J [ Ut.C&t. -<11.exo. f de:, /』:,oatM [ U1.exo. [ de:、XlOO(%) 

In spite of the use of material properties det:rm1ned 

from fundamental measurements only for some specimens, the 
stress-strain. relations predicted coincide considerably with 

the measured stress-strain relations. 

(5) 

5. PREDICTION OF MOMENT-CURVATURE RELATIONS OF STEEL BEAMS 

5.1 Measurement Method and Material Properties 

口Table 2 Mechanical properties 
and chemical compositions 

"" 

Lover Tenoile Broken Young'● 

Held Str● ngth Streu Hodulu● 

5 Point x10 
a,1 08 ab E 
)01 ム40 347 2. 10 
402 498 402 2.10 

unit , HP・
Table 3 Mechanical properties 

obtained by tension tests. 
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Fig.13 
庄 shapedsteel beam specimen. 
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Fig.14 Fundamental size functions for the H:-shaped steel. 

2,0 

A specimen consists of a test portion cut out from H-

shaped steel of SS41 quality and of two loading arms. The 
mechanical properties and chemical compositions of the H-
shaped steel in the test portion are given in Table 2. The 
configuration and dimensions of the specimen are shown in 
Fig.13(a), while the method of loading is shown in Fig.13(b). 
Loading speed was controlled by mini-computer so that strain 
rate at the upper and lower flanges would be approximately 
0.0001 mm/mm/see. The curvature of the test portion was 
calculated with the assumption that cross sections of the beam 
remain plane. 

The mechanical properties measured by tension tests are 
given in Table 3. To obtain the values for the material 
properties introduced in the proposed model, a tension-
c;ompression tests each including a single unloading were 
performed besides tension tests. 

The fundamental size functions are shown in Fig,14, Since 
K Nb+l defined as the fundamental size function when the 
effects of hysteresis had converged was not measured, the 
fundamental size function at the time of start of strain 
hardening enlarged 30 percent in the direction of stress axis 
was taken to be IC Nb+l• referring to the results of 
measurements on mild steel shown in Sec,4. All of the size 
functions measured were adopted as fu11.damental size 
functions, and weighting functions were all made to be linear. 
The residual stresses occurring in the specimens were measured 
by the hole drilling method and a simple distribution type was 
assumed, 

5.2 Calculation of Moment-Curvature Relations 

In case of a frame member having a biaxially symmetrical 
section, calculations of sectional behaviors can be performed 
by means of the tangent stiffness method by Chen and Atsuta 
[17) with some modifications. The hypotheses introduced in 
numerical calculations are given below. 

1) Stress 
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direction perpendicular to the member cross section 

are ignored, 
2) The configuration of the cross section is invariable. 
3) Unstable behavior such as local buckling does not occur. 

, 4) Stress, strain and tangent modulus vary linearly 

inside each element. 
5) Residual stress exists. 

In order to evaluate the tangent stiffness, the cross 
section was divided into finite triangular elements and using 
the abovementioned hypothesis 4), an integrated value 
concerning an element was obtained by the values at the three 
nodal points composing the element. 

5.3 Com arisons of Ex erimeutal aud Calculated Results. 

Hysteretic moment-curvature relations were calculated, 
and compared with those relations obtained by c:orresponding 
loading tests. The results are shown in Figs.15. The solid 
lines of the left figures show the calculated moment-
curvature relations and the broken lines the relations 
obtained from the results of corresponding loading tests, 
respectively. The stress-strain relation at the top fibers of 
the upper flauge obtained in the numerical calculation are 

shown in the right figures. 
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Siuce the strain to which the material was subjected was 
about 2 percent at maximum in terms of value of E it can he P' 
considered that the effect of having determined K Nb+l from 
assumptions based ou the measurement results for another type 
of mild steel has not appeared. As for weighting functions, 
they were all set linear, and it was found that as a result of 
having used four or five fundamental surface size functions, 
serious errors were not brought about in the calculated 
results. Regarding hysteretic moment-curvature relations, it 
is tlmught the errors in the first loading paths have been 
slightly large maiuly because of the scatter in upper yield 
point values of materials, but it was found concerning 
subsequent cyclic loading processes that moment-curvature 
relations obtained from measurements could be predicted with 
great accuracy. 

6. CONCLUI>ING REMARKS 
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(ii) Loading pattern No.2 cば）

Fig.15 Comparisons of moment-curvature relations. 

A cyclic plasticity model proposed here was constructed 
by refinements of the multi surface plasticity model 
introduced by Petersson and Popov. We carried out some 
experiments to measure repetitive stress-strain relations of 
steel and proposed a model with three significant differences 
from the Petersson-Popov Model: 

(a)Effective value of cumulative equivalent plastic strain is 
defined as one of state variables. 

(b)Additional material property functions are employed. These 
functions express strain hardening characteristics of 
materials with certain loading histories, 

{c)All of the material property functions cau easily be 
obtained by a combination of a simple tension test and 
several simple tension-compression tests. 

This model was applied to predictions of uniaxial stress-
strain relations of mild steel aud high strength steel. By 
comparing the results with those of corresponding experiments, 
it was confirmed that the accuracy of the stress-strain 
relations calculated by means of the proposed model was good, 

In order to calculate moment-curvature relations of H-
shaped beams, the tangent stiffness method was employed by 
means of cross sectional elements in which stress, strain and 
tangent modulus vary linearly, The calculated moment-curvature 
relations were compared with those obtained by experiments and 
it was shown that the hysteretic moment-curvature relations 
could be predicted with great accuracy. 
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