I-195 一面吊り斜張橋上部構造に及ぼす支点変位の影響

武藏工業大学 学生員 高橋広幸 武蔵工業大学 正員 西脇威夫 武蔵工業大学 正員 増田陳紀 武蔵工業大学 正員 皆川 勝

<u>1. はじめに</u>

近年、構造工学上以外の種々の理由により、軟弱地盤のような地盤条件の悪いところにも高次不静定構造 物である斜張橋を建設するよう要請されることがある。本研究では、一面吊り斜張橋が、例えば橋脚の不等 沈下などにより面外変形するときの、橋梁各部に生じる応力を解析するための比較的簡易な解析方法を提案 する。さらに、1987年にバンコクに建設されたラマIX世橋を対象として、橋脚が不等沈下によって橋軸まわ りに回転する場合の上部構造の応力解析を行い、実橋梁における各構造要素に生じる断面力ならびに最大応 力と橋脚の不等沈下量の関係を検討する。

2. 解析方法

(1) 解析方法 二面吊り斜張橋が面外変形する場合の解析を一平面内の骨組構造として解析しようとすれば種々の問題が生ずるものと考えられるが、一面吊りの場合にはそのようにモデル化することに大きな問題はない。そこで、本研究では、比較的簡易な解析により一面吊り斜張橋の面外変形特性を検討することを念頭に、橋梁全体を平面骨組構造としてモデル化し、解析には、著者らが以前より使用している立体骨組の幾何的非線形解析システム¹¹を用いる。本方法においては、1節点6自由度の通常の骨組要素を用いており、したがって、骨組解析の段階では断面のそりなどの薄肉断面としての影響は考慮されない。

(2) ペンデルシューのモデル化 Fig.1に示した対象橋梁を平面骨組にモデル化するためには、橋軸直角水平方向にある距離をもって配置される一対のペンデルシューをケーブル面内の要素にモデル化することが必要になる。そこで、本研究では有限要素の定式化に基づいてペンデルシューに対して専用の要素を構成する。すなわち、主桁下フランジおよび橋脚頂部は変形しないものと仮定してペンデルシュー要素の節点変位と個々のペンデルシューについては通常の棒要素を適用し、先のペンデルシュー要素の節点変位と個々のペンデルシューの両端の変位との関係を用いてペン

要素の剛性は、1本のペンデルシューの剛性の 2倍となる。ただし、面外の曲げ剛性に関して は、ケーブル面からペンデルシューまでの偏心 を考慮し、主桁の橋軸まわりの回転に対してペ ンデルシューが軸力で抵抗するような新たな項 が付加されることになる。

(3) 応力の評価方法 応力を評価するため には薄肉断面としてのはりの理論を用いる。各 部材(ケーブル,主桁,主塔,ペンデルシュー)

十木学会第43回年次学術講演会(昭和63年10月)

TOVER

- 38

100

16

100

各種部材断面の最大応力の比較

- 77

15

MAIN GIRDER

-104

17

(P3面外回転 0.05m/37m)

を求める。このようにして求めたペンデルシューの節点力から、ペ ンデルシューの断面に発生する応力を計算する。

Table 1

STRUCTURAL MEMBER

NORMAL STRESS (kgf/cm²)

SHEAR STRESS (kgf/cm²)

ELEMENT (Ref. Fig.2)

LOCATION OF THE LARGEST NORMAL STRESS : •

> AND SHEAR STRESS : 🔺

LARGEST STRESS

CATEGORY

CARLE

1

178

 \odot

対象橋梁を Fig.2に示すようにモデル化した。また、荷重条件として、Fig.1に示すP3橋脚の底部に 0.05m/37mの強制支点変位(面外回転)を与えた。

橋脚底部の不等沈下の増加に対する各部材カテゴリーごとの最大軸力の増加をFig.3に示す。若千ではあ るが、すべての部材の軸力に非線形性があらわれていることがわかる。

橋脚底部の不等沈下量が0.05m/37m(面外回転)の場合について、各部材の最大応力の比較をTable1に示 す。各部材の直応力は、この程度の支点変位に対しては、ペンデルシューを除いて非常に小さい。しかし、 ペンデルシューの直応力が他の部材のそれと比べて非常に大きくなっており、我国の道路橋示方書に規定さ れているSS41材に対する許容応力(1400 kgf/cm²)に近い値が生じている。ペンデルシューの直応力の うち、曲げ応力が65.6%と大きく、個々のペンデルシューに作用する軸力により生ずる垂直応力は34.4%と 小さい。

4. 結論

橋脚の面外への変位は、特にベンデルシューについては大きな応力を発生させ得ることが明らかとなった。 ペンデルシューの直応力は、特に、ペンデルシューの曲げ応力によるところが大きい。ペンデルシュー両端 の面外曲げに関する接合条件をゆるめ、ユニバーサルジョイント的な接合方法をとることも検討すべきかも しれない。

◆ 参考文献 ◆

- [1] 吉田 裕・増田陳紀・森本 剛・広沢規行:立体骨組構造の増分釣り合い方程式とその解法,土木学 会論文報告集,第300号, pp.21-31, 1980年8月
- [2] MASUDA,N., NISHIWAKI,T., NINAGAWA,M. and KAMIMOTO,Y. : Analysis of single-plane fan-type cable-stayed bridges subjected to non-uniform supports settlements, International Conference on Cable-Stayed Bridges, pp.176-187, Bangkok, Nov. 1987.