Consideration of the Variety of the Trucks in Vehicle Routing and Cargo Allocation Problem with Minimum CO₂ Emissions

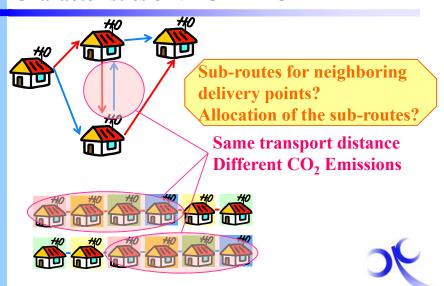
Noriko Otani (Tokyo City University)
Tadayuki Masui (Tokyo City University)

Background

- Reduction of CO₂ emissions from cargo transportation activities
- Delivery of cargos with different weights
 - Shortest route ≠ the route with minimum CO₂ emissions
 - CO₂ emissions may decrease by dividing delivery points into some units

Purpose

- Previous work [Otani11]
 - The number of trucks owned by a cargo carrier and their maximum loads have not been considered
 - The number of trucks used for delivering cargos is not limited and those maximum loads are uniform



- Define VRCAP-MCE
- Propose a method for solving VRCAP-MCE Vehicle Routing and Cargo Allocation Problem with Minimum CO₂ Emissions

VRCAP-MCE

- An optimization problem that seeks the route and cargo allocation with the minimum CO₂ emission
 - The delivery points are divided into several groups, called "units"
 - The smallest truck among the trucks that can load all the cargo for the unit is used
 - Coexistence of trucks used two or more times and unused trucks should be avoided as much as possible

Characteristics of VRCAP-MCE

Characteristics of VRCAP-MCE

- Seek sub-routes for neighboring delivery points that can be components of the optimal entire route.
- Allocate the sub-routes in order to determine the optimal entire route.
- Prepare units and assign trucks to each unit in order to minimize the total CO₂ emissions.

Symbiotic Evolution

Symbiotic Evolution

- A kind of evolutionary computation represented by the genetic algorithm
- Teamwork
 - Whole solution = Combination of partial solutions
 - Parallel evolution of two populations
 - Avoid local minimum and find good solution

Experiments

• 32 delivery points and the depot

- Number of trucks
 - **■** Using light oil

Data mana	Number of trucks				
Data name	light	1 t	2 t		
tnum1	0	0	3		
tnum2	0	4	1		
tnum3	3	5	0		
tnum4	3	1	2		

possible to be delivered by one 1 t truck

◆ *flat-1* ... 31 kg

♦ heavy1-1 ... w₆=w₁₅=125 kg, others=25 kg

♦ heavy2-1 ... w₈=w₂₁=125 kg, others=25 kg

♦ heavy3-1 ... w₁₃=w₂₉=125 kg, others=25 kg

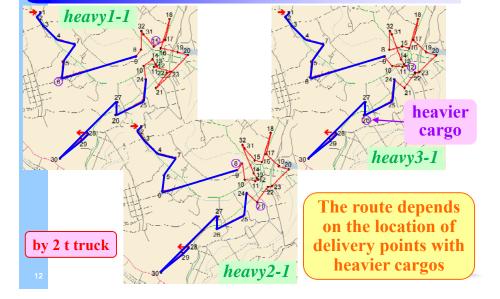
■ should be divided into units

♦ *flat-2* ... 186 kg

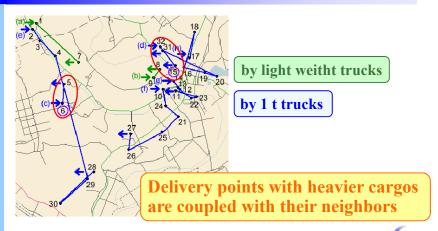
• heavy1-2 ... $w_6 = w_{15} = 750 \text{ kg}$, others=150 kg

• heavy2-2 ... $w_8 = w_{21} = 750 \text{ kg}$, others=150 kg

• heavy3-2 ... $w_{13}=w_{29}=750$ kg, others=150 kg


Result for heavy*-1

		Cargo No. of weight trucks tnum1 tnum2 tnum3 tnum4 tnum1	CO ₂	No. of	No. of trucks			
				emission	units	light	1 t	2 t
			tnum1	37.33	1	-	-	1
		heavy1_1	tnum2	33.53	1	-	$\sqrt{1}$	0
	neavy1-1	tnum3	(33.53)	1	0	1	-	
		tnum4	33.60	1	0	1	0	
			tnum1	37.83	1	-	-	1
		h 1	tnum2	33.84	1	-	$\sqrt{1}$	0
		heavy2-1	tnum3	(33.71)	1	0	1	-
		tnum4	33.84	1	0	$\backslash 1$	0	
			tnum1	37.87	1	-	-	1
When 1 t truck is		33.73	1	-	1	0		
available, CO ₂		(33.95)	1	0	1	-		
emissions decrease.		33.76	1	0	1	0		


Result for heavy*-2

		Data		CO,	No. of	No. of trucks			
		Cargo weight	No. of trucks	emission	units	light	1 t	2 t	
		heavy1-2	tnum1	(10.49)	4	-	-	(4)	
			tnum2	136.47	5	-	3	2	
			tnum3	183.86	8	2	6	-	
			tnum4	(15.54)	4	1	0	3	
			tnum1	(110.56)	4	-	-	(4)	
		h.a	tnum2	135.62	5	-	3	2	
	heavy2-2	tnum3	184.41	8	2	6	-		
			115.96	4	1	0	(3)		
When two or more 2 t trucks are available, CO ₂ emissions decrease.		110.49	4	-	-	4			
		137.14	5	-	3	2	1		
		181.89	8	2	6	-	1		
		115.46	4	1	0	(3)			

Best route for heavy*-1, tnum1

Best route for heavy1-2, tnum3

The other points are combined with appropriate points to make feasible combinations of cargos

Conclusion

- Define VRCAP-MCE
- Propose a method for solving VRCAP-MCE using symbiotic evolution

Valid route and cargo allocation

- Future works
 - **■** Extend VRCAP-MCE to be more practical
 - Develop a method for solving the extended problem

4