研究報告

[154] CFRP により耐震補強された RC 柱の ハイブリッド実験解析

HYBRID TESTS OF RC-COLUMNS STRENGTHENED BY CFRP TO RESIST EARTHQUAKES

武蔵工業大学工学部 〇皆川 勝 小玉克巳 佐藤安雄 (株)奈良建設技術研究所 佐藤貢一

Masaru MINAGAWA '' Koichi SATOH '' Katsumi KODAMA '' and Yasuo SATOH ''

[KEY WORDS] Earthquake Resistance, CFRP Reinforcement, RC-Columns, Hybrid Experiments.

[ABSTRACT] In this study, we investigated seismic behavior of RC columns strengthend using CFRP and polimar mortar. RC columns were strengthened by either CFRP bars or steel bars. We carried out pseudo-dynamic experiments using an unstrenghtened specimen and some strengthened specimens. Conclusions obtained here are as follows: (1)CFRP can be used as strengthening material;(2) specimens strengthened by CFRP were stronger than those strengthened by steel bars; and (3) maximum displacement amplitude can be one of some parameters available to evaluate degree of deterioration of RC specimens.

*1 Department of Civil Engineering, Faculty of Engineering, Musashi Institute of Technology

*2 Nara Construction Company Ltd., Central Research Laboratory.

1. はじめに

昭和61年版・土木学会「コンクリート標準示方書」に限界状態設計法にもとずいた耐震設計法が規 定され、さらに、同示方書平成3年版によって、これからの構造物には、従来の設計方法とは異なっ た耐震に関する検討を加え、従来の構造物には耐震補強をする必要性がでてきた。また、これにとも なった耐震用補強材としては繊維強化プラスチック(FRP)が注目されている。そこで本研究ではR C柱に死荷重を想定した軸方向荷重を載荷し、横方向に地震を想定した荷重を載荷する二方向外力場 におけるハイブリッド実験を行い、地震時のRC柱の変位、復元力特性に対するCFRP補強の効果を調 べた。

2.実験概要

使用したコンクリートの材令 28日における圧縮強度は、 275kgf/cm 'あった。Table.1に供 試体一覧、Fig.1に形状を示す。 軸方向鉄筋としてはD10鉄筋を 12本使用した。また、帯鉄筋は 供試体N0.1, No.4ではD6鉄筋 を9cm間隔で配筋し、 供試体 No.2, No.3 では、D10鉄筋を 20cm間隔で配筋した。した がって、供試体No.3とNo.4の比 較により、帯鉄筋の配筋方法の 違いによる影響が把握されるこ とから、間接的ではあるが無補 強、鉄筋補強、CFRP補強の3者 を比較することができると考え た。

補強方法として、無補強供試 体に補強筋を配置しポリマーモ ルタルを打ち込む方法を採用し た。ポリマーモルタルの厚さは 鉄筋補強供試体では4cm、CFRP 補強供試体では3cmとした。ア ンカーポルトは、1体につき片 面に上部2本ずつ、計8本打っ た。補強後、材令7日をもって 載荷試験を行った。載荷方法は 定軸力下でのハイプリッド実験 である¹¹。軸方向、及び横方向 荷重は、Fig.1に示す位置に載荷

Table1 Detail of specimen.							
Specimen No.	Method of	Steel ratio(%)		Lateral	Latreral tie ratio(%)		Depth of
	strengthening	belore	after	tie	before	siter	fixing
		strengthening	etrengthening		strengthening	strengthening	(cm)
No.1		0.95	0.95	D6	0.235	0.235	
No.2	D13	0.95	2.08	D10	0.235	0.469	
No.3	CFRP	0.95	1.9	D10	0.235	0.473	
No.4	CFRP	0.95	1.9	D6	0.235	0.473	

第47回セメント技術大会講演集 1993

した。軸方向の荷重は、死荷重を想定し設計軸方向耐力の6%に相当する9.311を載荷した。横方向 は、供試体をせん断型1自由度系と仮定し、初期の固有周期を0.4sec、 減衰定数を0.05とした。ま た、1自由度系換算質量は初期剛性をもとに算出した。入力地震波は、エル セントロ波のNS成分の 強震時8秒の波形である。最大加速度は1,5,10,25,50,75,100,125及び150galと顧次増大させ、各 載荷レベルで載荷方向(上,下)を変えて実験を行った。

3.実験結果

Fig.2に入力加速度を示す。また、Fig.3からFig.5にそれぞれの試験における復元カー変位応答関系 を示す。なお、最大入力加速度が75galより小さい試験に関する結果は、試験体による差がほとんど みられなかったので省略した。また、供試体No.3の結果はNo.4の結果と同様であるので紙面の都合で 省略する。

すべての供試体に関して、クラックの入った前後では復元力の低下は現れないが、その後、元の載荷点に戻らなくなった。これは鉄筋が塑性域に入ったこととクラックが生じたことによるものと思われる。無補強供試体でNo.1は100galの上載荷で塑性変形が残ったが、補強後の供試体はすべて塑性変形がほとんど生じていないことからも補強効果が確認された。

Fig.6に応答変位の時刻歴を、Fig.7に復元力の時刻歴の例をそれぞれ示す。クラックは供試体 No.1では、75galの上載荷でフーチングと柱の接合部から13cmの所に、100galの上載荷でフーチング と柱の接合部から34cmの所と接合部に入った。 また、供試体No.2, No.3及びNo.4ではそれぞれ 100galの上載荷、100galの下載荷、100galの下載荷でフーチングと柱の接合部に入ったが、柱には 入らなかった。

Fig.8に各試験における最大入力加速度と最大応答変位振幅との関係を示す。最大応答変位振幅は供 試体の劣化度を示す指標の一つと考えた。上載荷で見ると各加速度における最大変位は50galまでは ほとんど変わらないが供試体No.1にクラックが入り始めた75galで供試No.3,No.4に補強効果が現れ、 100galでは供試体No.2にも現れた。帯鉄筋に関してD10鉄筋を使用した供試体No.3とD6鉄筋を使用し た供試体No.4を比べてみると、強度にはほとんど影響がなかった。したがって、鉄筋比を同じ値にす

れば同等の強度が得られることが分かる。このことは、帯鉄筋の違いが復元力特性には大きく影響し ないことを示しており、言い替えれば、本研究におけるすべての供試体を補強の方法のみをパラメー 夕として比較して問題ないことを示していると考える。

Fig.9に各試験における最大入力加速度と最大復元力との関係を示す。無補強供試体No.1の復元力の 最大値は、100galの上載荷で6.2tf、鉄筋補強供試体No.2の復元力の最大値125galの下載荷7.0tf、 CFRP補強供試体No.3及びNo.4ではそれぞれ150galの上載荷で8.9tf及び8.2tfであった。すべての供試 体に関してクラックが入るまでは一定の傾きで増大した。復元力の最大値を比べてもそれぞれ補強効 果が確認された。

4.まとめ

鉄筋補強よりCFRP補強の方がより効果が現れた結果となったが、試験体数も少なく、更に検討が必要だろう。補強筋のフーチングとの定着長は施工上8cmしか取れなかったが、これでも補強効果を十分に確認することができた。また、供試体の品質が施工時期の影響を受けることにも十分注意する必要がある。

[謝辞]

本研究を進める上で、当時武蔵工業大学4年生であった田子博章(現KTS),藤原健治(現藤沢市),松永隆敏(現古久根建設)の各氏には多大な協力を得た。ここに記して感謝の意を表する.

[参考文献]

1)伯野元彦他;ハイブリッド実験の応用マニュアル,文部省科学研究費補助金(総合研究A)研究成 果(1990).

2)山田, 家村他;ハイブリッド実験による修復補強RC部材の地震時剛性劣化過程,土木学会論文集, 第387号/1-8, pp.407-416(1987).