©-ADIC CONTINUOUS FAMILIES OF DRINFELD
EIGENFORMS OF FINITE SLOPE

SHIN HATTORI

ABSTRACT. Let p be a rational prime, v, the normalized p-adic
valuation on Z, ¢ > 1 a power of p and A = Fy[t]. Let p € A
be an irreducible polynomial and n € A a non-zero element which
is prime to p. Let & > 2 and r > 1 be integers. We denote
by Sik(I'1(np")) the space of Drinfeld cuspforms of level I'; (ng")
and weight £ for Fg(t). Let n > 1 be an integer and a > 0 a
rational number. Suppose that np has an irreducible factor of
degree one and the generalized eigenspace in S (I'1(ngp")) of slope
a is one-dimensional. In this paper, under an assumption that
a is sufficiently small, we construct a family {Fj | vo(k' — k) =
log,,(p" + a)} of Hecke eigenforms Fy € Si(I'1(np")) of slope a
such that, for any Q € A, the Hecke eigenvalues of Fj and Fj: at
Q@ are congruent modulo p* with some x > p”P(’“I’k) —p" —a.

1. INTRODUCTION

Let p be a rational prime, ¢ > 1 a power of p and I, the field of ¢
elements. Put A = F,[t] and K = F,(t). Let p € A be an irreducible
polynomial of degree d > 0, n a non-zero element of A which is prime
to p and r = 1 an integer. Put A, = A/(p") and k(p) = A/(p). We
denote by K, the p-adic completion of K, by C, the p-adic completion
of an algebraic closure of K, and by v, : C, - Q u {400} the p-
adic additive valuation on C,, normalized by v,(p) = 1. Similarly, we
denote by Ky, the (1/t)-adic completion of K and by C, the (1/t)-
adic completion of an algebraic closure of K. Let K be the algebraic
closure of K inside C, and let us fix an embedding of K-algebras
ty : K — C,. For any x € K, we define its normalized p-adic valuation
by v,(to(x)). Let @ = PYCy)\P'(Ky) be the Drinfeld upper half
plane, which has a natural structure of a rigid analytic variety over
Ky.

Let I' be an arithmetic subgroup of SLy(A) and k an integer. A Drin-
feld modular form of level I' and weight £ is a rigid analytic function
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on () satisfying

f(az—i—b) = (cz+ d)*f(2) for any vy = (CCL Z) elze

cz+d

and a holomorphy condition at cusps. It is considered as a function
field analogue of the notion of elliptic modular form.

Recently, p-adic properties of Drinfeld modular forms have attracted
attention and have been studied actively (for example, [BV1, BV2,
BV3, Gos, Hatl, Hat2, PZ, Vin]). Especially, in [Hat2] the author
proved an analogue of the Gouvéa-Mazur conjecture for Drinfeld cusp-
forms of level I';(t) and observed that the t-adic slopes seem to form
periodic sequences.

However, though we have a highly developed theory of p-adic ana-
lytic families of elliptic eigenforms of finite slope, p-adic properties of
Drinfeld modular forms are much less well-understood compared to the
elliptic case. One of the difficulties in the Drinfeld case is that, since
the group Of(p is topologically infinitely generated, analogues of the
completed group ring Z,[[Z)]] are not Noetherian, and it seems that
we have no good definition of characteristic power series applicable to
non-Noetherian base rings, as mentioned in [Buz2, paragraph before
Lemma 2.3].

For elliptic modular forms, the structure of slopes is often explained
by (or related to) the existence of p-adic analytic families of elliptic
eigenforms and their geometry. Contrarily, for Drinfeld modular forms
we do not know at all where such structure of slopes comes from, due
to the lack of a theory of p-adic analytic families as in [Col, Buz2].

In this paper, in the hope of compensating the lack, we will construct
families of Drinfeld eigenforms in which Hecke eigenvalues vary in a
p-adically continuous way. For the precise statement, we fix some
notation. For any m e A, we put

T (m) = {7 € SLy(A) ‘ y= (é 1) mod m}.

Let © be any subgroup of 1 + pA, € AX. We define
r r O =
(906 = {r e $1a() | ymod e (5} =60

and T (n, p") = T'1(n) n ['§(p"), which satisfies Fil}(n, ") =T1(ng").

Let £k > 2 be an integer. For any non-zero element () € A, the
Hecke operator Ty acts on the C-vector space Sy (I'¥(n, ")) of Drin-
feld cuspforms of level I'?(n, ") and weight k. The operator T}, is also
denoted by U. Since the Hecke operators stabilize an A-lattice Vi (A)
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(Proposition 2.2), every eigenvalue of Tf, is integral over A. The nor-
malized g-adic valuation of an eigenvalue of U is called slope, and we
denote by d(k, a) the dimension of the generalized U-eigenspace for the
eigenvalues of slope a. Namely, it is defined as

d(k,a) = > m()),

where A runs over the set of U-eigenvalues of slope a and m(\) denotes
the multiplicity of .

For any Hecke eigenform F', its T-eigenvalue is denoted by Ag(F').
We denote by v, the p-adic valuation on Z satisfying v,(p) = 1. Then
the main theorem of this paper (Theorem 4.1) gives the following, which
we will prove in §4.1.

Theorem 1.1. Suppose that np has an irreducible factor m of degree
one. Letn =1 and k = 2 be integers. Put 6 = [['1(7) : T9(n, p")],
e =d(k,0) and

Dsy(n,d,¢) = %{\/25])”4-(5—6—}-1)(25—8—1)—%(54—8},

_ nf 4+0pt =9
D(n,5, 8) = 1min {p (m) ,DQ(TL,(S, 5)} .

Let a be any non-negative rational number satisfying
a < min{D(n,d,e), k — 1}.
Suppose d(k,a) = 1. Then, for any integer k' = k satisfying
oy (k' = k) > log, (" + a),

there exists a Hecke eigenform Fy € Sp(T'9(n, ©")) of slope a such that
for any Q) we have

Vo (Lo (AQ(Frr) — A(Fk))) > pvp(klfk) —p" —a.

In fact, what we will prove allow nebentypus characters at p (Remark
4.2).

For example, in the case of n = 1, p = ¢t and » = 1, we have
IP(n,p") =T1(t),d =e=1and D(n,1,1) = 4/2p” — 5. In this case,
Theorem 1.1 implies that, for any Hecke eigenform Fj of slope zero
in Sk(I'1()), the Th-eigenvalue A\g(Fy) is t-adically arbitrarily close to
those coming from Hecke eigenforms with A-expansion [Pet], which
shows A\g(F)) = 1 for any @ (Proposition 4.3). This suggests that,
though we will prove constancy results of the dimension of slope zero
cuspforms with respect to k and r (Proposition 3.4 and Proposition
3.5), Hida theory for the level T'y(¢") should be trivial (Remark 4.5).
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We also note that families constructed in Theorem 1.1 contain Hecke
eigenforms whose Hecke eigenvalue at ) is not a power of @) (§4.2), and
thus they capture a more subtle p-adic structure of Hecke eigenvalues
than the theory of A-expansions.

Let us explain the idea of the proof of Theorem 1.1. Note that a usual
method to construct p-adic families of eigenforms of finite slope in the
number field case is the use of the Riesz theory [Col, Buz2|, which
is not available for our case at present, due to the lack of a notion
of characteristic power series over non-Noetherian Banach algebras.
Instead, we follow an idea of Buzzard [Buzl] by which he constructed
p-adically continuous families of quaternionic eigenforms over Q.

First we will prove a variant of the Gouvéa-Mazur conjecture (Propo-
sition 3.11), which implies d(k,a) = d(k',a) if k£ and k' are highly
congruent p-adically and a is sufficiently small. With the assumption
d(k,a) = 1, it produces Hecke eigenforms Fj and Fj, of slope a in
weights k and &', respectively. For this part, we employ the same idea
as in [Hat2]: a lower bound of elementary divisors of the representing
matrix of U with some basis and a perturbation lemma [Ked, Theorem
4.4.2] yield the equality. To obtain such a bound (Corollary 3.8), we
need to define Hecke operators acting on the Steinberg complex (2.2)
with respect to I'P(n, ©"), which is done in §2.3. Note that similar
Hecke operators on a Steinberg complex in an adelic setting are given
in [Boc, §6.4].

Then, a weight reduction map (§3.2) yields a Drinfeld cuspform G
of weight k such that, for m = v,(k’ — k), the element G mod EF" is
a Hecke eigenform with the same eigenvalues as those of Fj, mod pP".
Now the point is that, if two lines generated by Fj, and G are highly
congruent in some sense, then we can show that the eigenvalues of Fj,
and G mod EP" are also highly congruent, which gives Theorem 1.1;
otherwise the two lines are so far apart that, again by the Gouveéa-
Mazur variant mentioned above, they produce U-eigenvalues of slope
a with multiplicity more than one, which contradicts d(k,a) = 1 (The-
orem 4.1).
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for suggesting him to look for p-adically continuous families of Drinfeld
eigenforms instead of p-adically analytic ones, David Goss for a help-

ful discussion and the anonymous referee for valuable suggestions. This
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2. DRINFELD CUSPFORMS VIA THE STEINBERG MODULE

For any arithmetic subgroup I' of SLy(A) and any integer k > 2,
we denote by S(I') the space of Drinfeld cuspforms of level I' and
weight k. In this section, we first recall an interpretation of Si(I")
using the Steinberg module due to Teitelbaum [Tei, p. 506], following
the normalization of [Boc, §5]. We also introduce Hecke operators
acting on the Steinberg complex. Using them, we define an A-lattice of
the space of Drinfeld cuspforms which is stable under the Hecke action.

2.1. Steinberg module. For any A-algebra B, we consider B? as the
set of row vectors, and define a left action o of GLy(B) on it by yoz =
vy 1. Let T be the Bruhat-Tits tree for SLy(Ky). We denote by 7o
the set of vertices of T, which is the set of K}-equivalence classes of
Op, -lattices in K2, and by 7; the set of its edges. The oriented graph
associated with 7 and the set of oriented edges are denoted by 7° and
T°, respectively. For any oriented edge e, we denote its origin by o(e),
its terminus by t(e) and the opposite edge by —e. The group {+1} acts
on 7P by (—=1)e = —e.

Let I" be an arithmetic subgroup of SLy(A) [Boc, §3.4], and we as-
sume I" to be p/-torsion free (namely, every element of I' of finite order
has p-power order). The group I' acts on T and T° via the natural
inclusion I' — GLy(K). We say a vertex or an oriented edge of T is
['-stable if its stabilizer subgroup in I' is trivial, and I'-unstable other-
wise. We denote by Tgt and 7,”*" the subsets of I-stable elements. For
any [-unstable vertex v, its stabilizer subgroup in I' is a non-trivial
finite p-group and thus fixes a unique rational end which we denote by
b(v) [Ser, Ch. II, §2.9].

For any ring R and any set S, we write R[S] for the free R-module
with basis {[s] | s € S}. When S admits a left action of I', the R-
module R[S] also admits a natural left action of the group ring R[I']
which we denote by o. In this case, we also define a right action of I"
on R[S] by [s]|, = o [s], which makes it a right R[I']-module.

Put

2T = 2T Kle] + [—e] | e € T).

We define a surjection of Z[I']-modules or : Z[T,>™] — Z[T§'] by
or(e) = [t(e)] — [o(e)], where we understand [v] = 0 in Z[7§*] for any
[-unstable vertex v. It factors as or : Z[T,”™] — Z[T3]. Note that
the both sides of this map are free left Z[I']-modules of finite rank.

We define the Steinberg module St as the kernel of the natural aug-
mentation map

Z|PY(K)] - 2,
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on which the group GLy(K) acts via
vol(z:y)=(x:yn", (¢:y)eP(K).

We consider it as a left Z[I']-module via the natural inclusion I' —
GLy(K). Then the Steinberg module St is a finitely generated projec-
tive Z[I']-module which sits in the split exact sequence of Z[I']-modules

(2.1) 0— =St — = Z[T7™ L= Z[T3'] —=0

[Boc, §5.3]. We consider these three left Z[I'|-modules as right Z[I']-
modules via the action [s] — [s]],.

2.2. Drinfeld cuspforms and harmonic cocycles. For any integer
k = 2 and any A-algebra B, we denote by Hy o(B) the B-submodule
of the polynomial ring B[ X, Y] consisting of homogeneous polynomials
of degree k—2. We consider the left action of the multiplicative monoid
My(B) on Hy_5(B) defined by (yo X,y0Y) = (X,Y)y. On GLy(B),
it agrees with the natural left action on Sym"(Hompg(B?, B)) induced
by the action o on B? after identifying (X,Y) with the dual basis for
the basis ((1,0), (0,1)) of B2 Put

Vi(B) = Homp(Hy_2(B), B).

We denote the dual basis of the free B-module Vi (B) with respect to
the basis {XY* 27| 0<i < k—2} of Hy »(B) by
(XY 0<i <k -2}
We also denote by o the natural left action of GLy(B) on Vi (B) induced
by that on Hy_o(B). For v = (Cg Z) € GLy(B), P(X,Y) € Hy_»(B)
and w € Vi (B), this action is given by
(0w (P(X,Y)) = w(r™ o P(X,Y))
= det(7)? *w(P(dX — cY, —bX + aY))

as in [Boc, p. 51]. The group I' acts on Hjy o(B) and Vi (B) via the
natural map I' — GLy(B). Moreover, the monoid

M ={¢e GLy(K) | £ ' e My(A)}
acts on Vi (B) by
(Eow)(P(X,Y)) =w(¢ "o P(X,Y)).
Put Vi(B) = St ®zr) Vi(B) and
L1(B) = ZIT" ] @2y Vi(B), - Lop(B) = Z[T5"] @zry Vi(B).
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We have the split exact sequence of B-modules

(2.2) 0 —= Vo(B) —= L14(B) Z2% Lo x(B) —= 0

which is functorial on B and compatible with any base change of B. Let
B’ be any A-subalgebra of B. Since the Z[I']-module St is projective,
the natural maps Vi(B') — Vi(B), L1x(B') — L1 x(B) and Ly x(B') —
Lo (B) are injective.

Let A; € T, be a complete set of representatives of I'\7,”*'/{£1}.
By [Ser, Ch. II, §1.2, Corollary], for any element e € 7,”*" there exist
unique elements ¢, € {+1}, 7. € ', r(e) € A satisfying

(2.3) r(e) = ecee.

Note that r(e), €. and 7. depend on the choice of A;. The right Z[I']-
module Z[T,”*] is free with basis {[¢] | e € A;} and thus, for any
A-algebra B, any element = of £, ;(B) can be written uniquely as

T = Z [e] ®we, we e Vi(B).

eGA]_

Definition 2.1. Let M be a Z-module. A map c: 7> — M is said to
be a harmonic cocycle if the following conditions are satisfied:

(1) For any v € Ty, we have

Z c(e) = 0.
eeT?, tle)=v
(2) For any e € T°, we have ¢(—e) = —c(e).
Any harmonic cocycle ¢ is determined by its values at ['-stable edges,

as follows. For any e € T, an edge ¢’ € T,>™ is said to be a source of e
if the following conditions hold:

e When e is I'-stable, we require e’ = e.

e When e is I'-unstable, we require that a vertex v of ¢’ is I'-
unstable, e lies on the unique half-line from v to the rational
end b(v) and e has the same orientation as e’ with respect to

this half line.
We denote by src(e) the set of sources of e. Then Definition 2.1 (1)
gives
(2.4) c(e) = Z c(e).
e’esrc(e)

Moreover, for any v € I', we have

(2.5) sre(y(e)) = vy(sre(e)), sre(—e) = —sre(e).
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For any A-algebra B, we denote by CP#" (", B) the set of harmonic
cocycles ¢ : T? — Vi(B) which is I'-equivariant (namely, c(v(e)) =
v oc(e) for any v € I" and e € 7?). For any rigid analytic function f
on 2 and e € 7, we can define an element Res(f)(e) € Vix(Cy), which
gives an isomorphism of C-vector spaces

Resr . Sk(F) - ;};ar(F,Cw)a f = (6 e Res(f)(e))

([Tei, Theorem 16], see also [Boc, Theorem 5.10]). By [Boc, (17)], the
slash operator defined by

() = det) s a7 (Z5) o= (2 ]) € 6Lat)

cz+d

satisfies Res(f|17)(e) = 7! o Res(f)(y(e)).
On the other hand, the argument in [Tei, p. 506] shows that for any

A-algebra B, we have a B-linear isomorphism
O Cp* (T, B) > Vi(B), ®r(c) = ). [e]®@c(e),
eeA1

which is independent of the choice of a complete set of representatives
A;. This implies that, for any morphism B — B’ of A-algebras, the
natural map

Cy™(I, B)®p B' — Gy (T, B')
is an isomorphism. Moreover, we obtain an isomorphism
O o Resp : Sp(I") — Vi(Cy).
In particular, for any A-subalgebra B of C,,, we have an injection

2.3. Hecke operators. For any non-zero element ) € A, we have a
Hecke operator T, acting on Si(I') defined as follows. Write

1 0
F(o Q)rz [] ré.
1€I(T",Q)
where I(I', Q) is a set of indices and {&; | i € I(I',Q)} is a complete
0

set of representatives of the right coset space I'\I' (1) 0 I'. For any

f € Sp(I"), we put
Tof = Z flw&i-

€l(I',Q)
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For any A-algebra B, we define a Hecke operator Tgaf on Ci* (T, B)

as follows. Note that &' is an element of the monoid M~!. For any
ce Cp*(I',B) and e € 7;", we put

har Z g ))

iel(T,Q)

Since ¢ is '-equivariant, we see that Té‘ar(c) is a harmonic cocycle
which is independent of the choice of a complete set of representatives
{& | 1€ I(IQ)}. For any v € I, the set {&vy | i € I(I', @)} is also
a complete set of representatives of the same right coset space. This
yields T (c) € Cp*(T', B). By [Boc, (17)], for any A-subalgebra B
of Cy, the endomorphism Tg‘“ is identified with the restriction on
Ch (T, B) € CP** (T, Cy) of the Hecke operator Tg on Si(T') via the
isomorphism Resr : Sg(I') — Char(T', Cy,).

We also introduce a Hecke operator T o on L4 ;(B) as follows. We
denote by Cif, (T, B) the set of I-equivariant maps ¢ : T, — V;(B)
satisfying c(—e) = —c(e) for any e € 7,”*". Then the map

Py CF(D, B) > Lig(B), Pir(c) = Z [e] ® c(e)
eeq

is independent of the choice of A;. By the uniqueness of the expression
(2.3), we see that it is an isomorphism. For any ¢ € C{ (I, B) and

Z Z 5;1 o c(e').

i€I(T',Q) e’esrc(&;(e))

By (2.5), it is independent of the choice of {¢;}, and the same argument
as in the case of Tgar shows that it defines an endomorphism T}, Lo on

Ci(T, B). Now we put
Tiq=®1roTiy0® .

From the construction, we see that T} ¢ is independent of the choices
of A1 and {5@}

For an explicit description of T} g, fix a complete set of representa-
tives A; and take any element z = >\ [e] ® we of Ly x(B). For any

ee T, we put

¢’ € T”*", we have
1 / 1
¢)1,F(m)(€) = Ee/Ver O Wr(er)s

where €./, 7. and r(e’) are defined as (2.3) using A;. Hence we obtain

(2.6) Tig(x) = Y l]® D] D ew(& ") o we)

eeA; i€I(T',Q) e’esrc(&i(e))
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Proposition 2.2. The restriction of Ty o on the submodule Vi(B) <
L1x(B) agrees with T via the isomorphism ®r : Cp* (T, B) — Vi(B).
In particular, Vi,(B) is stable under Ty o, and if B is an A-subalgebra
of Cy, then Vi(B) defines a B-lattice of Sk(I') which is stable under
Hecke operators.

Proof. Take any c € Cp** (T, B). Since c(r(€')) = eavec(e’), (2.4) yields

Tig(@r(e) = Y lel® >, 3 & oc)

eeNy €l (I',Q) e’esrc(&;i(e))
=Y el® ) &locle) = D[l ®TE(c)(e),
eeNq €l(I',Q) eeNq
which agrees with ®p(T5™(c)). O

3. VARIATION OF GOUVEA-MAZUR TYPE

Let n € A be a non-zero polynomial which is prime to p. For any
A-algebra B and any integer m > 1, put

B,, = B/¢™B.

Note that, since we have the canonical section [—] : k(p) — Ok, of
the natural surjection O, — K(p), we can consider B,, canonically as
a k(p)-algebra.

Let 7 = 1 be an integer and © any subgroup of 1 + pA,. We define

I (e") = {’Y € SLy(A) ‘ v mod p" € ((3 @)} < I'i(p)

and T9(n, ") = I'1(n) n T§(p") (The notation I'§(p") is meant to
indicate that it consists of elements of I'o(p") whose diagonal entries
lie in © modulo g"). The subgroup I'Q(n, p") of SLy(A) is p'-torsion
free and contains Fil}(n, ) =T1(np"). When © = 1+ pA,, we also
denote I'S (p") and I'P (n, ") by T5(p") and I} (n, "), respectively (The
exponent p is meant to indicate that © is the p-Sylow subgroup of AX).
For T'®(n, p"), we fix a complete set of representatives A; as in §2.2.
For Hecke operators of level 'Y (n, o), we also write

U == Tp, Ul == TLKJ'

Let d(k, a) be the dimension of the generalized U-eigenspace in S (I'Q (n, "))
of slope a. In this section, we prove p-adic local constancy results for
d(k,a) with respect to k, which generalize the Gouvéa-Mazur conjec-
ture [Hat2, Theorem 1.1] for the case of level 'y (¢).
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3.1. Hecke operators of level I'?(n, 0"). Let Q € A be any non-zero
element. Write

© L0 7’ @ 7"
Pl(nap)(o Q) ]_[F
i€l(Q)
For any v e I'®(n, p"), i € I(Q) and X € k(p)*, we have

# -1 -1
(3.1) & = ((1] Q> Y ()\0 ?\) = <)\O /\) mod p.

Consider the Hecke operator Tg acting on the Co-vector space Si(I'€(n, o)),
which preserves the A-lattice Vi (A) by Proposition 2.2. To describe it
explicitly for the case where () is irreducible, we fix a complete set of
representatives Rg of A/(Q). When @ divides np”, we have I(Q) = Rg

and
z4
(Tof)(= Z f ( )
When @ does not divide ngp", we can find R, S € A satisfying RQ) —
np"S =1. Put

(R S RQ S Q@ 0
=g @) F T\ @ 0 1)
Then we have 1(Q) = {¢} u Rg and

e . 1 243
(Tof)(2) = Q" ((Qupr /)(Q2) +Q5§ f( Q >

where (Q)n,r is the diamond operator acting on Sy (I'P(n, ")) defined

by f = fline.
Note that the natural map

SLy(A) — SLy(A/(ngp")) = SLy(A/(n)) x SLa(A,)
is surjective. For any A € k(p)*, we choose 1, € SLy(A) satisfying

(3.2) mmodn=1 n,modgp" = <[)\2)1 [?\]>

and put
<)‘>pr = f|k:77>\'
By
(33)  Ti(ng") <TP(n,e"), ny' TP e )m =T (n, "),

this is independent of the choice of 7, and defines an action of k(p)*
on SL(I'P(n, 7).
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X

For any rk(p)[x(p)*]-module M and any character x : k(p)* —
k(p)*, we denote by M (x) the maximal k(p)-subspace of M on which
any A € k(p)* acts via x(\). Since the order of the group r(p)* is
prime to p, we have the projector

e M= M), e(m)=— > x(N'(A-m)

Aek(p)*

and the decomposition into y-parts
M =D M(x)
X

where the sum runs over the set of such characters x(p)* — x(p)*.
We consider K as a k(p)-algebra by the unique map x(p) — K
which commutes the diagram

K(p) — K
C,.

Sk (n, ") = @D Sk(TT(n, 97) (0)-

Then we have

Note that, when an irreducible polynomial ) does not divide ngp”,
we may further assume that 7, satisfies

= (Z fl) a¢(Q)

Using this, for any irreducible polynomial ) we can show

T - 1 0 T T T
(2o (g o) mrom o) =906 (3 ) oo
Then (3.3) yields

(1l 0 r

[] TP 0")&m =TP(n,¢") mIT (n,9")
0 @
1€l(Q)
e r I (C] r S} r
=17 (n, ") 0 Q IT(n ") = H I'Y(n, ") m&.
i€1(Q)

Thus Ty commutes with (A, and Sp(I'€(n, p"))(x) is stable under

Hecke operators. We denote by d(k, x, a) be the dimension of the gen-
eralized U-eigenspace in S (I'¥(n, p"))(x) of slope a. To indicate the

(3.4)
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level, we often write

d(k7 CL) = d(r?(nv @T)7 k, a)’ d(kv X a) = d(F?(n, KJT): k, X, a)-
For any A-algebra B, we also have the diamond operator (\)

Ngr € End(C™ (I (n, 07), B)), ¢ (e > ny" o c(ma(e))),

which is compatible with that on Sy (I'P(n, ")) when B = C,. From
(3.3) we see that e is ['P(n, p")-stable if and only of ny(e) is, and thus
the corresponding operators on Vi, (B) and L4 ;(B) are given by

(3.5) <A>pr(ZA: [e]@we) = ZA [e] @ €na(e) (13 Vse)) © Wrtma(e))-
eeN\ eeN]

When B is also a /@(p)—algebra we have the decomposition

C«har(r@ r @Char FG) r) B)(X)

and similarly for £, x(B) and Vi (B ) These summands are stable under
Hecke operators by (3.4).

3.2. Weight reduction. Let N > 1 be any integer. For any A-algebra
B, the B-linear map

kN Hk_2(B) _ Hk—2+N(B)7 Xiyk—Z—i s Xi+Nyk—2—i
induces the dual map

(XifNykJerin)v (Z > N)

:V B N V B 7 XiYkJrN—in Vo, .
PN - Vien(B) K(B), ( ) {0 (i < N)

It is a surjection whose kernel is
Vk+N ) _ @ B(XiykJerin)\/'
<N
Lemma 3.1. Let n > 0 be any non-negative integer, B any Apn-algebra
and X € k(p)*. Let € € My(A) be any element satisfying

f—(a Z), amod =X\, c¢=0mod p.

Let m be the order of X in k(p)*. Then, for any element w € Vi pom(B),

we have

£ 0 Prprm(W) = Prprm (6 o w).
In particular, for any integer m' = 1, the map pypn m Vier g (B) —
Vi(B) is TO(n, o")-equivariant and its kernel V2™ (B) is T9(n, o")-

k-+ nm/
stable.
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Proof. In the ring Apn, we can write a = [A] + pa’ with some a’ € Apn.
For any integer i € [0, k — 2], the assumption pF" B = 0 implies
€0 g pum (XYF20) = (aX 4 cY)P'"H(BX 4 dY)F 2
a?" X"+ P YP)™(aX + cY) (X +dY)F2
= (" XP") ™ (aX + Y ) (bX +dY)*>
= XP""™(aX 4 cY)' (bX + dY )
= Hiprm(§ 0 (XY 2)),
Taking the dual yields the lemma. 0

—~

By Lemma 3.1, for any Ap«-algebra B and any integer m’ > 1, we
obtain the surjection

1® prprms = Viaprm (B) — Vi(B)
and similarly for £ 4(B).
Lemma 3.2. For any Ayn-algebra B, the maps
L® prpn : Vi (B) = Vi(B),  Lipapn(B) = L1x(B)
commute with Hecke operators. Moreover, the maps
1® propn(gi-1) : Viapr(gi-1)(B) = Vi(B),  Lijiprgi-1)(B) = L1x(B)

commute with (X for any X € k(p)*. In particular, the B-submodules

Vil (B), Vil (B)

k+p™ k+pm(q?—1)

are stable under Hecke operators.

Proof. Tt is enough to show the assertions on £, (B). By (2.6) and
(3.5), we reduce ourselves to showing that, for any v € I'P(n, p"), i €
I(Q), A€ k(p)*, w € Viypn(B) and W' € Vi pn(ga_1y(B), we have

(V&) " 0 prpn (W) = prpr (V&) T o w),
(W)*l o pk,p”(qd—l)(wl) = pk,p"(qd—l)((’yn/\)il © wl)'
By (3.1), this follows from Lemma 3.1. O

3.3. Dimension of slope zero cuspforms. Using harmonic cocycles,
the proofs of [Hid1, Corollary 8.2 and Proposition 8.3] can be adapted
to obtain constancy results for the dimension of slope zero cuspforms
with respect to the weight and the level at . First we prove the
following key lemma.
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Lemma 3.3. Let B be any flat A-algebra. For any s € St and any
integer j € [0,k — 2], the element s ® (X?Y*279)V € V.(B) satisfies

Uls @ (XIY*279)) e o" 29V (B).

Proof. For any non-negative integer m, we have the commutative dia-
gram with exact rows

0 — = Vi(Bp) —= Lap(Br) 2% £0,(By) —— 0.

Since the structure map A — B is flat, we see that p"V,(B) and
©™ L 1 (B) are the kernels of the left two vertical maps. Thus it suffices
to show Uy (s @ (XY 270)V) € p" 279 L, x(B).

Any element of St is a Z-linear combination of elements of Z[7,”*']
of the form [e]|, with e € A; and a € T'9(n, p"). Moreover, for any
w € Vi(B), we have [e]|lo ®w = [e] ® @ ow. By (2.6), it is enough to
show that, for any i € I(p), v € ['P(n, ") and integers j,1 € [0,k — 2],
we have

(v&) "o (XIYF ) )(XYE 2 e 2B,
Write v§; = (CCL Z) Then the above evaluation is equal to

(XTYF=279)Y ((aX + cY) (bX + dY)F27h.

By (3.1) we have ¢,d = 0 mod p and the coefficient of X7Y*~2=J in
the product (aX + c¢Y)(bX + dY)*=27! is divisible by *27/. This
concludes the proof. O

Proposition 3.4. (1) d(T9(n, "), k,0) is independent of k.
(2) For any character x : k(p)* — k(p)*, we have

kl = k2 mod qd —1= d(F?(ﬂ, pr)’ k17X70) = d(r?(nv pr)’ k27X>O)'

Proof. Let us consider the operator U acting on the k(p)-module Vy(k(p)).
Note that d(I'Q(n, "), k,0) is equal to the degree in X of the polyno-
mial

det(I — UX; Vi(k(p)))-

By Lemma 3.2 for n = 0, we have the exact sequence

0 —= Vi1 (6(p)) —= Visa(k(p)) — Vil(s(p)) —=0
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whose maps are compatible with Hecke operators. Since (k+1)—2 > 0,
Lemma 3.3 implies U = 0 on V! (k(p)) and thus we have

det(I — UX: Vil (5(0))) = 1.

which yields the assertion (1). Since Lemma 3.2 also gives the exact
sequence

0 — Vil (5(9) () — Virgroa (5(9)) (x) —= Vili(9)) (x) —= 0,
the assertion (2) follows similarly. O

Proposition 3.5. d(I'{(n, "), k,0) and d(I'}(n, "), k, x,0) are inde-
pendent of r = 1

Proof. Put T', = I'}(n, p"). Let & be an algebraic closure of k(p). We
reduce ourselves to showing that the multiplicities of non-zero eigen-
values of U acting on CP*"(T',., &) and C1#*(T,., &)(x) are independent of
r. These are the same as the dimensions of the generalized eigenspaces

Char( )ord, C]?ar(rh I_ﬂ',) (X)ord

of non-zero eigenvalues, respectively.
Since any ¢ € O (T,.. &) is also I, ;-equivariant, we have the natural
k ’ + )
inclusion

Char( = ) Char( r+17/_€)-
Since we have
10 1 p
Fr-i—l (O p> Fr = ]_[ FT+1€B) 55 = (O p)
BeR,
with some set of indices R, we obtain a map s : CP (T, 1,k) —
Char(T,., k) by
= > & oc(gsle)),

BeR,
which makes the following diagram commutative.

Cl}clar(rrv R) — Cllclar(FT-&-l? R)
Ul / J/U
(L, 7) — CL* (T, )

From this we see that + and s commute with U and, since U induces
an isomorphism on CP#* (T, )4, the map ¢ gives an isomorphism

ord Char( )ord Char( i R)Ord
T Y *
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This settles the assertion on d(I'{(n, "), k,0). Moreover, since the
diamond operator (\),- is independent of the choice of 7, satisfying
(3.2), we also have

<)\>pr+l 0L =10 <>\>pr.

Since U commutes with diamond operators, the map ¢
an isomorphism

O]};ar(rry R) (X)ord _ C]}glar(rr-&-ly I%) (X)ord’
from which the assertion on d(I'](n, p"), k, x, 0) follows. O

ord also induces

3.4. Representing matrix of U. Let E/K, be a finite extension of
complete valuation fields. We extend the normalized g-adic valuation
v, naturally to . We denote by O the ring of integers of E.

Lemma 3.6. Suppose that np has an irreducible factor m of degree
one. Then the right Z[T'P(n, p")]-module St is free of rank ['y(m) :
I'9(n, ")), where the rank is independent of the choice of such .

Proof. Note that, from T'?(n, ") < T'i(np), we see that the former
is a subgroup of I'i(r). We can show that a fundamental domain of
I';(m)\T is the same as the picture of [LM, §7], and that it has no
[’y (m)-stable vertex and only one I'y(m)-stable (unoriented) edge. By
(2.1), the right Z[I'; (7)]-module St is free of rank one. Thus the right
Z[T9 (n, p")]-module St is free of rank [['1(7) : I'P(n, p")]. Since we
have

) 1200 = (9504019000 52050+ £ (3 1))
the rank is independent of 7. 0

In the sequel, we assume that ngp has an irreducible factor 7 of de-
gree one. Under this assumption, Lemma 3.6 implies that the right
Z[T®(n, p")]-module St is free of rank §, where we put

0 = [Ti(m) : TP (n,¢")].
Hence, for any A-algebra B, the B-module Vi (B) is free of rank 6(k—1).
We fix an ordered basis By, of the free A-module Vj(A), as follows. Take
an ordered basis (v, ..., vs) of the right Z[I'?(n, p")]-module St. The
set
B ={vi,; =v; @ (XY N |1<i<0, 0<j<k—2}
forms a basis of the A-module V;(A), and we order it as

V1,0,V2,05---,V50,V1,1,V21,---,U51,V12,- ..
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For any A-algebra B, the ordered basis of the B-module Vi (B) induced
by 9B}, is also denoted abusively by 9B;. We denote by U®*) the repre-
senting matrix of U acting on the Og-module Vi, (Of) with respect to
the ordered basis By. Then Lemma 3.3 gives

(3.6) Uvij) € pk—2—jvk((9E).

In order to study perturbation of U*), we use the following lemma
of [Ked]. Note that the assumption “B € GL,(F)” imposed in [Ked] is
superfluous.

Lemma 3.7 ([Ked], Proposition 4.4.4). Let L be any positive integer
and A, B € M (Og). Let s1 < s9 < --+ < s, be the elementary divisors
of A. Namely, they are the normalized p-adic valuations of diagonal
entries of the Smith normal form of A. Let 8| < sh < --- < s} be the
elementary divisors of AB. Then we have

si>=s; for anyi.
The same inequality also holds for the elementary divisors of BA.

Corollary 3.8. Suppose that np has an irreducible factor m of degree
one. Put 6 = [[i(m) : 9 (n,9")]. Let s1 < s < -+ < sg_1) be the
elementary divisors of U®). Then we have

- 1—1
S; = 5|

Proof. By (3.6), the matrix U*) can be written as
U® = Bdiag(p*2,...,0" 2. . .,0,....0,1,...,1),

where B € Ms;,-1)(Og) and the diagonal entries of the last matrix are
{¢ | 0 < j < k— 2}, each with multiplicity . Then the corollary
follows from Lemma 3.7. U

Corollary 3.9. Let n = 0 be any non-negative integer. Then, for some
matrices By, By, B3, By with entries in Og, we have

sy _ (#7B B
o' By |UM + 0" By )

Proof. By Lemma 3.2, the lower right block is congruent to U®) and
the lower left block is zero modulo @F". By (3.6), the entries on the
upper left block are divisible by *~!. This concludes the proof. U

For the U-operator acting on V;(Og)(x), we have a similar descrip-
: . , (k)
tion of its representing matrix U, ~ as follows.
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Proposition 3.10. Suppose that np has an irreducible factor m of de-
gree one. Put § = [['1(r) : TP (n, ")].

(1) For any integer i = 0, the i-th smallest elementary divisor s, ;

of U>(<k) satisfies
1—1

(2) Let n = 0 be any non-negative integer. Then, with some bases
of Vi(Ogr)(X) and Vi pn(gi_1)(Or)(X), the representing matrices

U and U>(<k+pn(qd_1)) of U acting on them satisfies
[ (k+p™(g?=1)) _ ( o 1By ‘ 3 b )
X " By | U + ¢ B,

for some matrices By, By, B3, By with entries in Og.

Proof. We have the decomposition
Vi(Op) = (‘ka(OE)(X)a
X

where each summand is stable under Hecke operators. Thus any ele-
mentary divisor of U>(<k) is also an elementary divisor of U®), and Sy.i
equals the 7'-th smallest elementary divisor s; of U® with some 7’ > 1.
Hence the assertion (1) follows from Corollary 3.8.

For (2), put m = ¢¢ — 1, ¥ = k + p"m and consider the weight
reduction map

p=1Q prpnm : Vk’(OE,p”) - Vk(OEyp")

for Ogpn = Op/¢"" Op. By Lemma 3.1, we can define the tensor
product over Z[T'9(n, p")]

V;pnm(OE,p") =St Qz[r® (n,o7)] V;pnm(oE,p")’
which sits in the split exact sequence of Op pn-modules
0 — Vi "™(Oppn) —> Vir(Oppn) —— Vi(Oppn) — 0.

By Lemma 3.2, the map p is compatible with Hecke operators and
(A\)gr for any A € k(p)*. Thus the map p also induces the split exact
sequence

0 —= V" " (Oppm)(X) —= Ve (Oppn) (X) == Vi(Oppn) (x) — 0.

Let €, : Vi (Og) — Vi (Og)(x) be the projector to the y-part. Let
kg be the residue field of E. Consider the basis v; ; = v;®@(XIY*¥ ~2-7)v
of Vi (Op) as before and its image ©;; in Vi(kg). Note that, for any
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j < p™m, the image of &, (v ;) in Vir (O pn ) (X) lies in Vg ™ (Op ) (x)-
Since the set

{e (0:;) [1<i<9, 0<j<p'm—1}

spans the rp-vector space Vo' ™ (kg)(x), there exists a subset ¥ <
[1,0] x [0,p™m — 1] such that the elements ¢, (7, ;) for (¢,7) € X form
its basis.

Now take a lift B/, 1 of a basis of Vi(Ogn)(x) by the composite

Vi (Op)(x) = Ve (Oppm)(X) 5 Vi(Oppm ) (X)-

Since the image of the set
By = {ex(vig) | (4,7) € B} v Bk

in Viu(kg)(x) forms its basis, we see that By, itself forms a basis of
Vi (Og)(x). Moreover, by Nakayama’s lemma, the images of ¢, (v; ;)
in Vi (Op,pn) for (i,§) € ¥ form a basis of V5 ™ (Og ) (X)-

Representing U by the basis By, we see that the lower blocks of
the resulting matrix are as stated in (2). Moreover, since U and (A,
commute with each other, (3.6) yields

Ulex(vig)) = ex(U(viy) € 9>V (Op) (x)
for any j < p"m, and thus the upper left block is divisible by @*~1.
This concludes the proof. O

3.5. Perturbation. Let E/K, be a finite extension inside C,. Let
V be an FE-vector space of finite dimension and 7" : V' — V an FE-
linear endomorphism. For an eigenvector of T" with eigenvalue A € C,,
we refer to v,(\) as its slope. For any rational number a, we denote
by d(T,a) the multiplicity of T-eigenvalues of slope a. If B is the
representing matrix of 7" with some basis of V', we also denote it by
d(B,a).

Proposition 3.11. Let &y, n and L be positive integers. Let B €
M (Og) be a matriz such that its i-th smallest elementary divisor s;
satisfies s; = [%J for any i. Putey = d(B,0) and

4+50pn_50 ) c (0 pn)
-2

4+ 250]?” — 280
Moreover, we put ¢ = ry = 0 and for any | = 2, we write q; = lWJ
and rp =1—2— oq. We define Ca(n, do, o) as

20" + doqu(qn — 1) + 2qi(ry + 1)
min
2(l — 80)

Ci(n, 0o, €0) = p" (

‘€0<l<1+50pn}
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and put
C(TL, 50, 80) = min{Cl (n, (So, 80), CQ (TL, 50, 60)} S (0,]9”).
Let B' € M1,(Og) be any matriz satisfying B' — B € " M1 (Og). Let
a be any non-negative rational number satisfying
a < C'(n, 50, 80).
Then we have
d(B,a) = d(B',a).
Proof. We put
Pp(X) =det(I-BX) = Y 0 X', Pp(X)=det(I-B'X)=> bX"
Then b; is, up to a sign, the sum of principal [ x [ minors of B. Since
Pp = P mod p, we have d(B’,0) = d(B,0) = ¢¢. From the assump-
tion on elementary divisors, we see that if i > g, then any ¢ x ¢ minor
of B is divisible by . This yields ¢y < dg. From this inequality and
n = 1, we see C1(n,dp,&9) € (0,p"). Since each member of the set in
the definition of Cy(n, do, £¢) is positive, we obtain Cy(n, dg, o) > 0 and
thus C'(n, do, €0) € (0,p").
By [Ked, Theorem 4.4.2], for any [ > 0 we have

/ n N : _1 n
vp(be —b}) = p +me{v50 |,p}.
j=1

Here we mean that the second term of the right-hand side is zero for
I < 1. Let R be the right-hand side of the inequality. We claim that
for any | > ¢y, we have

a < C’(n, 50,50) = R > Cl(l — 60).

Indeed, when [ > 1 + dgp™, we have

R=17p" +OZPZV_ J Z p" = p"(l —dop™) + 5029 (p" - 1)

j=1400p™

1
= —p”(2l — (50 — (Sgpn>

Then R > a(l — ¢) if and only if
1
(3.7) (p" —a)l — §p"50(1 +p") + agy > 0.

Since the condition a < C(n,d,eo) yields p" > a, the left-hand side
of (3.7) is increasing with respect to [. Thus (3.7) holds for any [ >
1+ dgp" if and only if it holds for [ = 2 + dop”, which is equivalent to
a < C’l(n, (50, 50).
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On the other hand, when [ < 1 4 dgp”, we have
1
(3.8) R=p"+ 550(11(611 — 1)+ q(rn+1),

from which the claim follows.

Let Np and Np be the Newton polygons of Pg and Pg/, respectively.
It suffices to show that the segments of Ng and Npg: with slope less than
C(n,dg,€0) agree with each other. Suppose the contrary and take the
smallest slope a < C(n, dy, €¢) satistying d(B,a) # d(B’, a).

Let (I,y) be the right endpoint of the segment of slope a in either of
Np or Npr. Since d(B,0) = d(B’,0), we have a > 0 and [ > ¢3. Then
the above claim yields

y < a(l —ep) <vy(by —by).

Since y € {v,(b), v, (b))}, we have v, (b)) = v,(b)). Since a is minimal,
this implies that the slope a appears in both of Ng and Ng/. Applying
the same argument to the right endpoint of the segment of slope a in
the other Newton polygon, we obtain d(B,a) = d(B’,a). This is the
contradiction. U

By a similar argument, we can show a slightly different perturbation
result as follows.

Proposition 3.12. With the notation in Proposition 3.11, we suppose
that the following conditions hold.

(1) If p=2, thenn =3 or dy — ey < 1.
(2) 2p">n(50n+2+50—250)

Then, for any non-negative rational number a < n, we have
d(B,a) = d(B',a).

Proof. Let R be as in the proof of Proposition 3.11. We claim R >
n(l — gg) for any [ > ¢y under the assumptions (1) and (2).

Indeed, when [ > 1+ §op", we have R > n(l — &) for any such [ if
and only if n < Cy(n, dy, o), namely

dop" (%p” — n) +2(p" —n) + negg > %50}9”.
If p > 3 orn > 3, then we have %pn —n > 1 and the above inequality
holds. If p = 2 and n < 3, it is equivalent to 6y — €9 < 1. Thus, under
the condition (1), we have R > n(l — ¢¢) in this case.

Let us consider the case of [ < 1 + dpp™. Note that [ = 1 is allowed
only if g = 0, in which case the claim holds by R = p™ > n. For [ > 2,
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by (3.8) we have R > n(l — g¢) if and only if

1 1\ 4+l 1\
2p"+50(ql—n—|— l ——) —60(—n+ l ——) > 2n(r; + 2 — €p).

o 2 do 2
Note % — 2 €[—3, 3] Since ¢ and n are integers, we have

r+1 1 2 r+1 1 2
5o (a1 — =) = I
0<Ql n+ 3 2) 0 3 5

Thus the above inequality holds if

+1 1\’ +1 1\’
2pn+50<rl ——) —50 (—n—l—rl ——) >27’L(’f‘1+2—€0),

o 2 o 2

which is equivalent to the condition (2) and the claim follows. Now
the same reasoning as in the proof of Proposition 3.11 shows d(B, a) =
d(B',a). O

3.6. Dimension variation. For the U-operators acting on Vi (K,,)
and V(K,)(x), we denote d(U, a) also by

d(k,a) = dT(n, ¢"), k,a), d(k,x,a) =d(T(n, "),k x,a),

respectively. Note that they agree with the previously defined ones for

Se(TP(n, 0")) and S(I'P(n, ")) (x).
Now the following theorems give generalizations of [Hat2, Theorem

1.1].

Theorem 3.13. Suppose that np has an irreducible factor m of degree
one. Letn = 1 and k = 2 be arbitrary integers. Put 6 = [['1(7) :
9, o")] and e = d(k,0). Let a be any non-negative rational number
satisfying
a <min{C(n,d,¢), k — 1}.
Then, for any integer k' = k, we have
k' =k mod p" = d(K,a) = d(k,a).

Proof. By Proposition 3.4 (1), we may assume k' = k+p". By Corollary
3.9, we can write UN ") + oP"W = V with W € Ms(qpn1)(Ok,) and

k—1
V = < % OBI Ugi) > , Bje M(;pn(OKp), B; e Mép”,&(k—l)(OKp)-
Corollary 3.8 and Proposition 3.4 (1) show that U*+P") satisfies the as-
sumptions of Proposition 3.11. Hence we obtain d(k + p™,a) = d(V, a).
By [Hat2, Lemma 2.3 (2)], the matrix p* !B; has no eigenvalue of
slope less than k — 1. Since a < k — 1, we also have d(V,a) = d(k, a).
This concludes the proof. O
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Theorem 3.14. Suppose that np has an irreducible factor m of degree
one. Letn =1 and k = 2 be arbitrary integers. Let x : k(p)”* — k(p)*™
be any character. Put § = [Dy(7) : I'9(n, o")] and &, = d(k, x,0). Let
a be any non-negative rational number satisfying

a <min{C(n,d,&,), k —1}.
Then, for any integer k' = k, we have
k' =k mod p"(¢* — 1) = d(K, x,a) = d(k, x, a).

Proof. This follows in the same way as Theorem 3.13, using Proposition
3.10 and Proposition 3.4 (2). O

Theorem 3.15. Suppose that np has an irreducible factor m of degree
one. Letn =1 and k = 2 be arbitrary integers and a < n any non-
negative rational number. Put § = [Ty(m) : T9(n, 9")] and e = d(k,0).
Suppose that the following conditions hold.

(1) If p=2, thenn >3 ord —e < 1.

(2) 2p™ > n(on + 2+ 6 — 2¢).

Then, for any integer k' = k, we have
a<k—1, ¥ =kmodp" = dk, a)=dk,a).

Proof. This follows in the same way as Theorem 3.13, using Proposition
3.12 instead of Proposition 3.11. U

It will be necessary to use an increasing function no more than
C(n,d,¢), instead of using C(n, d,e). Here we give an example.

Lemma 3.16. Let n,6 = 1 and € = 0 be arbitrary integers satisfying
e <4. Put

1
Dsy(n,d,¢) = 5{\/25]?”4-(5—64—1)(25—8—1)—;54—8},
D(n,d,e) = min{Ci(n,d,e), Da(n,d,e)}.

Then D(n,d,¢€) is an increasing function of n satisfying D(n,d,e) <

C(n,d,¢).

Proof. Since Ci(n,d,¢) is increasing for n > 1, it suffices to show
Dsy(n,d,e) < Ca(n,d,e). Putm =9d—c+1and v = dgg+m > 1.
Since r; € [0,6 — 1], for any [ > & we have

20" +0qi(qr — 1) + 2qi(r; + 1) - 20" + 0qi(qr — 1) + 2q
2(1 —¢) g 27 '
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The right-hand side equals

o {2 s (557 (557 1) 2 (557)

x 1 m 1 1

= — + — (20p" 0—2)— —— =+ —.

25 T g5g 2OV MmO =) =T =54
By the inequality of arithmetic and geometric means, it is not less than
Dy(n,d,¢) and the lemma follows. O

Whenn=1, p=tand r =1, we have I'(n, p") = I'1(t), d = 1 and
e =1 by [Hat2, Lemma 2.4], which yields

01(77/7 17 ]-) = pn (
Thus we obtain
1
(3.9) D(n,1,1) = «/2p”—§ >0

and Theorem 3.13 gives the following improvement of [Hat2, Theorem
1.1].

Pt +3
2p" + 2

1
) = Dy(n,1,1) = +/2p" — o

Corollary 3.17. Supposen = 1, p =t andr = 1. Let k = 2 be
any integer and a any non-negative rational number. Letn = 1 be any

integer satisfying
2
1 N 1 I
—la+= .
2 2) =P
Then, for any integer k' = k, we have

a<k—1, K=kmodp" = d(T1(t),k,a) = d(T'1(t), k,a).

4. g-ADIC CONTINUOUS FAMILY

We say F € Vi(C,) is a Hecke eigenform if it is a non-zero eigen-
vector of Ty for any @ € A. We denote by A\g(F) the T-eigenvalue
of F. Since Hecke operators commute with each other, if d(k,a) = 1
(resp. d(k,x,a) = 1) then any non-zero U-eigenform in V;(C,) (resp.
Vi(Cy)(x)) of slope a is a Hecke eigenform.

4.1. Construction of the family. Now we prove the following main
theorem of this paper.

Theorem 4.1. Suppose that np has an irreducible factor m of degree
one. Letn =1 and ki = 2 be any integers. Put § = [['1(r) : TP (n, p")]
and € = d(k1,0). Let a be any non-negative rational number satisfying

a <min{C(n,d,¢c), k1 — 1}.
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Let n’ =1 be any integer satisfying
pPr—p" —a=0, a<C 0 e).

Suppose d(ki,a) = 1. Let Fy € Vi, (C,,) be a Hecke eigenform of slope
a. Then, for any integer ks = ky satisfying

ko = kq mod p",

we have d(kq,a) = 1 and thus there exists a Hecke eigenform Fy €
Vi (Cy,) of slope a which is unique up to a scalar multiple. Moreover,
for any Q we have

(4.1) vo(Ag(F1) — Ag(F) > " — " —a.

Proof. By Proposition 3.4 (1), we may assume (ki,k2) = (k, k + p")
for some integer k > 2. Theorem 3.13 yields d(k + p",a) = 1 and any
non-zero U-eigenform F, € Vy,(C,) of slope a is a Hecke eigenform.
Take a finite extension E/K, inside C, containing Ao (F;) and A, (F;)
for i = 1,2. We may assume F; € Vi, (Op). We identify Vi, (Og) with

(9%""‘1) via the ordered basis B;,. Then we can write

FQ = (z) ) T e O?", ye O%k71)7

where each entry of z is the coefficient of v, € By, in Fp with ¢ < p™.
For any integer N and z = {21,...,2y) € OF, we put

V(%) = inf{v,(z) |i=1,...,N}.
Replacing F; by its scalar multiple, we may assume v, (F;) = 0.

For any H € V;,(Og), we denote by H its image by the natural map
Vi (O) = Vi, (Og pn). Consider the weight reduction map

1 &® Pkpr - Vk+p" (OE,p”) - Vk(oE,p")

as in §3.2, which we denote by p. Then p(F3) =y mod p?".

We claim v, (y) < a. Indeed, if v,(z) > v,(y), then the assumption
V(Fy) = 0 yields v,(y) = 0. If v,(z) < v,(y), then v,(z) = 0 and
Corollary 3.9 gives

)\@(FQ)I‘ = pkilBll‘ + Bgy.

Since v,(A,(F2)) = a < k — 1, this forces v,(y) < a and the claim
follows. B B
Take Gy € Vi (Op) satisfying G = p(F3). By Lemma 3.2, we have

(42) TQ(Gl) = /\Q(Fg)Gl, U(Gl) = )\p(FQ)Gl mod pank(OE)
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Since we have a < C(n,d,e) < p", the above claim yields v,(G4) < a.
If G1 € OgFy, then (G1 is a Hecke eigenform with the same eigenvalues
as those of F;. Thus we have

)\Q(Fl)él = TQ(GI) = )‘Q(FQ)GM
which gives
(43) 0, (Ag(F) = Ao(B)) = p" — a.

Suppose G1 ¢ OgFy, and take Hy € Vi (Op) such that F} and H,
form a basis of a direct summand of Vi (Opg) containing G;. Write

(4.4) Gy =aF, +BHy, «a,p€Og.
Then 5 # 0. By (4.2), for any R € {p, Q} we have
Ar(F2)Gy = Tr(Gh) = adg(F1)Fy + BTr(Hy) mod " Vi(Op).
Combined with (4.4), this implies
(4.5) BTR(H1) = a(Ar(F2) —Ar(F1))Fi+ BAr(F2) Hy mod ¢ Vi (Op)
and thus we obtain
(4.6) a(Ar(Fy) — Ar(F2)) = 0 mod (3, ).
Put b = v,(3). Suppose b > p" — p"'. Since v,(F;) = 0 and
ve(G1) <a<p"—p” <b,
(4.4) gives v,(a) < a and (4.6) yields
(4.7) Ue(AQ(F1) = A(F2)) > p" = p" —a.

Suppose b < p” —p™ . In this case we have 3 'pP" € Op and by (4.6)
we can write

aOl(F) = Aol(F1)) = By
with some v € Op. Then (4.5) shows
(4.8) U(H,) = vFy + M\ (F2)Hy mod 879" Vi (Og).

Take an ordered basis (Fy, Hy, 73, . . ., Usr—1)) of the Og-module Vi (Op),

and we denote by U®) the representing matrix of U with respect to it.
By (4.8), we can write

Ao (F1) v+ Bl e *

. 0 Ao (F2) + B;lppncz *
U(k) — 0 Bflpp Cs *ooee , cl,...,C(g(k,l)EOE.

*

*

*

0 B sy | x oo
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Note that the clementary divisors of U® and U® agree with each
other. Let V be the element of M(;(k,l)(OE) with the same columns as

those of U®) except the second column which we require to be

v
)‘@(F2)
0
0
Then we have d(V,a) > 2. On the other hand, since p” — b > p",
the assumption a < C(n’,d,¢) and Proposition 3.11 yield d(V,a) =

d(k,a) = 1, which is the contradiction. Thus the case b < p" —p
never occurs. Now the theorem follows from (4.3) and (4.7). O

Remark 4.2. Putting ¢ = d(ky,x,0) and assuming d(k1, x,a) = 1,
the same proof using Proposition 3.10 and Theorem 3.14 shows that
we can construct, from a Hecke eigenform Fy € Vi, (C,,)(x) of slope a,
a Hecke eigenform F;, € V,(C,)(x) of slope a satisfying (4.1) for any
integer ko > ky with

ky = ky mod p" (g% — 1).

Proof of Theorem 1.1. Suppose that n, k and a satisfy the assumptions
of Theorem 1.1. Take any k' > k satisfying

m = v,(k' — k) = log,(p" + a).
Since n < m and D(n,d,¢) is an increasing function of n satisfying
D(n,d,e) < C(n,é,¢e), we have
a <min{C(m,d,e),k—1}, p"—p"—a>=0, a<C(n,dce).

Note that, if d(k,a) = 1, then any U-eigenform of slope a in Vi (C,,)
is identified with a scalar multiple of that in Vy(K) < Sp(I'9(n, p")) via
the fixed embedding ¢,,. Thus Theorem 4.1 produces a Hecke eigenform
Fyo € Sp(I9(n, p")) such that for any @ we have

Vo (tp(A@(Fl) — Ag(FR))) > p™ —p" —a.
This concludes the proof of Theorem 1.1. O

4.2. Examples. Weassumen =1, 0 =¢,r = land ['P(n, p") = T';(¢).
In this case we have 6 = 1 and d(k,0) = 1 for any k£ > 2. In the
following, we give examples of congruences between Hecke eigenvalues
obtained by Theorem 1.1 for this case, using results of [BV2, LM, Pet].
Note that the Hecke operator at () considered in [BV2, Pet] is QTy
with our normalization.
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4.2.1. Slope zero forms. By d(k,0) = 1, any U-eigenform of slope zero
in Si(I'1(¢)) is a member of a t-adic continuous family obtained by
Theorem 1.1. Some of such eigenforms can be given by the theory of
A-expansions [Pet].

For any integer k > 3 satisfying k£ = 2 mod g — 1, Petrov constructed
an element fi; € Si(SLa(A)) with A-expansion [Pet, Theorem 1.3].
We know that fi; is a Hecke eigenform whose Hecke eigenvalue at ()
is one for any @Q; this follows from a formula for the Hecke action [Pet,
p. 2252] and ¢, = a* ",

For such k, let f,gti € Sk(I'1(t)) be the t-stabilization of fj; of finite
slope, namely

O(2) = fur(z) — 57 fra(t2).
It is non-zero by [Pet, Theorem 2.2]. Moreover, we can show that f,g?

is a Hecke eigenform which also satisfies Ag( f,g?) =1 for any Q.

Proposition 4.3. Let k = 2 be any integer and Fj any non-zero el-
ement of Sp(I'1(t)) of slope zero. Then we have A\o(Fy) = 1 for any

Q.

Proof. Recall that d(k,0) = 1 implies that F}, is a Hecke eigenform. Let
re{0,1,...,q¢—2} be an integer satisfying k = r mod ¢—1. For a = 0,
we see from (3.9) that the assumptions of Theorem 1.1 are satisfied by
n = 1. Then, for any integer s > 1, we obtain a Hecke eigenform of
slope zero

FkIESk/(Fl(t))a kl:k—l—(q—i—l—r)qs
such that, with the fixed embedding ¢, : K — C,, we have
(Ao (Fiv)) = t:(\g(Fr)) mod t* 7 for any Q.

Since k' = 3, k' = 2mod g — 1 and d(k’,0) = 1, we see that Fj is a
scalar multiple of f,gf)l and thus A\g(Fjs) = 1. Since s is arbitrary, this
implies A\g(F}) = 1. O

Corollary 4.4. Let k > 2 and r = 1 be arbitrary integers. Then there
exists a unique character x : k(p)* — K(p)* satisfying d(TH(t"), k, x,0) #
0. For such x, we have d(T5(t"), k, x,0) = 1 and any Hecke eigenform
F of slope zero in Si(IL(t"))(x) satisfies \g(F') =1 for any Q.

Proof. Since T'5(t) = I'1(t), Proposition 3.5 implies d(I'h(¢"), k,0) = 1.
Since we have

d(T5(t7), k, 0) = > d(T5(t"), k, X, 0),
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the uniqueness of y and the assertion on the dimension follow. Let F}
be any Hecke eigenform of slope zero in Si(I'1(¢)). Since the natural
inclusion Si(T1(t)) — Sp(T'5(¢")) is compatible with Hecke operators,
F' is a scalar multiple of the image of Fj. Hence the last assertion
follows from Proposition 4.3. U

Remark 4.5. Note that, since the only p-power root of unity in C,, is
one, there exists no non-trivial finite order character 1 + pOk,, — CJ.
Thus it seems to the author that, if we try to generalize Hida theory
including [Hid2, §7.3, Theorem 3] to Drinfeld cuspforms of level I'; (¢"),
then it would be natural to restrict ourselves to those of level I'5(¢").
However, Corollary 4.4 shows that such a generalization is trivial.

4.2.2. Slope one forms. Let us consider the case p = ¢ =3 and a = 1.
Since D(1,1,1) = /6 — % = 1.949. .., the assumptions of Theorem 1.1
are satisfied by £ > 3 and n = 1. Then a computation using [BV2,
(17)] shows d(10,1) = 1. Let Gy and G9 be any non-zero Drinfeld
cuspforms of level I'; (¢) and slope one in weights 10 and 19, respectively.
Then Theorem 1.1 gives

(4.9) vi(t(Aq(Gro) — Aq(Ghe))) > 5
for any Q.

For Q = t, using [BV2, (17)] we can show that \;(Gyo) = —t — 3,
and A\ (Gho) is a root of the polynomial
XU+ (t+ )X+ (=t + 10 12 11 1410 X2

(1 g1 1T 1Y X g (1S 20 4 g2t g2 g 2

(see also [Val]). Put ¢(Ai(G19)) = ty with v;(y) = 0. Then we obtain
v} (y+ 1+ t*) = 0mod t® and 1,(M\(G10)) = t:(Me(G19)) mod ¢, which
satisfies (4.9). In fact, plugging in X = —t — t3 + Z to the polynomial
above yields v (t:(A(G1o) — M(G19))) = 9.

We identify Sy,(T';(t)) with C¥1 via the ordered basis

{ci(0) = e5(e) [0 < j <k -2}
defined in [LM, BV2]. Then Gy is identified with the vector
t(07 I+ tza 07 _(1 + t2)7 07 _t27 07 17 0) .

Thus Ai;4(G1o) agrees with the evaluation T1,4(G19)(70)(X7Y) after
identifying Gip with a harmonic cocycle. By [LM, (7.1)], we have
A4¢(Gro) = 1 —t — 3. On the other hand, by computing the charac-
teristic polynomial of T7,; acting on Si9(I';(¢)) using [LM, (7.1)] and
plugging in X =1 —¢ —t* + Z into it, (4.9) implies v;(1;(A11+(Gro) —
M4(Gro))) = 9.
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Note that, since these eigenvalues are not powers of ¢ or 1 + ¢, the
Hecke eigenforms G719 and Gi9 are not the t-stabilizations of Hecke
eigenforms with A-expansion.
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