Cost-Oriented Vehicle Routing and Cargo Allocation with Minimum CO₂ Emissions Based on Harmony Search Algorithm

> Tokyo City University Noriko Otani, Tadayuki Masui

CO₂ Emissions

- Revised Energy Conservation Law in Japan
 - CO₂ emissions from a truck with cargos *e* (t-CO₂)
 - e = 2.62 dwy / 1000
 - □*d* (km) : transport distance
 - □ w (t) : cargo weight
 - Amount of fuel consumed per ton-km y (L/t·km)
 - $\ln y = 2.71 0.812 \ln (x/100) 0.654 \ln z$
 - □x (%) : loading ratio □z (kg) : the maximum load of the truck

Background

- Cargo carriers are obligated to reduce the CO₂ emissions from cargo transportation activities
- Most of cargo carriers in Japan entrust all of the deliveries to some subcontractors
- Both cargo carriers and subcontractors hope to reduce their cargo transportation costs rather than CO₂ emissions

Cost for cargo carrier

- Outsourcing fee = Charter fee of trucks
- Charter fee of a truck per day
 - Dependence on the maximum load of a truck
 - The larger truck is used, the higher fee is paid
 - Two small trucks cost more than a single large truck

Minimization of the number of trucks Outsourcing fee↓

Cost for subcontractor

- Transportation cost
 - Fuel cost
 - Labour cost

Delivery route

Finding the route with the minimum CO₂ emissions

Fuel cost↓

Eco-friendly physical distribution

The route with the minimum CO₂ emissions is not so long

Labour cost↓

Proposed method in previous work

- 1. Generate a tentative cargo allocation with a low outsourcing fee
- 2. Adjust the cargo allocation to reduce CO₂ emissions while the outsourcing fee is kept at or below the original tentative allocation
 - Select one cargo from a truck, and allocate to the other truck
 - Select one cargo from two trucks respectively, and exchange them
- 3. Repeat 2

VRCAP-MCMCE

Purpose of this study

Gradual method is ...

- able to find valid solutions
- NOT a global search but a hill-climbing method

Apply an evolutionary computation algorithm to search a solution space globally and efficiently

Propose a method based on a harmony search algorithm

Otani-lab Project C

Harmony Search

- Metaheuristic optimization algorithm that imitates the musical improvisational process
 - Select any famous piece from his memory
 - Adjust the pitch of a known piece slightly
 - **Compose a quite new piece**

Initialization of HM

- 1. Generate a tentative cargo allocation in the same way as the gradual method
- 2. Adjust the tentative cargo allocation by applying one of the adjustment operators of the gradual method
- 3. Repeat 2, and make them harmonies of the initial HM

Harmony search

- harmony = a candidate solution
- harmony memory (HM) = a set of harmonies
 - 1. Initialize HM
 - 2. Generate a new harmony
 - **Copy a variable in a harmony from HM**
 - **Adjust a variable in a harmony from HM**
 - **Generate a new variable randomly**
 - 3. Replace the worst harmony with the new one, if the new one is better than the worst one
 - 4. Repeat 2 3

Otani-lab Project C

Generation of a new harmony

1. Adjust one harmony selected from HM as in a gradual method Smaller change

The probability to use the first operator

$$P(k) = 0.5 \times \frac{k}{K} + 0.5$$

2.

k : the repetition count
K : maximum number of repetitions
The larger the repetition count is,
the more frequently the first operator is used

Generate a new truck randomly

Evaluation value of a harmony

• Weighted sum of the total outsourcing fee and the total CO₂ emissions

 $h(s) = \overrightarrow{\beta} g(U_1, \dots, U_M) + f(\overrightarrow{r_1}, \dots, \overrightarrow{r_M}) \cdot 10^3$ $f(\overrightarrow{r_1}, \dots, \overrightarrow{r_M}) \quad : \text{ total outsourcing fee}$ $g(U_1, \dots, U_M) \quad : \text{ total CO}_2 \text{ emissions}$

This should be set so that the outsourcing fee takes priority over CO₂ emissions

Otani-lab Project C

Effects of adjustment with the actual data

Scenario	Adjust	Transport distance [km]		CO ₂ emission		No. of trucks		
		Ave.	SD .	Ave.	SD	2 t	1 t	light
case1	before	355.61	0.46	137.14	0.21	2	2	1
	gradual	340.40	0.51	133.02	0.24	2	2	1
	proposed	340.27	0.90	132.95	0.32	2	2	1
case2	before	360.02	0.22	138.03	0.07	2	2	1
	gradual	342.78	1.74	133.61	0.64	2	2	1
	proposed	340.82	0.87	132.76	0.11	2	2	1
case3	before	360.05	0.26	138.29	0.09	2	2	1
	gradual	342.79	1.25	133.67	0.58	2	2	1
	proposed	342.02	1.06	133.23	0.22	2	2	1

Evaluation with actual data

- 32 delivery points and the depot
- Number of trucks
 - two lightweight trucks
 - two 1 t trucks
 - two 2 t trucks

Conclusion

• Propose the method for VRCAP-MCMCE based on a harmony search algorithm

Cargo allocation and delivery routes with lower CO₂ emissions and costs were obtained

- Future works
 - **Develop new adjustment operators**
 - Examine the applicability of other evolutionary computation algorithms

21