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Abstract—A geometrically nonlinear dynamic analysis method is presented for frames which may be 
subjected to finite rotations in three-dimensional space. The proposed method is based on the static 
geometrically nonlinear analysis method reported by Yoshida et al., in which the governing incremental 
equilibrium equation is represented by the coordinates after the deformation themselves rather than 
conventional displacements. The governing dynamic equilibrium equation for each element is obtained 
from the static equation by adding the inertia term. In the solution procedure, a modified Steffensen's 
iteration process is introduced and combined with the two-step approximation and iterative correction 
solution procedure developed for static analysis. A numerical example of a curved cantilever beam under 
lateral loads indicates the effectiveness of the proposed method in cases with three-dimensional finite 
rotations. Forced vibration analyses of a two-hinged shallow arch are conducted under centrally 
concentrated loading with several loading amplitudes. The resulting dynamic buckling load is compared 
with that given by Gregory and Plaut in 1982, who used Galerkin method, and shows good agreement. 

1. INTRODUCTION 

A dynamic load may cause an instability of a struc-
ture, even if the structure remains stable under a 

static load of the same magnitude as the dynamic one. 

Such a phenomenon may occur within the elastic 

range, so that the maximum displacement response as 

a function of the magnitude of loading abruptly 

increases at some point with respect to the mag-
nitude. When this kind of dyna!11ic lnstability prob-

!em is to be solved, geometrical nonlinearity must 

be considered in the dynamic response analysis in the 
same manner as in the static instability analysis. 

Under certain conditions of structural dimensions, 

loadings, and so on, geometrical nonlinearity must 

be considered also in dynamic analysis even if no 

dynamic instability is expected. 
To date, studies conducted on dynamic frame 

analysis method with geometric nonlinearity are 

mainly concerned with plane frames; such studies 

dealing with three-dimensional frame structures are 
seldom found in the literature. One of the reasons 

for this is that dynamic stability analyses themselves 
are in general under development, although para-

metric resonance problems have been well discussed. 
Another reason may be that even static analysis is 

difficult for problems with finite rotations in three-

dimensional space. 
In this paper, a dynamic response analysis method 

is presented which can deal with frames with finite 

rotations in the three-dimensional space, and hence 

dynamic instability of space frames. 
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First, an incremental equation of motion is <level-

oped. The formulation is an extension of that of 
the three-dimensional geometrically nonlinear static 
analysis procedure developed by one of the authors 

with Yoshida and Matsuda [l, 2]. The static pro-

cedure, referred hereafter as the YMM method after 

the developer's names, is based on the equilibrium 

equations expressed by coordinates after defor-

mations. Then, the validity of the YMM method for 
static problems with finite rotations in three-

dimensional space is demonstrated using numerical 

examples. Here effective predictiv~orrective solu-
tion procedure based on Steffensen's iteration scheme 
is also illustrated. Finally, the applicability of the 

equation of motion developed herein is verified 

through a numerical example. 

2. EXTENSION OF THE YMM METHOD TO 
DYNAMIC PROBLEMS 

The basic incremental equilibrium equation of an 

element in the YMM method is given as follows [I, 2] 
(see Appendix): 

where 

L¥ff = lr[. ~I) lk* ir(. + I) L¥IUI 

+ ir[. + I) lk* [lr(• + I)位+L¥lr 

. (IUl(n) +'/l.(n))] + L¥ 7rT. fぷ
= lk<•+ o △IUI 十 lln(•+I)• (l) 

f, 1U1 = the element nodal force and displacement 
vector, respectively, in the global coordinate 

system (GCS) 
f*, 1UJ* = vectors in the element coordinate system 

(ECS) corresponding to f and 1U1 
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1" = the coordinate transformation matrix from 
the GCS to the ECS 

が＝〈xfー『ら
x = the element nodal coordinate vector in the 

GCS 
x0 = the element nodal coordinate vector in the 

GCS at the initial state 
『=the element rigid body rotation vector in the 

GCS 
lk* = the element stiffness matnx in the ECS; for 

space frames dealt here, the conventional 
linear one of a bar element with a size of 
12 X 12 

T = a superscript denoting transposition of 
matrices 

(n) = a subscript denoting nth equilibrium state 
△ = a prefix denoting the increments from the 

nth to the (n + l)th equilibrium state. 

It is assumed that elements are straight at the initial 
free state and have constant bi-symmetric cross 
sections. 
The special characteristics of the YMM method 

lie in the fact that the linear stiffness matrix derived 
under the assumption of small strain is used as the 
basic stiffness matrix as shown above, and the geo-
metric nonlinearity, which is usually expressed 
through the nonlinear relation between strains and 
displacements within a body, is fully taken into 
account by faithfully evaluating the transforming 
relation of the nodal displacement vector from the 
GCS to the ECS with the use of the coordinates and 
rigid body rotation. Moreover, the coordinate trans-
formation matrix after the deformation is kept 
exactly in the final equilibrium equation without 
any approximation. Finite rotations in the three-
dimensional space are treated such that the effect of 
a series of rotations is considered to be the same as 
that of a certain single rotation around some axis. 
Hence, nothing is neglected in eqn (I) compared with 
the beam theory provided that small strain assump-
tion is valid and that there is no load action within 
the element. 

To extend the static equilibrium equation to the 
dynamic one, terms such as momentum change rate 
and damping must be included. In this paper, systems 
without damping are considered for simplicity. The 
incremental equation of motion of an element is then 
obtained as: 

where 

,if=『(n+I) M* lf(n+ I) IUl(n+ I) 

-lf(n) M* lfc•l 血(n)

+ d (lf(n+ I) M* lf(n+ 1))/dt皿(n+I) 

-d (lf(n) M* lfc.))/dt血(n)

+~n+I) • Ill+ [ln(n+I) (2) 

Ml* = the element mass matrix in the ECS 
・= a symbol denoting differentiation with 

respect to time 

(n) = a subscript denoting time nAt with At a 
constant. 

In eqn (2), the first two lines and the next two lines 
express the increments of the product terms in the 
GCS, the mass matrix and the acceleration vector, 
and the mass matrix time differentiation and the 
velocity vector, respectively. The fifth line is the 
spring force term given in the right hand side of 
eqn (I). The coordinate transformation matrix 7r is a 
function of displacements and therefore of time. 
However, if concentrated mass matrices are con-
sidered as an extreme example, M* is equivalent to a 
unit (identity) matrix multiplied by some constant as 
far as the part corresponding to translational dis-
placement components is concerned. This implies 
that TIM"'lrn is also equal to a constant time unit 
matrix and has no time dependency, since coordinate 
transformation matrices are orthogonal. Conse-
quently, the second two lines vanish. If this conclu-
sion is also valid, at least approximately, for the part 
of Ml* corresponding to rotational components, and 
further for the case of consistent matrices, the second 
two lines can be neglected compared with the first 
ones. In this case the following simplified incremental 
equation of motion is obtained. 

Aff = lr[n+l) M* lr(n+l)△血

+ [T[n + I) M* lf(n+ I)ー応M*『<n>l祉(n)

+ [k[n+ I) dl!JI十 lil(n+ I) (3.}) 

= M(n+l)A面+(A 7rT M* lr(n + 1) 

＋訂~+I) M*Alr + AlrT M* A『]面(n)

+ lk(n+ I)~OJI 十 lli(n+ I) (3.2) 

where the coordinate transformation matrix at the 
end of the incremental step, lr<n+ l), changes in the 
incremental step, !!.. 7r and△ z, which is in On(n + l), and 
the acceleration increment, !!..IUI, are functions of the 
displacement increment !!.. 皿 Othersare known at the 
beginning of the incremental step. 

3. SOLUTION PROCEDURE FOR THE EQUATION 
OF MOTION 

In [l, 2], a predictive-corrective solution procedure 
is presented which is composed of a two-step linear-
izing approximation and successive iterative cor-
rection. The procedure is somewhat akin to 
Runge-Kutta type solution processes but contains 
more physical aspects rather than pure mathematical 
formulations, and was proved effective to the system 
described by eqn (1). A similar procedure can be 
adopted to the dynamic system expressed by eqn (3), 

but the procedure needs a time integration scheme. 
Here, Newmark's P (P = 1/4) method, which is one of 
the simplest time integration schemes now available, 
is combined with the above mentioned YMM solu-
tion procedure to produce a solution procedure 
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for the dynamic system given in eqn (3) as in the 

following. 
In the Newmark's {J ({J = 1/4) method, the relation 

of the velocity and displacement components at the 

beginning and the end of a time step is assumed as: 

A血＝血(n+ J) - Wl(n) = Wl(n) M + .1wi M/2 (4) 

ふ』=IID(n + I) -IID(n) = Wl(n),1( 

where 

M" = (olrT/oWJT)(n+l/2)'M* lr/lii(n) + lr[M* 

'(O lf jo WIT)(n + 1/2)'恥 (9)

~" = irr~·{lr1(8z/紐り(n+ 1/2)' 

+ (oir;a正）(n+ 1/2)、（％＋い）｝

＋（訂―r;aWIT)(n + 1/2)'fi), (10) 

+wi<•lMり2 + .1oi! {JM2. 

3.1. First approximation 

(5) Here, subscript I denotes that the variables with this 

subscript are evaluated at the point (n + I)'. The 

corresponding point to the second approximate solu-

tion is denoted as (n + I)". 
Incremental terms in eqn (3.2) are linearized at the 

nth equilibrium state with respect to the displacement 

increment L¥llll, and the coordinate transformation 

matrix is evaluated at the nth equilibrium state. Then 

the following equation of motion to give the first 

approximation of L¥llll (= L¥llll1) is obtained. 

M = (lfI'M* lr)(nl .1恥

+ [{(airり01111T)M*頂＋で"M*

-ca1r;a1111りwi}+ {lrば*lr} 

+ {lfI'lk* [lr (紅/01111り

＋（訂―/01111り(1111十 z)J}

3.3. Iterative-correction [(k + I)th approximation 

(k > 2)] 

For the (k + !)th approximation, where k is 

greater than or equal to 2, linearization of in-

cremental terms is not performed. Instead, in-

cremental terms are also approximated by the values 
estimated at the previous kth approximate point, as 

the coordinate transformation matrix is. Thus 

,:¥ lf"k = lf"(n+ l)k -lf"(n) = l["k -lf"(n) 

i:¥7lk = 7l(n+ l)k -7l(n) = 7lK-7l(n)• 

(11) 

(12) 

where k is a subscript denoting kth approximation. 

+{cairり01111T) ff* }Jcn).11111 I 

= M<nlぷも+[M'+ 1k + lk'] (n).111111・

Substituting eqns (I I) and (12) into eqn (3.1), we 

obtain the equation of motion for the (k + I)th 
(6) approximation as 

Here, eqn (5) is substituted for~IUl1 in the above 
equation to eliminate the displacement increment, 

which leads to the following equation with the accel-

eration increment as the only unknown. 

l'.¥1f = {M + (M'+いい｝研氾

+ (M'+ 1k + lk')(•> 

,1f = Mk .11ihk + I十如L¥IUlk+I+叫 +1/nk, (13) 

where illlk and llnk are known and are expressed as 

叫＝｛（でM*lf)k -(1fT M*lf)(n)} IW(n) (14) 

llnk = lf[ lk* [lfk Mk+ .1 lf k 

'(IUl(n) + "11.(n))] + .1 lf[ 『~). (15) 

・（血△t+fillMり2)(n)・ (7) The remainder of the process is similar to that 
described in (3.1. First approximation). The iteration 
shown in eqn (13) is continued until the approximate 
solution satisfies the specified convergent criteria. 

The element equation thus obtained is assembled 

into an overall equation of motion in the usual way, 
and the resulting simultaneous equations are solved 

with respect to acceleration increment i:¥血， whichin 
turn is substituted into eqns (4) and (5), and the first 

approximate solutions of displacement and velocity 

increments△町 andi:¥叫， respectively,are obtained. 

The corresponding solution point to the first ap-

proximate solution is symbolically denoted as 

(n + l)', and the midpoint between the points (n) and 

(n + I)'is denoted as (n + 1/2)'. 

3.2. Second approximation 

When a convergent solution is obtained the next 

increment is applied, if necessary. 

4. VERIFICATION OF THE APPLICABILITY OF 
THE YMM METHOD FOR PROBLEMS WITH 

FINITE ROT A TIONS IN 
THREE-DIMENSIONAL SPACE 

There are few problems with three-dimensional 
finite rotations for which a theoretical solution is 

obtained, and also few comparable examples of nu-

merical analyses. Here, a problem is picked up for 

which theoretical solution is found and the calculated 

result is compared with the theoretical solution. Then 

a curved cantilever beam with square cross section 

subjected to a vertical load at the free end is analyzed, 
and the calculated results are compared with those 

given by Bathe and Bolourchi [3]. Through these 

Second approximate solution triad△島， A的 and

△ Wlu is given by a similar process to the previous one 

but based on the first approximation triad, namely, 

linearization of the incremental terms are conducted 
at the point (n + 1/2)'instead of (n + I)'. Thus the 
equation corresponding to the eqn (6) is 

comparisons the validity of the YMM method can be 
(8) confirmed. df= M心動+(M" + 1k + lk")1d1U111 
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4.1. Analysis of a cantilever beam with square cross 
section subjected to a series of lateral loadings— 
different orders of loadings applied 

The principal axes of a square cross section of the 
cantilever beam are taken as the X and Y axes, and 
the longitudinal axis is defined as the Z axis. Loads 
are applied at the free end. Three cases of loading 
orders are considered, namely: (I) a load of mag-
nitude P is first applied in the X direction, then an 
additional load of the same magnitude in the Y 

direction is applied; (2) a load P is applied in the Y 

direction and followed by an additional one in the 
X direction; and (3) loads of the same magnitude P 
are applied at the same time in the X and Y direc-
tions, respectively. 
Deformed configurations corresponding to these 

three series of loadings are illustrated in Fig. 1. The 
final configurations for these three cases are found to 
be exactly the same. The validity of the YMM 
method for problems subjected to bendings in 
different planes in three-dimensional space is thus 
verified. 

4.2. Analysis. of a curved beam subjected to an out-of-
、planeloading 

An out-of-plane load is applied to a curved beam 
with square cross section as shown in Fig. 2(a). The 
relations between the applied load and the displace-
ments at the free end, where the load is applied, are 
shown in Fig. 2(b) in non-dimensional form. De-
formed configurations at a couple of stages are 
illustrated in Fig. 2(c). The solid lines in Fig. 2(b) are 
the calculated results given by Bathe and Bolourchi 
[3] with eight elements and 60 steps. The results 

obtained by the present method with eight elements 
and 10 steps shown by dark circles coincide well with 
the solid lines. The present results are obtained by 
introducing modified Steffensen's iteration into the 
iterative-corrective procedure explained in Sec. 3.3. 
When the procedure shown in Sec. 3.3 itself is used, 
converged solutions are obtained only up to the stage 
indicated by the chain line in Fig. 2(b) for this 
problem. The modified Steffensen's iteration scheme 
introduced is given in the following section. 
Bathe and Bolourchi checked the applicability 

of their method by comparing their results with the 
theoretical solution through the two-dimensional 
finite displacement analysis of a cantilever beam sub-
jected to a concentrated moment at its free end. Their 
results and the results obtained here are compared 
in Fig. 3 with the theoretical solution. The figure 
shows the relations between the applied moment and 
the displacements at the free end. The solid lines show 
the theoretical solutions and the dashed lines are the 
ones given by Bathe and Bolourchi with 20 elements 
and 90 steps. The circles, triangles and rectangles are 
the calculated results here with eight elements and 
eight steps. The present results are in close agreement 
with the theoretical solution within the whole range. 
The results given by Bathe and Bolourchi also agree 
well with the theoretical solution up to a rotation at 
the free end of 90゚・

4.3. Modified Steffensen's iteration scheme 

When eqn (13) is solved with respect to dWJk + 1, the 
following recurrence formula is obtained. 

△ Wik+ 1 = lk,;1 (Af一llnk)=@(AWld● (16) 

x
 

~ 罪Y

~: 戸P

1st 2nd 

1st 2nd 

LOADING ORDER 2 

Y
 

~p 

LOADING ORDER 3 

Fig. I. Deformed configurations of a cantilever beam subjected to bendings around multi-axes. Three 
different orders of loadings are considered. 
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Fig. 2. Out-of-plane bending of a curved bar. Comparison with the result by Bathe and Bolourchi [3]. 

Here, for simplicity, static problems are to be con-
sidered. 
The application of the Steffensen's iteration for this 

fixed point problem with [IJJ(d叫） as the initial value 
gives the next equation. 

8Wlk+4 = [Ill (d島）ー [[Ill([Ill (△島））一 [Ill{8Wlk)]2 

/[!JI (!JI (!JI (i'.¥W!k))) -2 !Ji 

. (!JI (i'.¥W!k)) + !Jl(d島）］
=s(ふIIJIJ. (17) 

The modified Steffensen's iteration formula is con-
structed as the following: 

(i) start with k = 2 

(ii) calculate dOJJk, and AOJJ,+ 1 = !!lJ (AOJJ); j = k, 
k+l,k+2 

(iii) calculate AOJJk+J = s (AOJJd 
(iv) set dOJJk+3 as a new dOJJk 
(v) go to step (ii) and repeat the steps (ii)-(iv). 

The difference from the original Steffensen's iter-
ation scheme is that the new starting point for the 
next iteration is set as !!ll(△ OJJk + 3), which is given by 
the governing equilibrium equation using AOJJk + 3. 

In the original Steffensen's iteration dunk+ 3 itself 
is used as the next starting point. The modified 
Steffensen's iteration scheme also has a second order 
convergence property just as the original Steffensen's 
iteration does. 

5. NUMERICAL EXAMPLE-DYNAMIC INSTABILITY 
ANALYSIS OF A SHALLOW ARCH 

The dynamic response analysis method presented 
in this paper is constructed so as to be able to deal 
with dynamic response in three-dimensional space, 
but, unfortunately, there exist a few problems that 
have analytical solutions to be compared to confirm 
the applicability of the presented method for such 
situations. Here, as the first step of examination, 
an in-plane dynamic instability of a shallow arch is 
analyzed and the result is compared with that given 
by Gregory and Plaut [4]. The arch has two hinges 
and sinusoidal initial configuration as shown in 
Fig. 4(a), where dimensions are also described. 
Forced vibration of the arch subjected to a centrally 
concentrated step loading (see Fig. 4(b)) is con-
sidered. Response analyses with various magnitudes 
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Fig. 4. Instability analysis of a shallow arch under step loadings. 

of the step load are conducted and time histories 
of a nondimensional average displacement .1 are 

obtained as shown in Fig. 4(c). The displacement△ 
is defined as the ratio of summation of the nodal 
deflection and that of the nodal height at the initial 

state. The figures show the results of the case where 
four elements with a time step of M = 1.0 x 10-3 sec 

are used. 
Budiansky and Roth [5] defined dynamic in-

stability as a state at which a small increment 

in loading produces sudden changes in maximum 
response. The dynamic buckling load obtained by 

Gregory and Plaut from this definition is 126.8 kgf. 

The static buckling load for this problem is 163.7 kgf. 
The maximum values of the nondimensional average 

displacement as a function of the magnitude of the 

step load are calculated by the present method as 
shown in Fig. 4(d). The solid line and the dotted line 

correspond to the cases with four and eight elements, 

respectively. The relation between the period of the 

response and the magnitude of the load is obtained 

as shown in Fig. 4(e). The dynamic buckling load 
obtained from the above results is given in Fig. 4(f) 
and Table I, and it is in good agreement with that 

obtained by Gregory and Plaut in the limit as the 

number of elements is increased. 

6. CONCLUSION 

The problem chosen to verify the applicability of 

the presented method to dynamic response analysis is 

an in-plane vibration of a shallow arch. Therefore, in 

order to confirm the generality an examination needs 

to be made of the effects of neglecting the time 

differential terms of the mass matrix on the response 

characteristics in the presence of strong geometric 

Table I. Comparison of dynamic buckling load with the 
result of Gregory and Plaut 

Number of 
elements 

Dynamic buckling 
load calculated 

(kgf) 

Difference with 
the value given 
by Gregory and 
Plaut [4] (%) 

4
8
6
2
 

1

3

 

120.0--120.5 
125.0--125.5 
126.0--126.5 
126.5---127.0 

5.4-5.0 
1.4-1.0 
0.6---0.2 
0.2--0.0 
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nonlinearity and three-dimensional behavior. Never-

theless, as far as the problem here is concerned, it is 

verified that the proposed geometrically nonlinear 

response analysis method which is based on the 

YMM  method is sufficiently effective. As to the time 

integration, although the Newmark's /3 method is 

adopted here, other time integration schemes also can 

be combined. 
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APPENDIX 

The formulation of the equilibrium equation of an element 
in the YMM method is outlined as the following: 

{/} = [T]T {f *} 

(.  coordmates transformation of nodal forces) 

= [TY[k*] {u*} 

where 

(nodal forces in the element coordinates system are 
expressed by the stiffness equation in the element 
coordinates system) 

= [TV[k*] ([T) {a} -[T0) {a。})

(nodal displacements in the element coordinates 
system are expressed by generalized coordinates) 

= [TY[k*] [T) {q({u}, {x0})} 

(just rewritten), 

{q({u}, {x。})}={a} -[TJ-1 [T,。){a。}
{uV =〈{d}門卯〉

= displacements vector of the element 
{x V = coordinates vector of the element 
{aV=〈{xf{0f-{rY〉

= generalized coordinates vector of the 
element 

{d} = translational displacement com-
ponents vector of the element in the 
global coordinates system 

{0} = rotational components vector of the 
element in the global system 

{ x} = coordinates vector of the element in 
the global coordinates system 

{x。}= initial coordinates 

{ a0} = initial generalized coordinates 
{r} = rigid body rotation vector of the ele-

ment in the global system. 

In the above equation, the element coordinates system is 
defined as an orthogonal Cartesian coordinate, and its axes 
are fixed on the element all the way. Therefore, the coordi-
nate transformation matrix is a function of the generalized 
coordinate at the moment, even when an incremental 
formulation is adopted as in this paper. And the vector {q} 
is a function of not only displacements {u} but also initial 
coordinates {x0}. 
The incremental equation represented in this paper, 

namely, eqn (!), can be derived directly from the above 
equilibrium equation. 
The solution procedure of the YMM method is included 

in what is explained in this paper. But it should be noted 
that the use of the presented two-step linearized approxi-
mation which does not have any tangent stiffness in the 
usual sense, has given the method such capacity as to be able 
to deal with bifurcation analyses without any eigenvalue 
calculations, although the problems chosen in this paper 
do not show any bifurcation phenomena. 


