

Background

- Reduction of CO₂ emissions from freight transportation activities
- Delivery of cargos with different weights
 - Shortest route ≠ the route with minimum CO₂ emissions
 - Possibility of recalculation of the route because of the absence of the receiver

\square

Necessity for solvingVRP-MCEwithinpermissible timeVehicle Routing ProblemwithMinimum CO2 EmissionsVehicle Routing ProblemWith

VRP-MCE

- Find the route with the minimum CO₂ emissions
- Starting point and terminal point are the depot
- Two of more delivery points with different weight cargos
- Total weight of cargos ≤ the maximum loading weight of the truck
- CO₂ emissions are calculated by the revised tonkilometer method

Calculation method for CO₂ emissions

Revised ton-kilometer method

- Amount of fuel consumed per ton-km x (L/t·km)
 - $\ln x = 2.71 0.812\ln(1000w/z) 0.654\ln z$
 - ◆ w (t) : cargo weight
 - $\diamond z$ (kg) : the maximum load of the truck
- CO₂ emissions *e* (t-CO₂)
 - e = 2.62 x dw / 1000
 - ◆*d* (km) : transport distance

Characteristics of VRP-MCE

Symbiotic Evolution

- A kind of evolutionary computation represented by the genetic algorithm
- Teamwork
 - Whole solution = Combination of partial solutions
 - Parallel evolution of two populations
 - Avoid local minimum and find good solution

96

Chromosome

- Patial solution
 - Sub-route with L_p delivery points

 dpID1 dpID2
 ...
- Whole solution
 - **Combination of pointers for partial solution**

Experiments

- Truck
 - One 2000kg truck using light oil
- Delivery points
 - **Customers of one freight carrier**

Performance test with small datasets

- Number of delivery points : <u>9-13</u> Possible to calculate the optimal solution by the very thorough search
- Cargo weights
 - **random (0 62.5 kg)**
- Comparison
 - Performances between the proposed method and the very thorough search

Performance test with large datasets

- 32 delivery points
- Cargo weight data
 - *zero* ... 0kg
 - *random* ... 0 2000/32 kg
 - *flat* ... 62 kg
 - *heavy-1* ... $w_6 = w_{15} = 250$ kg, others=50 kg
 - *heavy-2* ... w₈=w₂₁=250 kg, others=50 kg
 - *heavy-3* ... w₁₃=w₂₉=250 kg, others=50 kg
 - *heavy-3** ... $w_{13} = w_{29} = 970$ kg, others=2 kg
- Repeat computing for each data 10 times
- Compare with <u>the saving method</u>

a conventional method for VRP

Performance test with small datasets

- Same route for all data
- Time for computation

Number of data	Proposed method	Very thorough search	
9	6.62	0.11	
10	6.74	1.23	
11	7.50	14.29	
12	7.61	180.22	
13	7.56	2401.33	[second]
	ery little change	Increase wi rapidly	

Results on large datasets

Data	Computation time [s]		CO ₂ emission [kg-CO ₂]		Transport distance [km]			
	Proposed	Saving	Proposed	Saving	Proposed	Saving		
random	14.06	0.001	41.42	48.76	95.21	103.28		
flat	15.34	0.001	47.21	54.26	94.58	103.28		
heavy-1	15.46	0.001	46.26	54.00	93.83	103.28		
heavy-2	14.86	0.001	46.60	54.46	93.99	103.28		
heavy-3	14.90	0.001	46.85	54.29	94.11	103.28		
heavy-3*	8.51	0.001	37.85	53.26	107.12	103.28		
Faster Smaller Shorter								

Comparison with the shortest route

Best route for zero and random

Best route for *heavy-2* and *heavy-3*

Best route for *heavy-3* and *heavy-3**

Conclusion

- Define VRP-MCE
- Propose a method for solving VRP-MCE
 - **Fast sufficiently**
 - Optimal route in small datasets
 - Valid route in large datasets
- Future works
 - **Extend VRP-MCE for use in various situations**
 - Develop a method for solving the extended problem

17