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PROTOTYPE DIAGNOSIS EXPERT SYSTEM WITH KNOWLEDGE 

REFINEMENT FUNCTION 

By M. Minagawa, 1 S. Satoh, 2 and T. Kamitani3 

ABSTRACT: When developing an expert system, the difficulty in acquiring knowledge poses a bottleneck. It 
is essential that the system possess a means to modify its knowledge bases. This study details the construction 
of a versatile inference system equipped with a rule-base refinement function that is expressed by a network 
with relations between the hypotheses as compositional elements. As an example for practical use, this paper 
examines the effectiveness of the system being proposed, using the rule base of an existing expert system to 
diagnose cracks in damaged bridge slabs. As a result, it was found that, by presenting adequate examples as 
training samples, the rule base is refined along with a remarkable increase in damage-cause inference accuracy. 

INTRODUCTION 

In the field of civil engineering, many expert systems have 
been developed with learning functions to modify knowledge 
bases. For example, Miyamoto et al. (1991) proposed a 
method to refine knowledge by changing the membership 
function in a fuzzy expert system used for diagnosis of a con-
crete bridge. In addition, Kushida and Miyamoto (1995) pro-
posed a knowledge modification method in which the degree 
of refinement was considered by introducing the concepts of 
possibility or necessity. 

Mikami et al. (1992a) constructed an expert system with a 
causal network for selecting a method of retrofitting steel 
bridges that were damaged by fatigue. They added a learning 
function to the system using neural networks (Mikami et al. 
1994), then acquired rules in the knowledge base by auto-
matically generating undefined causal relations (Mikami et al. 
1992b). Tanaka et al. (1995, 1996) also constructed a system 
in which rule-based and case-based reasoning were used si-
multaneously. A case-based approach was used to design and 
optimize steel frames under various load conditions, based on 
examples of optimal designs by Arciszewski and Ziarko 
(1991). By combining multimedia and case-based reasoning 
technology, Mather and Balachandran (1994) developed a pro-
totype case-based system to assist structural designers in the 
conceptual design stage. Reich et al. (1996) reported on the 
use of machine learning programs for modeling engineering 
decision-making procedures. When attempting to use a com-
mercial machine learning tool as a means of knowledge ac-
quisition in addition to explicit domain extraction, Melhem et 
al. (1996) found that such a tool was not necessarily effective 
because inductive learning requires the availability of a large 
database on cases of error. 

As described above, various knowledge-acquisition methods 
have been developed beginning with typical methods such as 
questionnaires (Cohn et al. 1988). Conversely, the expert sys-
tems constructed until now employ a wide variety of knowl-
edge expression methods. From the standpoint of sharing or 
reusing knowledge, it is also very important to establish a 
methodology theory that makes it possible to easily reconstruct 
a rule base that accurately reflects the inference results by us-
ing existing systems. 
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With this situation in mind, this study proposes an algorithm 
that refines the rule base by presenting the inference results of 
existing systems as training samples. By so doing, it is pos-
sible to construct a rule-base inference system that is approx-
imately equivalent to that of existing systems. Thus, not only 
is it possible to easily and explicitly obtain the intensity of the 
causal relation coincident with the cases given as training sam-
pleミ， butthe proposed algorithm can also be developed into 
an mtegration of multiple rule-base systems. The algorithm is 
applied, as an example of practical use, to the rule base for 
inferring the cause of damage to a road bridge that has a re-
inforced concrete floor system (Mikami et al. 1988). Thus the 
effectiveness of this algorithm is examined. 

PROPOSED EXPERT SYSTEM WITH KNOWLEDGE 
REFINEMENT FUNCTION 

Numerical Expression of Hypotheses and Relations 
among Hypotheses 

In the inference system presented in this study, a network 
composed of nodes and linkages describes the hypotheses and 
relations among the hypotheses, respectively. The node attri-
butes (hereafter called nodal values) indicate the possibility 
that the hypotheses are valid, whereas the linkage attributes 
(hereafter called weights) indicate the respective intensities of 
the relations among the hypotheses. These attributes are ex-
pressed with real number values in the range of [O, l]. In 
addition, certainty factors are endowed with nodal values and 
weights, called the nodal certainty factors and rule certainty 
factors, respectively. Conversely, the respective nodes can pos-
sess training samples that are obtained from past cases. The 
training samples possess nodal training sample values and 
nodal training certainty factors as attributes. 

Inference Algorithm 

Fig. I shows a schematic diagram of the overall composi-
tion of the inference system proposed in this paper. It is as-
sumed that individual rules are allowed to have two or more 
condition parts. For example, i1, i2, and i3 indicate the condi-
tion parts of the ith rule. The i。nodeindicates the conclusion 
part of this rule. The ith rule has weight w, and rule certainty 
factor cw., as attributes. Conversely, for every individual rule 
i, each node ii (l = 1, 2, 3, ...) has a nodal value a, and a 
nodal certainty factor c,,. In the example shown in Fig. 1, the 
ith, jth, and kth rules reach the same conclusion. Output nodes 
(conclusions) of a rule can also be input nodes (conditions) 
for one or more other rules. 

A nodal value of an output node (conclusion) is calculated 
by minimum operation applied to nodal values of the input 
nodes (conditions) and weights of the corresponding rule as 
follows: 



゜FIG. 1. Schematic Diagram of Proposed Inference System 

ii;=/¥(↑ a;,, w;) (1) 

The corresponding certainty factor of this conclusion is also 
calculated using the certainty factors of the input nodes (con-
ditions) as follows: 

C; = C;i• Cw.i (2) 

where c、_= nodal certainty factor that corresponds to the node 
selected by the minimum operation done in the parenthesis 
of (1). 

If the node is the conclusion part for only a single rule, 
values obtained by (1) and (2) are directly adopted as the nodal 
value and nodal certainty factor of the conclusion part accord-
ing to the following relations: 

a-= a, 
'o 

C・•o =c ヽ

(3) 

(4) 

On the other hand, if the node is the conclusion part for 
two or more rules, the values obtained from (1) and (2) are 
combined as follows to evaluate the nodal value and nodal 
certainty factor for the conclusion part: 

aio ='::: 出)

c,。=+(cm) 

(5) 

(6) 

where+ indicates a+ b =a+ b -a・b; and十(cm)indicates 
that C叫+Cm,'<rf mi, m2 Em. 

Refinement Algo『ithm

As shown in Fig. I, the individual nodes have training data. 
The training data have pairs of values t;0 and certainty factors 
Cい。 asattributes. Inference is performed when the nodal train-
ing certainty factor is smaller than the rule certainty factor. 
Conversely, the rule base is modified when the rule certainty 
factor is smaller than the nodal training certainty factor. 

The difference between the nodal value and the nodal train-
ing value, and between the nodal certainty factor and the nodal 
training certainty factor, are calculated as follows: 

△ a;。=a;。-t;。

△ C;。=C;。-cい。

(7) 

(8) 

If (8) results in a positive value, the nodal training value 
and nodal training certainty factors are modified as follows: 

t;。← t;。+TJ・Aa;。 (9)

c,.1。← c,.1。+T)・ △ C;。 (10) 

where 11 = le虹ningra血 出 紅 ist。bedetem血叫切 trialand 
error. 

If (8) results in a negative value, the following procedure is 
applied: Let m be the rule number that has been adopted for 
maximum operation shown by (5) and a示,be the nodal value 
that has been adopted for minimum operation shown by (1), 
then the nodal value and certainty factor given to that node 
are modified as follows: 

a,.; ← a,.;+,,. △ a,。

伍← c,., 十，，・I△c,ol 

(11) 

(12) 

In the above case (i.e., △ c,。isnegative), if the weight of 
the rule has been adopted for minimum operation, the weight 
and rule certainty factor are modified as follows: 

匹← W示+11. △ a,。

Cw, 示← Cw, 示十，，・I△c,ol 

(13) 

(14) 

Inference starts from the node corresponding to known a 
priori information based on observation or experience. With 
the node having input, inference is made when information 
from all items of input are in alignment using (1)-(6) and 
successively continues to linkage on the downstream flow side. 
If all the rules are applied and the downstream flow reaches 
nodes that do not have any output node, the individual attri-
butes of the node or rule are modified using the inference 
algorithm shown by (7)-(14). This process is repeated until 
individual attributes can no longer be changed. At this state 
refinement of the rule base is considered complete. 

APPLIED RULE BASE 

The rule base to which the proposed algorithm is applied is 
a damage-cause-estimation expert system to a road bridge that 
has a reinforced concrete floor system (Mikami et al. 1988) 
(hereafter called Mikami's system). As shown in Fig. 2, an 
estimate of the cause of damage is based on the type of dam-
age inferred from the type of visible damage, lane of traffic, 
applied design code, and location of damage. Tables 1 and 2 
list the types of damage and the causes of damage, respec-

12 nodes closely related to type of damage 

15 nodes listed in Table I(a) 
3 nodes : at support, a square of 
span, mid span 

7 nodes: haunch, mid span, cantilever part, 

girder end, traffic separator, creasing, drainage 

6 nodes: 1956, 1964, 1967, 1968, 1971, 1978 

FIG. 2. Diagnosis Expert System by Mikami et al. (1988) 
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TABLE 1. Type of Damage (Mikami et al. 1988) 

Type of damage 
(1) 

Number 
(2) 

Crack 
Lengthwise 
Crosswise 
Lengthwise and crosswise 
Lattice 
Random 
Passing through 

Striping of surface concrete 
Rising of surface 
Striping of covering concrete 
Failure 

Free lime 
Linkage of water 
Exposure of reinforcement 
Insufficient covering for reinforcement 
Striping of surface concrete 

Rust 
Rusty reinforcement 

Corrosion 
C orros1on of reinforcement 

1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
 Note: Visible damage closely related to type of damage is numbered 

from 1 to 12. 

maximum operation. There are 63 total hypotheses and 872 
rules. Moreover, Table 5 lists results from inference made for 
the cases in Table 3 using Mikami's system. The numbers 28 
to 47 in the table correspond to numbers of each cause of 
damage in Table 2. 

INFERENCE ON CAUSE OF DAMAGE BEFORE 
REFINEMENT OF RULE BASE 

Cause of damage was first inferred by using the rule base 
as secured information. Fig. 3 shows an example of the infer-
ence results for Case 1. In this figure, the abscissa indicates 
the node numbers of the cause of damage and the ordinate 
indicates the probability of cause of damage. The figure also 
shows the probability of cause of damage inferred by Mi-
kami's system. 

Fig. 4 shows the differences between the possibility inferred 
by Mikami's system and those given by the writers'system, 
which are defined as follows: 

L It, -a,1 

TABLE 2. Cause of Damage (Mikami et al. 1988) 

Cause of damage 
(1) 

Number 
(2) 

Load 
Excessive traffic load 28 
Impact load I 29 
Relation between lanes of traffic and girder arrangement 30 

Design or structural 
Insufficient stiffness caused by thin slab I 31 
Insufficient stiffness caused by inadequate reinforcement 32 
Insufficient distribution bars 33 
Insufficient reinforcement caused by inadequate bending 
position I 34 

Tensile stress caused by drying shrinkage and constraints 
imposed by main giders I 35 

Additional bending moment caused by nonuniform set-
tlement I 36 

Tensile stress caused by negative bending moment of 
slab 

Presence of load distribution cross beam I塁
Construction 
Low quality of concrete material 39 
Freezing caused by placement in winter 40 
Insufficient curing 41 
Insufficient work on construction joint 42 
Error in reinforcement arrangement 43 
Insufficient covering for reinforcement 44 

Others 
Freezing and thawing 45 
Salt 46 
Drainage from slab surface I 47 

， 
error= 

n 
(15) 

where t, indicates a possibility of the ith damage cause ob-
tained by Mikami's system; a; indicates the possibility of the 
ith damage cause obtained by the writers'system; and n rep-
resents the number of damage causes targeted as objectives. 
Differences in inference results between Mikami's system and 
the proposed system are mainly due to the possible nonexist-
ence of distinct foundation weights of 3/4, 2/4, and 1/4 used 
in transferring the rule based constructed by Mikami et al. 
(1988). Relatively good coincidence is seen, however, with 
regard to how large the probability of cause of damage is in 
each case. 

INFERENCE ON CAUSE OF DAMAGE AFTER 
REFINEMENT OF RULE BASE 

By presenting the inference results of Mikami's system, 
which are regarded as established information, the rule base 
was modified. Then the probability of cause of damage was 
inferred by using the modified rule base. To prevent the train-
ing samples from being changed, all nodal training certainty 
factors were assumed to be 1.0 and all rule certainty factors 
were talcen to be 0.1. The rule certainty factors after modifying 
were also used in inferring the possibility of cause of damage. 
The nodal values and nodal certainty factors were respectively 
assumed to be 0.5 and 0.1 because the possibility of cause of 
damage was considered to be unknown information in this 
case. 

tively. Table 3 lists the input information presented to the sys-
tern as eight training cases. 

As an example, Table 4 lists the causal relations between 
the causes of damage and types of damage at haunches. The 
symbols◎, 0,and△ indicate certainty factors of 0.5, 0.3, 
and 0.1, respectively. Mikami et al. (1988) proposed that three 
such classes should be adequate. In calculating the certainty 
factor of each conclusion, a method adopted in the MYCIN 
system (Buchanan and Shortliffe 1984) was employed. 

In this study, values of 3/4, 2/4, and 1/4 are individually 
provided as weights of the rule corresponding to the certainty 
factors on the rule base of Mikami's system. The weights are 
very large compared to the certainty factors given by Mikami 
et al. (1988), because inference is performed by minimum-
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Rule Refinement Using Each Case as 
Training Sample 

Training data for Cases 1-8 were presented individually 
and the rule base was modified. Fig. 4 includes the differences 
between the possibility inferred by Mikami's system and the 
possibility in this case. Fig. 5 shows two selected cases of the 
inference results. The possibility of damage causes is given on 
the ordinate for Cases 2 and 4. For comparison, the training 
sample is also shown. 
Because this inference system was originally based on learn-

ing with training samples, the inference results must match 
training sample data when a case is presented as the training 
sample and the inference system is applied to the case. How-
ever, modifying rules using individual cases is tantamount to 
obtaining different rules for each case, whereas the objective 
of this study is to obtain only one rule base associated with 
all training samples. Therefore, the rule base is modified using 
multiple cases as training samples, as in the next paragraph. 



TABLE 3. Cases Used as li『ainingSamples (Mikami et al. 1988) 

Case Number 

Damage 1 2 3 4 5 6 7 8 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Visible damage 
Crack Lengthwise and Lengthwise and Lengthwise and Lengthwise and Lengthwise and Lengthwise and Lengthwise and Lengthwise and 

crosswise crosswise crosswise crosswise crosswise crosswise crosswise crosswtse 
Splitting 
Impurity Free lime Free lime Free lime Free lime Free lime Water leakage 

Location of 
damage Haunch Mid span Girder end Haunch Haunch Haunch Haunch Haunch 

Design code March 1964 March 1964 March 1964 Sep. 1967 Feb. 1980 March 1964 March 1964 March 1964 
Passing position 

of traffic 
load Quarter of span Quarter of span Quarter of span Quarter of span Quarter of span Quarter of span 

TABLE 4. Relationship between Cause of Damage and Type of Damage at Haunches (Mikami et al. 1988) 

Type of Damage 

Cause of damage 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

Loads 
28 

゜
△ 

゜゜゜゜゜゜
◎ 

゜
◎ 

29 △ 

゜゜゜゜゜゜゜゜
△ 

゜30 
Design or structural 

31 

゜゜
◎ ◎ ◎ ◎ 

゜゜
◎ 

゜
◎ ◎ 

32 ◎ 

゜
◎ ◎ ◎ ◎ 

゜゜
◎ 

゜゜
◎ 

33 ◎ ◎ ◎ ◎ ◎ ◎ 

゜゜゜
◎ ◎ 

゜34 ◎ △ ◎ ◎ ◎ ◎ 

゜゜
◎ 

゜
◎ 

35 

゜36 

゜゜゜゜゜37 

゜゜゜゜゜ ゜゜
△ 

38 

゜゜゜゜゜
△ △ △ 

Construction 
39 △ △ △ △ △ △ △ △ △ △ △ △ △ 
40 △ △ △ △ △ △ △ △ △ △ △ △ △ 
41 △ △ △ △ △ △ △ △ 

゜
△ △ △ △ 

42 △ △ △ △ △ 

゜゜゜゜゜゜゜゜゜43 △ △ △ △ △ △ △ △ △ 

゜゜゜゜44 △ △ △ △ △ 

゜゜゜
◎ ◎ 

゜
0 

Others 
45 △ △ △ △ △ 
46 △ 

゜゜47 △ △ △ ◎ ◎ △ 

゜゜Note: Numbers from 13 to 27 in first row are identical to those shown in Table 1, and numbers from 28 to 47 in first column are identical to those 
shown in Table 2. 

TABLE 5. Inference Results Obtained Using Mikami's System 

Case 28 29 30 31 32 33 
(1) (2) (3) (4) (5) (6) (7) 

1 0.73 0.73 0.92 0.9 0.88 0.92 
2 0.9 0.77 0.5 0.73 0.73 0.6 
3 0.86 0.86 0.47 0.76 0.86 0.85 
4 0.73 0.73 0.92 0.9 0.88 0.89 
5 0.73 0.73 0.92 0.85 0.83 0.89 
6 0.73 0.73 0.9 0.88 0.86 0.9 
7 0.72 0.72 0.88 0.85 0.85 0.86 
8 0.53 0.53 0.65 0.65 0.65 0.65 

Rule Refinement Using Multiple Cases as 
Training Samples 

All Cases Are Presented Simultaneously 

34 35 36 
(8) (9) (10) 

0.85 0.4 0.71 
0.3 0.4 0.59 
0.3 0.33 0.31 
0.85 0.4 0.71 
0.78 0.16 0.59 
0.85 0.4 0.72 
0.85 0.3 0.68 
0.65 0.3 0.53 

One method of modifying the rule base is to present all eight 
training cases simultaneously. Then the probability of cause of 
damage complying with individual cases can be inferred. Fig. 
5 shows the inference results obtained this way, as well as the 
inference results of Mikami's system and the results when that 

Cause 

37 38 39 40 41 42 43 44 45 46 47 
(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) 

0.77 0.74 0.32 0.32 0.32 0.55 0.38 0.38 0.24 0.18 0.58 
0.65 0.6 0.4 0.52 0.56 0.58 0.1 0.2 0.1 

゜
0.05 

0.31 0.31 0.37 

゜
0.5 

゜
0.48 0.54 

゜゚
0.75 

0.77 0.74 0.32 0.32 0.32 0.55 0.38 0.38 0.24 0.18 0.58 
0.77 0.63 0.32 0.32 0.32 0.55 0.38 0.38 0.24 0.18 0.58 
0.73 0.73 0.32 0.32 0.32 0.48 0.38 0.38 0.24 0.18 0.45 
0.68 0.68 0.25 0.25 0.25 0.35 0.27 0.35 0.2 0.35 0.18 
0.53 0.53 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

゜
0.05 

individual case is presented. Fig. 4 includes the differences 

between the possibility inferred by Mikami's system and the 

possibility in this case. 
It was found that the ratio that coincides with the individual 

training samples was lowered when the rule base modified by 

simultaneously presenting all cases. Despite the fact that in-

ference accuracy for individual cases is lower, mainly because 

the rule base is modified for obtaining a single rule base, the 

error is marginal, with the results shown in Figs. 4 and 5. 
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Cases Damaged at Same Location Are Presented 
Simultaneously 

Table 3 shows that the location of damage in Cases 1 and 
4-8 was'、damageat haunches." Then the rule base was mod-
ified by presenting these six cases simultaneously. As an ex-
ample, Fig. 6 shows the inference results for Cases 3 and 5. 
In this figure, the results (with which eight cases are presented 
simultaneously) and training samples are shown concurrently 
for the salce of comparison. 

It is clear that the degree of coincidence with the training 
sample for Case 5 has not changed, whereas errors increased 
significantly in the inference results for Case 3, whose infer-
ence result was not presented as a training sample. This result 
implies that the relationship between the cause of damage and 
the type of damage is largely affected by the location of dam-
age and that training samples for modifying the rule base 
should be carefully selected. 

CONCLUSIONS 

The principal conclusions obtained from this study are listed 
below: 

• When the probability of cause of damage is inferred by 
taking the rule base as established information, classifi-
cation is enabled by using possible damage causes as 
training samples. 

• When the rule base is modified by presenting the infer-
ence results of an existing system as established training 
cases to be followed by inference of the damage cause 
using the rule-base refinement algorithm. 

• If the rule base is modified presenting individual training 
cases, the inference results of individual cases are almost 
coincident with the training samples. 

• When all multiple cases are presented simultaneously, 
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there is no significant deterioration in inference accuracy 

compared to when individual cases are presented. 

• In inference for cases that are not presented as training 
samples, training sample data for modifying the rule base 

must be carefully selected. 

As described above, using the method proposed in this pa-
per makes it possible to construct a rule-base system having 

inference performance matching that of an existing system. 

Provided that the cases are properly selected, it is possible to 

secure the inference accuracy of cases not presented. Con-

structing a system with the functions of multiple rule-base sys-

tems and planning to share and reuse knowledge acquired by 

this system are designated as future projects. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a、,= nodal value of Ith node for ith rule; 
a,。=nodal value of conclusion part for ith rule; 
c,, = certainty factor of nodal value of Ith node for ith rule; 
c,。=nodal certainty factor of conclusion part for ith rule; 
c,.,。=certainty factor of training data of conclusion part for ith 

rule; 

cw., = certainty factor of weight for ith rule; 
t,。=training data of conclusion part for ith rule; 
w, = weight for ith rule; 

△ a,。=modification value of a,0; 
△ cio = modification value of c,0; 

TJ = learning ratio; 
V = "for all"; 
/¥ = minimum operation; 
v = maximum operation; and 
← = "is replaced by." 
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