(I-49) 低降伏点鋼を用いたアイバー型耐震連結板の破壊シミュレーション

〇武蔵工業大学大学院 学生会員 藤谷 健 武蔵工業大学 正会員 皆川 勝

1.はじめに

兵庫県南部地震により様々な形態での橋桁の落下が見られた. これらのことを受けて震災後に改定された道路橋示方書¹⁾では, 橋梁における各構成要素の役割を明確にして桁掛かり長,落橋 防止構造,変位制限構造,段差防止構造からなる落橋防止シス テムへと再整理され,現在,耐震連結板以外のものが多用され ている.しかし,既設の橋梁には様々な制約により補修・改良 が困難なため,既存の耐震連結板を補強する必要性がある²⁾.

著者らは,耐震連結板の破壊挙動を考慮した解析により,従 来の耐震連結板に比べてアイバー型耐震連結板の方が,エネル ギー吸収性能の面で優れていることを示すと共に,効果的な形 状について検討を行った³³.本研究では,エネルギー吸収性能 が高いと言われている低降伏点鋼の適用性について解析的に検 討を行う.

2.解析概要

衝撃応答解析には汎用有限要素プログラムである PC/LS-DYNA-3D を用いた.この汎用コードは,動的陽解法の有限要 素法に基づいており,時間積分には中央差分が用いられている. また,破壊基準に達した要素は解析上削除され,耐震連結板の 亀裂の進展状況をシミュレーションすることが出来る.

低降伏点鋼の材料定数 ⁴⁾を表-1 に示す.また,ひずみ速度 効果によって鋼材の材料特性が変化することは一般的に知られ ている.そこで,本解析においても載荷速度による材料定数の 変化を文献 5)による提案式によって考慮した.解析対象を図-1,表-2 に示す.載荷速度として,文献 6)より高さ 20m の鋼 製橋脚における上部構造の最大応答速度が,139~222cm/sec となることから,橋桁が逆位相に運動した場合を想定して 500cm/sec の速度を設定した.

3.解析結果および考察

図-2 に TYPE-A.AB.B.BC.C の R3=125mm の場合の荷重-変位関係を示し,表-3 には伸び,最大荷重,エネルギー吸収

キーワード:低降伏点鋼,耐震連結板,衝撃荷重,衝撃応答解析 連絡先:武蔵工業大学工学部土木 学科 〒158-8557 東京都世田谷区玉堤 1-28-1 Tel&Fax:03-5707-2226

--- 96 ---

表-1 低降伏点鋼の材料定数 4)

質量密度	7.85 × 10 ⁻⁹	kg/mm
弾性係数	2.06×10^{5}	N/mm ²
ポアソン比	0.3	
降伏応力	1.16×10^{2}	N/mm ²
引張強度	2.70×10^{2}	N/mm ²
破壊ひずみ	0.6	-

図-1 解析形状

表-2 解析モデルのパラメータ

(単位:mm)

播精	ハラメータ値						
152 34	R3	R2(ヒン径)	R1	t(板厚)	В	L	
A	75 100 125 150 175	45	50	25	90	430	
AB	125	45	50	25	97.6	430	
в	75 100 125 150 175	45	50	25	107	430	
BC	125	45	50	25	118.2	430	
с	75 100 125 150	45	50	25	125	430	

量を示す.なお,荷重と変位は,長さL,幅B, 板厚tの同じ材質の鋼板を引張ったときの降伏荷 重と降伏変位で無次元化している.破壊様式は二 つに分けられ TYPE-A,AB,B では連結板中央部、 TYPE-BC.C においては、ピン孔内周の亀裂発生 から破壊に至っている.これらのことより,連結 板中央部が広くなるにしたがって、そこで受け持 ▶つ応力は小さくなることが分かる.また,図-3 に耐荷力と(R₃-R₁)/B の関係を示す.これより (R₃-R₁)/B の値が小さくなるにしたがって, 耐荷 力が低下しているのが分かる.また,(R_s-R₁)/B=0.7 付近を境界としてそれ以上では連結板 **仲央部での破壊,それ以下では,ピン孔内周にお** いて破壊している. さらに図-4 に吸収エネルギ ーと(R₃-R₁)/B の関係を示す.この図より、 **TYPE-B** の(R₃-R₁)/B=0.7 において吸収エネルギ ーが最大となっていることが分かる.このことか ら(R_s-R₁)/B≒0.7 となるものがエネルギー吸収性 能の最も優れた形状であると言える.

4.結論

1.

既往の軟鋼を用いた研究成果 ³³と同じく,低降 伏点鋼についても、アイバー頭部及び平行部でバ ランス良くエネルギーを吸収できる形状が耐荷特 性、エネルギー吸収性能の両面で望ましく,それ は(R₃-R₁)/B をパラメータにすることにより予測 でき,最も望ましい形状は(R₃-R₁)/B=0.7 前後で あると言えることが分かった.

<参考文献>1)日本道路協会:道路橋示方書・同解説, V 耐震設計編,1994.2.2)穴水,園田,彦坂:ゴム製緩衝 ビンを用いた落橋防止連結板の静的弾塑性解析,土木学 会第54回年次学術講演会,pp564-565,1999.9 3)藤谷, 皆川,小田切:衝撃荷重を受けるアイバー型耐震連結板 の破壊シミュレーション,鋼構造年次論文報告集第7巻, pp.23-30,1999.11.4)小畑,栗原,後藤:高エネルギ ー吸収型耐震連結板の強度および変形特性,土木学会論 文集,No.612/I-46.pp.239-249.1999.1.5)首藤,松本, 高橋,大野:高速載荷を受ける鋼材の動的応力~ひずみ関

図-2 荷重-変位関係

表-3 伸び・最大荷重・吸収エネルギー

				(1	(3-R1) B				
0	0	0.2	0.4	0.	6	0.8	1	1.	2	1.4
≝ 30 ^		 -	1	1		1		1		1
50				1		1		1		1
N 100			1	1		1	1	•		1
Z 200		. 1	4	1			T			4
2 2 3 0 2 2 3 0		1	, 	•		1		× TY × TY	PE-BC PE-AB	j.
£ 300 ≻ 350				•		×	1	▲ TYP	7Е-В 7Е-С	
έ, 350 ≛ αρο				- · · ·	×	··· • ·	1	+ TY	Æ-A	1
400 ≻ asa		I		- r		 		· · ;		1
	[⊠-3	耐荷	iカと	(R₃•	R1)	/Bの	関係		
					R3-R	I B			-	
C	0	02	04	0	6	0.8		 	2	 1.4
						1.				1¦
0 5			,				■ 連結板	ちらも有り i中央での	illiaース 補る 確壊	
ê,			Ţ	i	- 1		ピンガ	ndan con	8488 ▲加速日本	H
× +		1		<u>ـ</u>	ļ		2.7			יי הי
		1	-		• 1	•	•		1	1
2	-	1		. 1	1		· _ 1	r	/ L !	1
25		T ,	1	1	i	· 1			r · · ·	1
		TYPE	-C	589.7	10	0.5	6.73	× 10 ⁴		
		TYPE-	вс	718.6	10	6.1	6.96	× 10 ⁴		
		TYPE	-B	695.3	10	5.8	6.78	× 10 ⁴		
		TYPE-	TYPE-AB		80	80.9		× 10 ⁴		
		TYPE	-	593 6	20	<u>nm)</u> 13	3 90	× mm)		
				D(LNI)	80	(mm)	E/LN	× mm)		

図-4 吸収エネルギーと(R₃-R₁)/Bの関係

係モデル,上木学会第45回年次学術講演会,I部門,pp.486-487,1990.9。6)長嶋:落橋防止装置の衝撃応答特性および設 計法に関する研究,文部省科学研究費補助金基礎研究,1997.3。