「第3回 耐震補強・補修技術, 耐震診断技術に 関するシンポジウム」講演論文集

平成 11 年 7 月

社団法人 土 木 学 会 土木施工研究委員会

1.はじめに

本研究は炭素繊維シート(Carbon Fiber Sheet 以 後 CFS), アラミド繊維シート(<u>Al</u>amid <u>F</u>iber <u>S</u>heet 以後 AFS)を用いた鉄筋コンクリート(<u>R</u>einforced Concrete 以後 RC)構造物の角部への定着方法を考 案し、その有効性を実験的、解析的に検討するもの である.既存の RC 構造物,特に橋脚への補強では, 耐力の増加だけではなく、じん性を向上させねばり 強くすることが重要である。単に耐力を向上させた 構造物は大規模な地震時に橋脚から構造物全体に伝 達される部材力が大きくなり、そのために大規模な 補強が必要となってくる.また,曲げ耐力を上げる 事により作用せん断力が増加してせん断破壊に至る こともある。従って、曲げ耐力を過度に上げること なく、じん性を向上させることが重要である。もち ろん、じん性のみを十分に向上させたとしても兵庫 県南部地震クラスの地震には耐えられない場合が想 定されるため、所要の耐力とじん性の向上を図った バランスの良い補強工法が望ましい。そのような条 件を満たす工法として, RC 巻き立て工法 ¹¹²⁰、鋼 板巻き立て工法 3-9及び炭素繊維巻付け工法 59 8等 が提案または、実施工されている.しかし、今後様々 な条件での耐震補強施工が予想され、新しい補強工 法の提案が待たれているう。

一方,橋脚への繊維シート(Eiber Sheet 以後 FS) を用いた補強の多くはせん断耐力の向上,じん性の 向上を目的とし,それらの研究^{-0.50,90,100}は多く,実 施例も少なくない.また,曲げ耐力の向上を目的と した研究⁻⁰,実施例もある.繊維シートによる補強 は軽量で施工性が良いことから利用される機会は増 えると思われる.しかし,実際にはせん断補強また

日本道路公団	正会員	古谷	嘉康
武蔵工業大学	正会員	皆川	勝
武蔵工業大学	正会員	佐藤	安雄

は、鉄筋段落し部の曲げ補強への利用に限定されて おり、橋脚基部の補強に利用した例は少ない。これ は、繊維シートを角部に定着する適当な方法が開発 されていないことによるところが大きい。

そこで本研究では、繊維シートを補強材として用いる場合の角部への定着方法を新たに考案すると共に、その応用例として、RC 橋脚の曲げ補強におけるフーチング部への定着において、この工法が有効であることを実験と数値解析により検証した。

2.考案した定着工法

本研究では、繊維シートを鉄筋コンクリート表面 に定着する新たな方法を考案した、隅角部を有する 構造物の補強工法において、繊維シートを定着する 方法が最も容易であると思われる。

しかし、角部では、接着面の端部に垂直方向に引 張り力が作用するため、図-1に示すとおり、端部 から順に引き剥がされて定着強度を得ることが出来 ない。

そこで、本研究では、接着されたシートの定着効 果を上げるために、図-2 に示すように定着用治具 とアンカーボルトで定着する方法を考案した.この 方法は、シートを定着部に接着させた直後に、その 上から定着用冶具を接着し、アンカーボルトを締め 込むことにより圧着する方法である。前述のような 引張力がシートに作用した場合、シートに作用する 引張力は定着用冶具の曲げ剛性によりアンカーボル トへ伝達される。

なお、定着用冶具は L 字型とした. これはシー トから定着用冶具への応力伝達をスムーズにするた め、ならびに、冶具先端部でのシートの破断を避け るための処置である. また、隅角部のシートが直角

[keyword] Carbon Fiber Sheet. Alamid Fiber Sheet. Earthquake resistance. Statically repeated load. Nonlinear Dynamic Analysis 連絡先 東京都世田谷区玉堤 1-28-1 TEL 0533-2793 E-mail:minagaw@eng.musashi-tech.ac.jp に折れ曲がる部分については、適度の曲率を確保す るように配慮する、図-3 に、鉄筋コンクリート橋 脚の曲け補強材としてシートを用いた場合に、本定 着方法を応用した場合の概念図を示す。鉄筋コンク リート橋脚の場合には前述のように、曲げ耐力を単 純に上げることは必ずしも好ましくない場合がある。 しかし、本方法で定着を行う場合、曲げ耐力を上げ ることはもちろん、定着用冶具の材料特性、寸法を 変えることによって、定着部に変形能を持たせるこ とができる。したがって、耐力と変形能のバラン スに配慮した定着工法として用いることができる。

3. 橋脚モデルの載荷実験

RC 橋脚モデル試験体を CFS または AFS で曲げ 補強する場合について、本研究で考案した定着工法 の有用性を実験により検証した。

3.1 材料の力学特性

用いた AFS 及び CFS の材料特性を表-1 に示す。 補強前試験体に用いた D10 主鉄筋, D6 帯鉄筋, 及 び定着用治具に用いた鋼材の力学特性を表-2 に示 す。

3.2 定着用冶具

定着用治共は、由形鋼を加工した治共(L-Type)と 平板を加工した治共(P-Type)の2タイプを用意した。 その形状を図-4 に示す、また、ボルト用孔の直径 は 20mm とした、アンカーボルトとして、M16 全 ネジボルトを用いた。

3.3 供試体への巻き立て補強

補強する供試体は,一般的な曲げ破壊先行型の既

図-3橋脚モデルへの施工例

表-1 FS の材料特性

	CFS	AFS
引張強度(N/mm ²)	4810	2710
弾性率(N/mm ²)	2.45×10^{5}	7.85×10^{4}
破断ひずみ	0.0111	0.0328
厚さ(mm)	0.167	0.169

表-2鉄筋と鋼材の力学特性

	弾性係数	断面積	降伏荷重	降伏応力	引張強度
	(N, mm ²)	(cm [°])	(N/本)	(N_mm ['])	(<u>N. mm'</u>)
主鉄筋D10	190×10^{3}	0,713	2.52×10^{4}	353	52 <u>6</u>
帯鉄筋D6	173×10^{3}	0.317	1.18×10^{4}	371	541
定着用冶具	206×10^{3}	4500		314	450

表-3試験体一覧

供試体名 FS種類	この注意業品	うまごか また 米ケ	と目記生	鉄筋比	
	作用 5虫 作义 安义	/11月1171/1	補強前	補強後	
N-Type		/		0.95	/
CP-type	CFS	1枚	P-Type	0.95	1.97
CL-type	CFS	1枚	L-Type	0.95	1.97
AP-type	AFS	1枚	P-Type	0.95	1.53
AL-type	AFS	1枚	L-Type	0.95	1.53

図-4 定着冶具の形状

図-5 試験体配筋図

存 RC 橋脚の 1/6~1/8 程度とした.図-5 に補強前供 試体の形状寸法を示す.断面は 300mm×300mm, スパンは 1000mm,鉄筋比は 0.95 である.無補強 のものを含め表-3 に示す 5 タイプの供試体を用意 した.供試体タイプ名の 1 文字目は FS の種類を 2 文字目は冶具の形状を示す.また,補強後の鉄筋比 を算出する際には FS の引張強度から鉄筋量に換算 した.補強にあたっては,まずコンクリートの劣 化層をディスクサンダー等により除去,研磨(以降 下地処理工)した後にエポキシ系樹脂であるプライ マーを塗布し,乾燥後不陸修正を行う.また,下地 処理工を行う際に 1mm 以上の段差を除去し,モル タルを用いて隅角部に R=10 mmの面取りを設けた. これは FS の強度低下を緩和させ、作用応力がスム ーズに伝達するための処理である. プライマーの指 触乾燥後,常温硬化エポキシ樹脂(以降 樹脂)を塗 り FS を柱軸方向に貼り付け,ゴムベラ等を用いて 樹脂を含浸させる. その後,定着用冶具により FS を圧着し、更に、アンカーボルトによりフーチング 基部と固定する. その状況を写真-1 に示す.

写真一1冶具定着 3.4 **截荷方法**

写真-2 実験状況

載荷方法は,図-6 に示すように片持ち梁の先端に 死荷重を想定した 91kN の一定軸方向力を載荷した 状態で,柱先端での変位を両振りで静的に制御する 方法である.試験機は容量 440kN の電気油圧式サ ーボパルサー型アクチュエーターである.変位振幅 は図-7 に示すように,降伏変位δ,を基準とし 0.5 δ_y, 1.0δ_y, (以降 0.5δ_y刻み),と変化させた.

なお,ここでいう降伏変位とは,無補強供試体の主 鉄筋が降伏を開始する時の供試体先端の変位である.

3.5 実験結果及び考察

荷重-変位関係のスケルトンカーブを図-8に示す. また, CFS または AFS により補強された供試体の 無次元化荷重振幅と載荷回数の関係をそれぞれ図-9 及び図-10 に示す.ここで荷重振幅は,荷重-変位 関係の上下最大変位時の荷重の絶対値を平均したも のである.また,無次元化荷重振幅は荷重振幅を更 に無補強供試体の降伏荷重で除した値である.なお 変位値は柱先端部での値を用いた.

(1) CFS により補強された供試体

CP-Type と CL-Type の無次元化荷重振幅を比べ

ると $\overline{\delta}$ (= δ / δ_y)=2.0 までは有意な差はないが, $\overline{\delta}$ =3.0 以上になると徐々に差が生じ CL-Type のほ うが大きな値となった.また, CP-Type では $\overline{\delta}$ =2.5 まで緩やかな上昇となり, $\overline{\delta}$ =3.0 を過ぎると変化 がなくなり, CFS が破断するのに対し, CL-Type で は $\overline{\delta}$ =3.0 以降顕著に上昇して CFS が破断を起こし, 載荷は終了した.最大荷重は, CP-type が約 56kN, CL-type が約 81kN, N-type が約 43kN となって おり, CL-type の最大荷重は CP-type 及び N-type の約 1.5 倍となった.

これらの結果より,L 字形冶具を用いて CFS を 定着することにより曲げ耐力が確実に上昇すること, 冶具の塑性変形により定着部でエネルギー吸収がな されていることがわかる.

(2) AFS により補強された供試体

AP-Type と AL-Type について無次元化荷重振幅 を比較すると $\overline{\delta}$ =2.5 までは大きな差がなく $\overline{\delta}$ =2.5 を超えたところから徐々に AL-Type のほうは上昇 し $\overline{\delta}$ =2.5 をピークとして弧を描くように下降した. また、AP-Type も弧を描くような形になったがそ のヒークは、 $\overline{\delta}$ =3 となった。最終的には無次元化荷 重振幅の差は約 1.2 倍となった。

最大荷重は AL-Type では 79kN, AP-Type は 66kN となり, N-Type の場合の 1.5 倍, 1.2 倍の強度であ った. また, 図には示していないが冶具のひずみは 最大でも 150 μ とごく微小なことから冶具が変形す ることなく柱の崩壊を迎えたことが分かる.

4. 橋脚モデル解析

前節の実験結果により示された補強効果を数値解 析により検証するために、2次元有限要素解析を実 施した.補強効果の影響を見るため,無補強(N-Type), CFS のみによる補強(CFS-Type), 由形鋼を用いた 冶具により CFS を定着した補強(CL-Type)の3種類 の供試体について解析を行う.

4.1 解析方法

CFS の材料特性, 治具 の材料特性は表-1 及び表-2 に示したものと同様であ る. 解析モデルを図-11 に 示す. 各要素はすべてシェ ル要素とした. 無補強の場 合, 要素数は 360, 節点数 は 595 である. 鉄筋コン クリート部分の材料は平均 応力による降伏応力の減少

図―11 解析モデル

を考慮した弾塑性材料とし、鋼板は移動硬化を考慮 した等方弾塑性体、シートは等方弾塑性破壊モデル としており、シートが破断した場合には要素が消去 される.また、シートと鋼板、シートと RC 試験体 の間には接触面への法線方向とせん断方向について 破壊応力を設定する接触要素を挿入している.これ によりシートの剥離が考慮できる.剥離は次式によ り判定される.

$$\left(\frac{\sigma_n}{\sigma_{nf}}\right)^2 + \left(\frac{\sigma_s}{\sigma_{sf}}\right)^2 \ge I$$

 σ_{nf} : 垂直破壊応力 σ_{sf} : せん断破壊応力 σ_{n} : 結合部に実際に作用している垂直応力 σ_{sc} : 結合部に実際に作用しているせん断応力

定着体, 被定着体と FS との間には垂直破壊応力 3.43N/mm², せん断破壊応力 102.5N/mm² とする接触 要素を挿入し, 定着用治具と FS との間には垂直破 壊応力 2 N/mm², せん断破壊応力 60 N/mm² とする接 触要素を挿入した, コンクリートと FS との間の垂 直破壊応力は参考資料単の値を用いた.

拘束条件は、フーチング基部を完全固定とした. 載荷条件については、先端に 91kN の一定軸力を載 荷した状態で 400mm/sec での動的単調載荷とした.

4.2 解析結果と考察

各供試体について相当応力分布図を図-12 に示す. 定量的な結果を得るには至らなかったが,各分布図 より CFS のみによる補強では,その効果はほとん ど見られないのに対して,本稿で提案した定着工法 を用いることで補強効果が顕著に向上することが明 らかとなった.

図-12相当応力分布図

5. 隅角部モデルの載荷実験

次に, RC 構造物の隅角部に FS を定着する際の 有効性について検討するために,隅角部をモデル化 した小型供試体を作成し,その載荷実験を実施した.

5.1 材料の力学特性

鉄筋の力学特性,補強材として用いた FS の力学 特性,定着用冶具の力学特性は表-1,表-2 に示し たものと同様である.また,冶具は,山形鋼を加工 したものを使用した.その形状を図-13に示す.

5.2 供試体の概要

供試体は図-14 に示すように鉄筋コンクリート製 定着体,無筋コンクリート製被定着体,及びそれら を定着するための繊維シート,定着用冶具,及びア ンカー用高力ボルトからなる. 定着体には, アンカ ーボルトの代用に全ネジの M16 高力ボルトを埋め 込んでいる. ここで高力ボルトを用いているのは, アンカーボルトの引き抜けが実験結果に影響を及ぼ さないようにするためである.

定着体の中央部には、110mm×110mm の孔が開 けてあり、その中に被定着体を差し込む.その状態 で定着体及び被定着体に FS を接着し、その上から 定着用冶具として L 字鋼を接着して、これをアン カー用高力ボルトで締め付けた.

実験では表-4 に示す 4 タイプの供試体を川意した.供試体タイプ名の 1 文字目は FS の種類を示し, 2 文字目は補強枚数,最後の数字は冶具の厚み(mm) を示す.なお,隅角部へ R=10mmの面取りを設け る際にモルタルを使用せずアルミ板を用いた.これ は,固定部と移動部の摩擦を軽減するためである.

図-14 隅角部モデル概要 図-15 供試体設置

5.3 載荷及び測定

図-15 に示すように供試体全体を逆さにして台座 に載せ、定着体底部をアクチュエーターで押すこと で載荷を行った.用いた試験機は荷重容量 98kN, 最大変位±100mm の電気油圧式サーボパルサー型 アクチュエーターである.載荷は変位制御で静的な 載荷を行った.測定は荷重,定着用冶具の曲げ変位, ひずみ,及び FS の繊維方向のひずみについて行っ た.

1

5.4 実験結果及び考察

実験結果を次式により無次元化した.

無次元化荷重

$$\overline{P} = \frac{P}{P_{Y}} = \frac{PL}{w\sigma_{y}}$$

無次元化ひずみ

無次元化変位

 $\boldsymbol{\varepsilon}_{y}$ $\frac{\delta}{\delta}$ $\overline{\delta} =$

 $\overline{\mathcal{E}} =$

他儿

σ_x:治具の降伏応力 L:治具のスパン

ð::治具の降伏変位

J w:治具の断面係数 ε_y:治具の降伏ひずみ

被定着体の無次元化荷重-変位関係を図-16に示す. 被定着体の最大無次元化変位と冶具の最大無次元化 変位の差は C1-12 では約 0.8, C2-15 では約 0.6, A1-12 では約 1.4. A2-15 では約 1.5 となった. こ のことより CFS により補強された供試体に比べ AFS により補強された供試体の方が最大無次元化 変位の差が開くことがわかる.これは、AFS の特 徴である変形能の高さが現れたためである. アンカ ーボルト付近のひずみと荷重の関係を各供試体毎に 図-17 に示す.ボルトにより冶具を定着する際に用 いるワッシャー付近で無次元化ひずみが大きくなり, それから離れる程無次元化ひずみは減少している. また、剥離を生じ始めた時にはワッシャー付近より 被供試体に近いほうが無次元化ひずみが大きい場合 がある. これは FS が徐々に剥離をしていくためで ある。

図- 16 被定着体の荷重-変位

-37-

6.隅角部モデル解析

6.1 解析方法

前述の隅角部モデル実験の結果を参考に表-5 に 示す8タイプのモデルを用いて解析を行った.モデ ルを図-18に示す.要素数266,節点数958である.

表--5 供試体名一覧

図-18 隅角部モデル図

要素はすべてソリッド要素とした. コンクリート 部は剛体とし, FS と定着用冶具は, ひずみによる 破壊と応力による破壊をそれぞれ判断できるバイリ ニア形の弾塑性材料とした. また, それらの間には

(b) AFS

図-19 被定着体の無次元化変位

4.1 に示したものと同じ接触要素を挿入した.FS の材料特性及び冶具の材料特性は表-1 及び表-2 に 示したものと同様である.拘束条件は,定着用冶具 のボルトによる固定部分を完全固定とし,移動部を Z 軸方向以外の変位を拘束した.また全節点は Y 軸方向への移動を拘束することで X-Z 平面に対し て対象要素とした.載荷方法については,被定着体 の正方向に荷重を載荷した.

6.2 解析結果及び考察

(1) CFS により補強された供試体

治具の荷重-変位関係を図-19(a)に示す. C1-15 は治具を固定するボルト付近で CFS が破断したた め十分な変位が生じる前に解析を終了した. また, C2-12 は変位は生じるものの無次元化変位が約 20 の時にボルト付近から冶具が破壊をしたため解析を 終了した. C1-12 及び C2-15 は被定着体の変形後, 被定着体と CFS が剥離し解析を終了した.

CFS において隅角部での応力の伝達をスムーズ にするために R=10mmとなるように面取りを施し た. C1-15 は, 冶具の強度が高く, 冶具により定 着した CFS がすり抜けたためである.

定着用冶具についてはその主応力が一番大きく出 た点での無次元化荷重に対する無次元化応力と無次 元化塑性ひずみをそれぞれ図-20,図-21 に示す. 無次元化応力については,急激にぶれるところがあ る.これは CFS の剥離と対応している.次に冶具 の無次元化塑性ひずみでは,先ほど述べた応力がぶ れる時と無次元化塑性ひずみが対応しているのがわ かる.C1-12,C1-15,C2-12,C2-15 のそれぞれ CFS の破断,剥離または冶具の破壊する直前の応 力分布図(応力がもっとも大きい時)を図-24 に示し た.これより,C2-15 で応力が広く分布しつづいて C1-12,C1-12,C1-15の順となる.

(2) AFS により補強された供試体

冶具の荷重-変位関係を図-19(b)に示す. A1-15 は 冶具を固定するボルト付近で AFS が破断したため 十分な変位が生じる前に解析を終了した. また, A2-12 は変位は生じたものの変位が約 5 の時にボ ルト付近で AFS が破断したため解析を終了した. A1-12 は十分な変形後,被定着体と CFS が剥離し 解析を終了した. また, A2-12 は十分な変位を生じ るが AFS の強度に対して冶具の強度が低いため無 次元化荷重は A2-15 の約半分となった. 定着用冶 具の無次元化荷重に対する無次元化応力を図-22 に, 塑性ひずみを図-23 に示す. まず, 無次元化応力を 見ると急激にぶれるところがある. AFS が 1 枚の タイプと 2 枚のタイプは無次元化応力が全体的に

図-23 冶具の無次元化塑性ひずみ(AFS)

1.2 倍近く大きくなった. この事から冶具の無次元 化応力が同値ならば補強枚数に比例して耐荷力も増 加することが解る. A1-12, A1-15, A2-12, A2-15 のそれぞれの AFS の破断または剥離, 冶具の破壊 する直前の応力分布図を図-25 に示した. 図-24,25 より, C2-15 と A2-15 が似た分布を示し, その分 布も広範囲となった.

図-25 AFS を用いた定着用冶具の応力分布 6.3 隅角部モデル実験と解析との比較

隅角部モデル載荷実験で得られた結果と隅角部モ デル解析の結果を比較する. 被定着体の無次元化荷 重-無次元化変位関係を図-26 に示す。C1-12 は無 次元化変位が4.5までは有意な差が認められないが 解析で得られた結果は変位が 4.5 の時に CFS が被 定着体と剥離を起こした。C2-15 は無次元化荷重が 約2で定着体と CFS との間で剥離を起こし被定着 体の無次元化変位が急激に増加したため実験結果と の差も増加した. A1-12 も同様に無次元化荷重が約 2.7 で定着体と AFS との間で剥離を起こしたため 変位が急激に増加し、実験結果との間に差が生じた. しかし、無次元化変位が 20 を超えたところから実 験結果に沿うようになった. A2-15 は実験結果と解 析結果に有意な差が見られなかった。また、ボルト 付近の無次元化荷重と無次元化ひずみ関係を図-27 に示す. C1-12 は解析では約 2.5 で CFS が被定着 体から剥離したため解析不能となった.しかし、2.5 までの荷重-ひずみ関係は類似している. C2-15 は. 荷重-変位関係と同様に実験結果と解析結果に差が 生じた. 同様のことが A1-12 でも言える. A2-15 は無次元化ひずみが 10 以前は実験結果と解析結果 に差が生じているがひずみが約 10 以降は類似した 軌跡を描いた.

図-26 被定着体の無次元化荷重-無次元化変位比較関係

7.結論

繊維シートを補強材として用いる場合の角部への 定着方法を新たに考案すると共に,その応用例とし て,RC 橋脚の曲げ補強におけるフーチング部への 定着において,この工法が有効であることを実験と 数値解析により検証した.本研究で得られた結果を 以下に列挙する.

(1) 橋脚モデルの実験と解析により、考案した定 着工法は、耐力及びじん性の確保に有効である ことが分かった.また、その際に用いる定着用 冶具の形状は L-Type とすることで定着長を確 保し, FSの破損を防ぐことができる.

- (2)本研究で提案した定着方法を採用することに より、CFS、AFS を有効な曲げ補強材として 用いることが可能である.また、FS の枚数、 治具の寸法によりその補強目的に合わせた利用 方法を選択することが可能である.
- (3)実験で得た結果と解析で得た結果との比較か ら本稿で用いたモデル及び力学特性は, 隅角部 定着工法の解析に有効であることを示した.

参考文献

- 1)半野·大塚·藤本:既存 RC 橋脚の主基部の耐震補強に関する実験、土木学会第48回年次学術講演会、I-97、pp.342-343,1993.10.
- 2) 中野・佐々木・堤:鋼板補強した RC 橋脚の基部に着目した交番載荷試験、土木学会第52回年次学術講演会、V-323、pp. 646-647, 1997.9.
- 3) 在田・鎌田・海原: 鋼板巻き補強を行った既存 RC 柱の鋼板の役割、土木学会第52 回年次学術講演会、V-325, pp.650-651, 1997.9.
- 4) 佐野・小俣・三浦: 鋼板接着により補強された鉄筋コンクリート梁の曲げ性状,構造工学論文集, Vol39A, pp. 1361-1368, 1993.3.
- 5) 岡野·森山·松本·大内·涌井:炭素繊維シートによるせん断補強効果に関する解析,土木学会第 52 回年次学術講演会, V-156, pp.312-313,1997.9.
- 6)前川·裾田:炭素繊維シートを用いた RC 補強橋脚実験結果の設計的考察,土木学会第52 回年次学術講演会, V-313, pp.626-627,1997.9.
- 7) 篠原:新素材により巻き立て補強された RC 柱の耐震補強効果に関する研究,武蔵工業大学修士論文,1996.3.
- 8) 呉·田名部·松崎·神田·横山:FRP シート緊張接着によるコンクリート構造部材の補強法の提案,構造工学論文集, Vol44A, pp. 1299-1308, 1998.3.
- 9) 岡野·渡辺·渡邊·瀧口:RC 補強柱の変形性能に関する一考察,土木学会第52回年次学術講演会, V-315, pp. 630-631, 1997.9.
- 10) 西野・河津・松木・森・満木: アラミド繊維シートによる補強に関する一実験,土木学会第52回年次学術講演会, V-158, pp.316-317,1997.9. 11) 鉄道総合技術研究所: 炭素繊維シートによる鉄道高架橋柱の耐震補強工法設計・施工指針,1996