

- Delivery route
 - **shortest** \neq with minimum CO₂ emissions
- CO₂ emissions
 - one operation > two or more operations

CO₂ Emissions

Previous work [Otani12]

- Vehicle Routing and Cargo Allocation Problem with Minimum CO₂ Emissions
 - Attach great importance to CO₂ emissions
 - Propose a method for solving VRCAP-MCE
 - Effective for cargo carriers that deliver cargos by themselves
 - × Not appliable for cargo carriers that entrust all of the deliveries to some subcontractors
 - **Major in Japan**

Purpose

- Develop the method to determine cargo allocation and delivery routes for both the cargo carrier and the subcontractors
 - Define VRCAP-MCMCE
 - Vehicle Routing and Cargo Allocation Problem with Minimum Cost and Minimum CO₂ Emissions

Propose a method for solving VRCAP-MCMCE

Cargo carriers and subcontractors hope to reduce their costs than CO₂ emissions

Cost for cargo carrier

- Outsourcing fee = Charter fee of trucks
- Charter fee of a truck per day
 - Dependence on the maximum load of a truck
 - The larger truck is used, the higher fee is paid
 - Two small trucks cost more than a single large truck
 Cargo allocation

Minimization of the number of trucks Outsourcing fee

Cost of subcontractor

- Transportation cost
 - Labour cost
 - Fuel cost

Cargo allocation

Otani-lab Project (c

Minimization of the number of trucks

Labour cost↓

 Finding the route with the minimum CO₂ emissions
 Delivery route

Fuel cost↓

Eco-friendly physical distribution

Definition of VRCAP-MCMCE

• Goal

- high 1. Cargo allocation that minimizes the number of trucks <the outsourcing fee for the cargo carrier and the labor cost for the subcontractors>
 - Delivery route and cargo allocation that minimize the CO₂ emissions <the fuel cost for the subcontractors>
 - Method for solving VRCAP-MCMCE
 - 1. Define a tentative cargo allocation
 - 2. Adjust the cargo allocation to reduce CO₂ emissions without increasing the number of trucks

Defining a tentative cargo allocation (1)

1. Put the serial numbers to trucks by the maximum load

Defining a tentative cargo allocation (3)

- **3.** cargos for neighbouring delivery points \rightarrow the same truck
 - in the order of the path obtained in Step 2
 - Select the <u>largest</u> truck with the <u>smallest</u> serial

Defining a tentative cargo allocation (2)

2. Calculate a path that visits all delivery points using Dijkstra's Algorithm

Defining a tentative cargo allocation (4)

- 4. Calculate a delivery route for each truck and the corresponding CO₂ emissions
 - Use the same method proposed in previous work
 - Based on Symbiotic Evolution
 - A kind of evolutionary computation represented by the genetic algorithm

Adjustment of cargo allocation

Evaluation with actual data

- 32 delivery points and the depot
- Number of trucks
 - two lightweight trucks
 - two 1 t trucks
 - two 2 t trucks

Effects of adjustment with the actual data

Scenario	Adjust	Transport	CO ₂	No. of trucks		
		distance [km]	emission	2 t	1 t	light
flat	before	436.21	154.57	2	2	2
	after	397.09	144.45	2	2	2
heavy1	before	355.47	137.01	2	2	1
	after	340.34	132.99	2	2	1
heavy2	before	360.02	137.99	2	2	1
	after	344.24	133.59	2	2	1
heavy3	before	359.79	138.15	2	2	1
	after	343.14	133.75	2	2	1
CO_2 emission \downarrow					9	~

Routes for *heavy1*

Conclusion

- Define VRCAP-MCMCE
- Propose the method for VRCAP-MCMCE

Valid cargo allocation and delivery routes

- Future works
 - **Dealing with the various situation**
 - The maximum load is restricted
 - The delivery time is constrained

