TRIVIALITY OF THE HECKE ACTION ON
ORDINARY DRINFELD CUSPFORMS OF LEVEL I'i(t")

SHIN HATTORI

ABSTRACT. Let k > 2 and n > 1 be any integers. In this paper, we
prove that all Hecke operators act trivially on the space of ordinary
Drinfeld cuspforms of level I'; (¢") and weight k.

1. INTRODUCTION
Let p be a rational prime, ¢ > 1 a p-power integer, A = F[t],
K =F,(t) and K, = F,((1/t)). Let Cy be the (1/t)-adic completion
of an algebraic closure of K, and put 2 = C\ K, which has a natural
structure as a rigid analytic variety over K. For any non-zero element

ne A, we put
(1Y e
v=1{g 1) modng.

Fl(n) = {"}/ € SLQ(A)
For any arithmetic subgroup I' of SLy(A) and integer k£ > 2, a rigid
analytic function f : 0 — C is called a Drinfeld modular form of level
[' and weight k if it satisfies

f (az il b) — (cz+d)*f(2) for any (i Z) el

cz+d

and a certain regularity condition at cusps. A Drinfeld modular form
is called a cuspform if it vanishes at all cusps, and a double cuspform if
it vanishes twice at all cusps. They form C-vector spaces Si(I') and

S,@(F), respectively. These spaces admit a natural action of Hecke
operators.

Let p € A be an irreducible polynomial, K, the p-adic completion
of K and C,, the p-adic completion of an algebraic closure of K. For
the algebraic closure K of K in C., we fix an embedding ¢,, : K — C,,.

Suppose that @ divides n. The Hecke operator at g acting on
Sk(I'1(n)) is denoted by U,. Note that any eigenvalue of U, is an
element of K. We say f € Sx(I'1(n)) is ordinary (with respect to ¢,,)

if f is in the generalized eigenspace belonging to an eigenvalue A\ € K
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satisfying 1,(A) € Og . We denote the subspace of ordinary Drinfeld

cuspforms by S¢'4(T'; (n)). It is an analogue of the notion of ordinariness
for elliptic modular forms studied in [Hid].

Let us focus on the case n = t" and o = ¢ with some integer n > 1. In
this case, the structure of SP™(I"; (")) seems quite simple. For n = 1, it
is known that all Hecke operators act trivially on the one-dimensional
Coo-vector space S¢4(T'y(t)) [Hat3, Proposition 4.3]. In this paper, we
prove that this holds in general, as follows.

Theorem 1.1 (Theorem 4.9). Let k > 2 and n > 1 be any integers.
Then we have

dime,, SP(T4 (1)) = ¢"
and all Hecke operators act trivially on SP*(T'y (t7)).

This suggests that Hida families for Drinfeld cuspforms should be
trivial for the level I'y(¢").

For Drinfeld modular forms, it is well-known that the weak multi-
plicity one, which states that any Hecke eigenform is determined up to
a scalar multiple by the Hecke eigenvalues, is false. Gekeler [Gek, §7]
raised a question if the property holds when we fix the weight. The-
orem 1.1 gives a negative answer to it (see also [Boc, Examples 15.4
and 15.7] for a variant ignoring Hecke eigenvalues at places dividing
the level).

For the proof of Theorem 1.1, we study a subspace S, of S, =
Sk(I'y(t™)) containing S,?) = S,(CQ)(Fl(t")). It consists of cuspforms
which vanish twice at unramified cusps (§3.3). We show that all Hecke
operators act trivially on S/S; and U, is nilpotent on S}, /S 22) (Lemma
3.9 and Proposition 3.10). Then, using the constancy of the dimension
of Se*4(T'y(#")) with respect to k [Hat3, Proposition 3.4], we reduce
Theorem 1.1 to showing that the dimension of S$*4(I";(#")) is no more
than ¢"~! (Theorem 3.11).

Consider the multiplicative group ©,, = 1 + tA/t" A, which acts on
Sk(I'y(t™)) via the diamond operator. To obtain the upper bound of the
dimension, the key point is the freeness of S(I'1(t")) as a module over
the group ring C.,[©,,] (Proposition 4.8): From the fact that S$*4(T'; (¢))
is one-dimensional [Hat2, Lemma 2.4] and another constancy result of
the dimension of the ordinary subspace [Hat3, Proposition 3.5], we see
that the ©,-fixed part of S9*4(I";(#")) is also one-dimensional. Thus
the freeness implies that it injects into a single component Cy,[0,,] of
the free Co,[0,,]-module So(I';(¢")), which gives the desired bound.

The paper is organized as follows. In §2, we will recall the defini-
tion of Hecke operators and study their effect on Fourier expansions of
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Drinfeld cuspforms at cusps. In §3, we will define the subspace S} and
study its properties analytically. In §4, using the description of Drinfeld
cuspforms via harmonic cocycles on the Bruhat—Tits tree [Tei, Boc|, we
will give an explicit basis of the C-vector space S(I'1(t")) and a de-
scription of the diamond operator in terms of the basis. These enable
us to show the freeness and Theorem 1.1.

Acknowledgements. The author would like to thank Ernst-Ulrich
Gekeler and Federico Pellarin for helpful conversations on this topic,
Gebhard Bockle for pointing out an error in a previous manuscript and
the anonymous referee for careful reading and valuable comments. A
part of this work was carried out during the author’s visit to Université
Jean Monnet. He wishes to thank its hospitality.

2. DRINFELD CUSPFORMS OF LEVEL ['i(n)

Let k > 2 be any integer and n any element of A\F,. In this section,
we study Hecke operators acting on Si(I'1(n)). For any group I' acting
on a set X, we denote the stabilizer of x € X in I by Stab(T', z).

2.1. Cusps and uniformizers. Consider the action of SLy(A) on

P}(C,) defined by
a b\ (z\ [(ax+Dby
c d) \y)] \ex+dy)"

We refer to any element of P!(K) as a cusp. For any arithmetic sub-
group I' of SLy(A), put
Cusps(I') = T'\P'(K).
We abusively identify an element of Cusps(I') with a cusp representing
it.
Next we recall the definition of the uniformizer at each cusp [GR,
(2.7)], following the normalization of [Gek, (4.1)]. Let C be the Carlitz

module. It is the Drinfeld module of rank one over A defined by the
homomorphism of F,-algebras

A=F[t] - End(G,), tw (Z > tZ + 29),

where we put G, = Spec(A[Z]). For any a € A, we denote by ®¢(7)
the element of A[Z] such that the image of a by the map above is
defined by (Z — ®%(Z)).

For any subgroup b of A containing a non-zero ideal of A, we define

eb(z)zzn (1—%),

0#£beb
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which is an entire function on 2. Let © € C, be a Carlitz period, so
that
(2.1) Y (7es(2)) = mea(tz).
For any integer [ > 0, we put
up(2) = %{z)? u(z) = ua(z), w(z)=um(z)= tllu (t—zl> :

Since n € A\F,, the group I';(n) is p’-torsion free. For any cusp
s € P(K), choose vs € SLy(A) satisfying v,(00) = s and put

b, = {b e A ‘ (é 11)) € Stab(z/sll“l(n)ys,oo)} O (n).
Then we refer to the function

us(2) := up,(2)

as the uniformizer at s for I'y(n). Note that by depends only on s up to
a multiple of an element of . Thus b, and u,(z) are independent of
the choice of v, if by is an ideal of A for some choice of v,. For example,
we have by, = A for any choice of vy, and the uniformizer at oo is u(z).

For any function f on €, integer k > 2 and v € GLy(K), we define
the slash operator by

(1) () = den(r) ez + @t (250), = (41).

cz+d

Then, for any f € Si(I'1(n)), we can write
<f|k7/s)(2) = Zaius<z)i7 a; € Cyp
i1

when the (1/t)-adic absolute value |us(2)| of us(2) is sufficiently small.
We refer to it as the Fourier expansion of f at the cusp s and put

ord(s, f) = min{i > 1| a; # 0}.
The latter is independent of the choice of v;.

Lemma 2.1. Let m € A be any monic irreducible polynomial and 1 > 1
any integer.

(‘Z) Zdeg(ﬁ)<deg(m) u (%) = mu(z) )

(2) ]fl = 27 th€7l2 Zdeg(5)<deg(m) u (Z;;B) € mu(z)QA[u(z)]

(3) u(mz) € u(z)*Af[u(2)]].
Here the sum Zdeg(g) m) Tuns over the set of B € A satisfying
deg(8) < deg(m).

<deg(
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Proof. Put r = deg(m) and ®C(Z) = mZ+c, 29+ +¢, 1 29 +Z7 .
We denote by C|m] the kernel of the multiplication by m on C' and by
C[m](Cy) the A-module of C-valued points of it. Then we have

(2.2) = ] (1 - %) — m L9l (2).

0£beC[m](Co)

Let a; be the coefficient of Z¢ in m~1®¢ (7). By [Hatl, Lemma 3.2],
we have ; € Aforany 0 <i<r—1and o, = m™L.

Let Gim(X) be the i-th Goss polynomial with respect to the F-
vector space C[m](C,). Then [Gek, computation above (7.3)] gives

(2.3) 3 K (Z ha ﬁ)i = Gym(mu(2)).

deg(B)<deg(m m

For i = 1, we have G;n(X) = X and 1 follows. For ¢ > 2, [Gek,
(3.8)] and (2.2) show that G;,(X) has no linear term and G; n(mX) €
mA[X], which yields 2. Moreover, we have

u(2)”
14 cqu(2)?=9" + -+ mu(z)r 1
which implies 3. O

Put u = 7ea (7) € Cy, so that ®G(¢u) = 0 by (2.1).

t

u(mz) =

Lemma 2.2. Let [ > 1 be any integer. For any B € F,, we have

z+
wes (57 et A
Here A[Cu] is the A-subalgebra of Cy, generated by Cu.
Proof. This follows from

(z + ﬁ) t t 1

Uy = =—" -

! t tlﬁeA (Z;B) tl7reA (t_l) 1+ tlﬂ'eA(l )
tlfreA( )

RISy

En

1

=) T )

l

2.2. Hecke operators. Now we recall the definition of Hecke opera-
tors (for example, see [Hat3, §3.1]). Let m € A be any monic irreducible
polynomial. Then the Hecke operator Ty, acting on Sk (I';(n)) is defined
as

Tuf =), [l
13
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where £ runs over any complete set of representatives of the coset space

(2.4) T, (n)\T'1 (n) (1 0) Ty (n).

0 m

When m|n, we write Ty, also as Uy,.
Let a € A be any element which is prime to n. Take any matrix

Nao € SLa(A) satistying
Nao = (0 Cl> mod n

a 0
ga,o = Na,o <0 1) .
Note that we have

navol“l(n)n;i =T1(n), fa7<>F1(an)§;i < I'i(n).
Hence we obtain
(25)  feSTin) = flinae € Sk(T'1(n)), flebae € Sk(I'1(an)).
For any a € (A/(n))*, we choose a lift a € A of « and put
(anf = [linae

for any f € Sk(I';(n)), which is independent of the choices of a and 7, ..
Then a — {a), defines an action of the group (A/(n))* on Sk(I'1(n)).

and put

Lemma 2.3. For any o € (A/(n))*, the diamond operator {c), com-
mutes with all Hecke operators.

Proof. Let m € A be any monic irreducible polynomial. First suppose

m | n. Write
S 9
Nao = T T

with some S, 5", T,T" € A satisfying T =0, 7" = amod n and ST’ —
S"T" = 1. Since S is prime to n, there exists € A satisfying 5SS =
S’ mod n. Then we have

o lg m) e €0 (1)m:1” 0 m)lo 1)
(o m) =i (5 ) =1 (o m) (6 1)

which yields

26) Tt (o) mea) =L () To)

0 m 0 m

The lemma in this case follows from this equality.
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Next suppose m 1 n. Note that the natural map
SLy(A) — SLy(A/(n)) x SLa(A/(m))

is surjective. Since (@), is independent of the choices of a and 7., we
may assume that n, . satisfies

Nao = <(1) (1)> mod m.
1(1 0 1 0
na,ol (0 m> Na,o € Fl(“) (0 m>

and (2.6) holds also in this case, which yields the lemma. O

Then we have

Let us give an explicit description of the Hecke operator T;,. For any
B € A satisfying deg(8) < deg(m), put

w5 2)

When m = ¢, we also write s for & 3. Then the operator Uy, for m | n
is given by

1 2+
BN = T ke -n B f(FE).
deg(3) <deg(m) deg(B)<deg(m)
When m ¢ n, the set
{&ms | deg(B) < deg(m)} U {&mo}
forms a complete set of representatives of the coset space (2.4) and thus

Tmf = Z f|k£m,ﬁ + f|k€m,<>~

deg(B)<deg(m)

3. U;-~OPERATOR OF LEVEL Iy (")

Let £k > 2 and n > 1 be any integers. In the rest of the paper, we
assume n = ¢".

In this section, we study the operator U; acting on Si(I'1(¢")), and
prove a criterion, in terms of Uy, for all Hecke operators to act trivially
on Se4(T'y (¢")) (Theorem 3.11). We denote Sy,(T'; (£")) and S\ (T (7))
also by S; and S,(f), respectively.

Put A, = A/(t"). Let v; be the t-adic valuation on K normalized as
v(t) = 1. For any c € A,,_, take any lift ¢ € A of ¢ and put

U(c) = minf{v,(¢),n — 1},

which is independent of the choice of ¢.
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3.1. Cusps of I'y(t"). For any ¢,d € A,,_4, put

- 1 0
_ [ 1+td
h(c,d) ( te 1+ td) € SLg(An).

Since the natural map SLy(A) — SLy(A,) is surjective, we can take a
lift h,ay € T'1(t) of h.q) by this map.

Lemma 3.1. Let (c,d) be any element of A% . Suppose that an ele-
ment h € I'y(t) satisfies

h= <tc 1+td> mod 77,
Then h € Fl(tn)h(c7d).
Proof. We have det(hh(_q1 ) = 1 and

e * 1+td O A
-1 _ _ n
Mhica) = (tc 1+td) ( ~tc ﬁ) (0 1) mod 1.

Hence the (1, 1)-entry of hh(_cl 4) 1s also congruent to one modulo " and
thus hh(’c’ld) e Iy (t"). O

From Lemma 3.1, we see that the set
{h(c,d) | ¢, de An—l}

forms a complete set of representatives of I'y (t")\I'1 (¢).

Note that for
SB(A) = {(0 ) e SLQ(A)},

L1 (t)\SLa(A)/SB(A) — Ti()\P(K), v — v(»)

the map

is bijective. Hence we obtain
Cusps(I'1(t)) = {0, 0}.
Consider the natural map
Cusps(I'y(t")) — Cusps(I'y(1)).

For e € {0, 0}, we denote by Cusps,(I'1(¢")) the inverse image of e by
this map. Then we have a bijection

[y (t")\'1(¢)/Stab(T'1(t), ®) — Cusps,(T'1(t")), v+ (o).
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From the equalities

Stab(T'y(£), o0) — {((1] 11’) ‘beA},
Stab(Fl(t),O)z{(tlc (1]) ceA},

we can show the following lemma.
Lemma 3.2. (1) Let Ay, be a subset of A% | which forms a com-
plete set of representatives for the equivalence relation
(c,d) ~(d,d)<=c=c andd —de cA,_.
Then the set

{heay(0) | (c,d) € Ao}
forms a complete set of representatives of Cusps,, (I'1(t")).
(2) The set
{hoa(0)|de Ay}
forms a complete set of representatives of Cusps,(I'y(t")).
Lemma 3.3. Let (c,d) be any element of A2 ;. Put m = v(c) €
[0,n —1].
(1) For s = hc,a)(0), we have
1
b= ("), ug(2) = tporom(2) = ==

tnflfm

(2) For s = h(o,4)(0), we have
n 1 z
by, = ("),  us(2) = un(z) = —u( ) .
Proof. For any x € A, the element
1 z\,_
(3.1) h(c,d) <0 1) h(c,ld) € SLQ(A)

is congruent modulo ¢" to

_ _tex T
( 1+td (1+td)? )
_ 42,2 tcx
tcr 1+ 17

and thus the element of (3.1) lies in 'y (¢") if and only if
U(z) Zmax{n—1—m,n—2—-2m} =n—1—m,

which yields 1.
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For 2, observe

0 —1
h(O,d)(O) = h(O,d)J<OO>7 J = (1 0 ) '

Since

1 =« 17 -1 __ 1 0 n
hoad (0 1> T o = (—x(l + td) 1) mod ¢,

the element of the left-hand side lies in I'y(¢") if and only if = € (¢").
This concludes the proof. O

3.2. Hecke operators of level I';(¢").

Lemma 3.4. For any f € Sp(I'1(t")), monic irreducible polynomial
me A andde A,_1, we have

2 Flehoas (m =1)
T h — eg(B)<deg(m) g )
Tnhlhoa { Zdeg(5)<deg(m) Flehoaéms + flehoaéme (M #1).
Moreover, when m # t, we can write
(flrP0,0)8me)(2) = Z cu(2)', ¢ € Cy

i>2
if |u(2)| is sufficiently small.
Proof. Since f|ph,q = (1 + td)yn f, Lemma 2.3 shows the former as-

sertion.
Let us show the latter assertion for m # ¢t. We have

(Fleho.mémne) (2) = M (Flrho.qMme) (M2).

For any x € A, observe

1 =z _ n
h(O,d)nm,o (0 1) (h(O,d)nmp) 1 € Fl(t )7

which shows that the uniformizer at the cusp ho,g)7m,(90) is u(z). Then
we can write

(fleh©.d)Mme)(2) = Z biu(z)i> bi € Co,

=1

and the assertion follows from Lemma 2.1 3. O

Lemma 3.5. Let S € F, and (c,d) € A%2_, be any elements.

(1) €6h(c,d) € Fl(tn)h(tc,d—ﬁc)gﬁ'
(2) If B # 0, then

n 1 0 -1
§ahcay) € T1(t")his—1(14td),d—pe) (O t) (g ﬁ‘l) .
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t 0
(3) goh(c,d)J € F1<tn)h(t67d)J <0 1) .
Proof. Write

P 7
h(c,d) = (tR SQ) ) P,Q, R, S e A.

Since S = P mod t, we have t71(S — P) € A and the element

S=P\ _ 32 n—1
5,3h(c,d)f§1 = (P ;EBR B( t )S _iéi;t Q) e ['(t)

satisfies
%

-1 _ * n
Epheals = (tgc 1 +t(d—ﬂc)) mod t".

Thus Lemma 3.1 shows 1.
For 2, the matrix £gh. 4/ equals

"plQ+ S B(E) + Q- AR (1 0\ (B —1
t3=1S S —tBR 0 t)\0o Bt/

The first matrix lies in I';(¢), and it is congruent modulo " to

Q51u+¢@ 1+dd—5@)'
By Lemma 3.1, this matrix is contained in I'y (") h(s-1(14td),a—pc) and 2

follows.
For 3, the matrix {yh(.q)J equals

G- (56

The first matrix of the right-hand side lies in I';(¢), and it is congruent

modulo t" to
* *
t?c 1+1td)’

from which 3 follows by Lemma 3.1. U

Lemma 3.6. Let a,c,d € A,y be any elements. Take any lift a € A
of 1 +tae€ A,. Then we have

na,oh(c,d) € Fl(tn)h((1+ta)c,a+d+tad)~
Proof. Since a = 1 mod ¢, the matrix 7, lies in I'y(¢). Thus the lemma

follows from

* *

oo Med) = (t(l +ta)e (14 ta)(l +td)> mod ¢".
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3.3. Unramified double cuspforms. Put
Sy, = {f € Sk | ord (hoa)(0), f) =2 for any d € A,_1}.
Lemma 3.7. S}, is stable under all Hecke operators.

Proof. Let f be any element of S} and m € A any monic irreducible
polynomial. By Lemma 3.3 1 the uniformizer at the cusp hq) () is
u(z) and we can write

(fleho.a)(2) = Z au(z)', a; € Cy.
i>2
Then Lemma 2.1 2 shows that the term
D1 flrhoabns
deg(B)<deg(m)
in the equality of Lemma 3.4 has no linear term of u(z). Thus the
lemma follows from the latter assertion of Lemma 3.4. O

For any f € Sy and d € A,,_1, we write
(flsho.a)(2) = Z au(z)’, a;€ Cy
i>1
and put Ly(f) = a;. Then the Cy-linear map
L: Si/S) — (‘B Co, > (Lalf))a
dEAn_l

is injective.
Lemma 3.8.

dime,, Si/S), = ¢" .
In particular, the map L is bijective.
Proof. We denote Cusps(I'1 (")) also by Cusps. By Lemma 3.2 1, the

points
h(()’d)(OO), de An—l

form a subset Cusps’ of cardinality ¢"~! of Cusps. We abusively identify
Cusps and Cusps’ with the reduced divisors they define on the Drinfeld
modular curve X (¢")c, over Cy, and put D = Cusps + Cusps’. Let
g be the genus of X;(t")c, and h the number of cusps. Since 0 €
Cusps\Cusps’, we have h > ¢"~1.

Let @ be the Hodge bundle on X (t")c,,, so that deg(w®?) = 2g —
2 + 2h and deg(w) = 0 (see for example [Hatl, Corollary 4.2] with
A = {1}). For k > 2, we have

deg(@®"(=D)) = k deg(w) — deg(D)
= (k—2)deg(@w) +29g —2+h—¢" ' =29 —1.
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Since S, can be identified with H°( X, (t")c,,,@®*(—D)), the Riemann—
Roch theorem implies

dime,, S = deg(@®(=D)) +1~g = (k= 1)(g—1+h) —¢"".

From dimc, S, = (kK — 1)(g — 1 + h) [Boc, Proposition 5.4], we obtain
dimc,, Si/S; = ¢"~*. Since the both sides of the injection L have the
same dimension, it is a bijection. U

Lemma 3.9. All Hecke operators act trivially on Sy/S),.

Proof. Let m € A be any monic irreducible polynomial. Take any
f € Sk. By Lemma 2.1 and Lemma 3.4, we obtain Lg(Tf) = La(f) for
any d € A,,_, and the injectivity of the map L shows T, f = f mod 5.
This concludes the proof. O

3.4. Nilpotency of U, on S,’C/S,(f). For any integer i, put
C; = {(c,d) e A2 | | v,(c) =1}.
To study the Uy-action on S, we define
Sii = 1f € Sk | ord(hea)(0), f) = 2 for any (c,d) € Ci}
so that
Sp =S4 1 284,02 28, =5,_, 252
Proposition 3.10. Let i€ [0,n — 1] be any integer.

(1) U(Sk;) < Shis-
(2) U(Sho) < S

In particular, the operator U; acting on S,’C/S,EQ) 15 nilpotent.

Proof. For the assertion 1, take any f € S ; and (c,d) € C;_;. We need
to show

(3.2) Ol"d(h(ad)(OO), Utf> > 2.

Since the case of ¢ = 0 follows from Lemma 3.7, we may assume c # 0.
Put m = v(c). For any 8 € F,, we have (tc,d — c) € C; and the
assumption yields v;(tc) = m + 1. By Lemma 3.3 1, we can write

(f|kh(tc7d—ﬂc)>(z) = Z agﬂ)un_z_m(z)j, aéﬁ) e Cy,

=2
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and Lemma 3.5 1 yields
(Uh)kbeay)(2) = X (Fle€shen)(z) = D (Flkhgea—soés)(2)

/BE]Fq BE]Fq
1 (B) Z +—/3 J
- ; Z Z aj Un—2-m t :
BeF, j>2

Since the uniformizer at h.q4)(90) is up—1-m(2), Lemma 2.2 gives the
inequality (3.2).

Let us show the assertion 2. Take any f € S} ; and d € A,,_;. Since
we already know U f € S} o by 1, it is enough to show

(3.3) ord(h(o,q)(0), Uef) = 2.
By Lemma 3.3 2, the uniformizer at hq)(0) = h(o,a)J(0) is un(2).
Consider the equality
(3.4) (UtH)|ho.a)) = Z fl€sho.a)) + flréoho.a)/-
BeFy
For the first term in the right-hand side of (3.4), we have
5 (B (1 +td)) =0
and by Lemma 3.3 1 we can write
(flehs-10+ta).0)(2) = Z ajun—1(2)’, a; € Cy.
i>2
Then Lemma 3.5 2 gives

1\’
Ul )(2) = #5707 Sajuns (5=)

. ﬁk —2j z— 7! 7
= T;CLJB U/n_l( ; )

and by Lemma 2.2 this term lies in u,(2)*Co[[u,(2)]]-
For the second term in the right-hand side of (3.4), write

<f|kh(0:d)‘])<z) = Z aj“ﬂ('z)jv a; € Co.

j=1

By Lemma 3.5 3, we have
(fleboh.a) D) (2) = 7 (Flrho.a T)(t2) = 71 ajun(tz).
i>1

Since Lemma 2.1 3 shows

un(tz) € un(z)Q(Coo[[un(z)]],
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we obtain the inequality (3.3). This concludes the proof of the propo-
sition. ]

Recall that we fixed an embedding ¢; : K — C;. Wesay A€ K is a
t-adic unit if ¢,(A) € O, .

Theorem 3.11. For any integer k = 2, the following are equivalent.

(1) U; acting on 5,22)(F1(t”)) has no t-adic unit eigenvalue.
(2) U; acting on S;, has no t-adic unit eigenvalue.

(3) dime,, Sp(Ty (1)) < g

(4) U, acting on S5 (T1(t7)) is nilpotent.

(5) Uy acting on SY is nilpotent.

(6) dimg,, ST (t")) < ¢ 1.

If these equivalent conditions hold, then for any k = 2 we have
dim,, Sp(T1 (")) = ¢~
and all Hecke operators act trivially on Sg™(T'y(t7)).

Proof. The equivalence of 1 and 2 follows from Proposition 3.10. Note
that the multiplicity p of t-adic unit eigenvalues of U, acting on Sy is
equal to dime,, SP4(T(¢")). By Lemma 3.8 and Lemma 3.9, the only
t-adic unit eigenvalue of U; acting on Si/S), is one, with multiplicity
¢! Hence pu = ¢!, and the equality holds if and only if there is no
other t-adic unit eigenvalue on Si. The latter condition means that 2
holds. This implies that 2 and 3 are equivalent, and that 3 is equivalent
to dime,, SPY(Ty (7)) = ¢ .

By [Hat3, (2.6) and Proposition 2.2], any eigenvalue of U; acting on
So(I'1(¢7)) is algebraic over F,. Thus U, acts on a subspace of Sy (I'1 (t"))
without t-adic unit eigenvalue if and only if the action is nilpotent. This
shows the equivalence of 4-6. The equivalence of 3 and 6 follows from
[Hat3, Proposition 3.4 (1)].

If these conditions hold, then we have dime, Sg™4(T' (")) = ¢"~ ! and
the natural map

ST (") — Si/ S

is an isomorphism compatible with all Hecke operators. Now the last
assertion follows from Lemma 3.9. 0

Since X (t)c,, is of genus zero, we have Séz)(f‘l(t)) = 0 and the
nilpotency of U; acting on it holds trivially. Thus Theorem 3.11 yields
the following corollary, which reproves [Hat2, Lemma 2.4] and [Hat3,
Proposition 4.3] without using the theory of A-expansions [Pet] or
Bandini—Valentino’s formula [BV, (4.2)].
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Corollary 3.12. For any k = 2, we have
dime, Sy 4(T1(t) =1
and all Hecke operators act trivially on S*(T'y(t)).
Note that by [GN, Corollary 5.7] the genus of X;(t")c,, is
(3.5) L+ 22— (n+ D¢ '+ (n—1)¢"?

and for n > 2 it is zero only if n = ¢ = 2. Thus the nilpotency of U,
acting on Séz) (I'y(t™)) seems non-trivial in general. We will prove it in
a rather indirect way (Corollary 4.10).

4. FREENESS AND TRIVIALITY

In this section, we prove the triviality of the Hecke action on Sy (I'; ("))
for any k > 2 and n > 1 (Theorem 4.9). Put ©,, = 1+tA, < AX. The
key point of the proof is to show that S5(I'1(¢")), which we consider
as a Cy[0,]-module via the diamond operator, is the direct sum of
copies of C[0,,] (Proposition 4.8). For this, we need a description of
So(I'4 (™)) using harmonic cocycles on the Bruhat—Tits tree.

4.1. Bruhat—Tits tree and I';(¢"). We consider K2 as the set of row
vectors, and define an action o of GLy(Ky) on K2 by

v o (z1,m2) = (z1,22)7" "

Let 7 be the Bruhat-Tits tree for SLy(K) (see for example [Ser,
Ch. II, §1], [GN, §1] and [Boc, §3.1]). Recall that the set Ty of vertices
of 7 is by definition the set of K}-equivalence classes of Ok, -lattices
in K2, where O, is the ring of integers of K. The action o induces
an action of GLy(K ) on the tree T, and also on the oriented tree 7°
associated to 7. We denote by 7,° the set of oriented edges. For any
e € T?, the origin, the terminus and the opposite edge of e are denoted
by o(e), t(e) and —e, respectively. Then the group {+1} acts on 7,° by
(—1)e = —e, which commutes with the action of GLy(Ky).

Put m = 1/t, which is a uniformizer of K. For any integer i, let
v; be the class of the lattice Ok (7",0) ® Ok, (0,1). Then we have
<7T0 (1)) vo = v;. We denote by e; the oriented edge with origin v;
and terminus v; 1.

For any subgroup I" of SLy(A), we say e € T° is I'-stable if Stab(T, e) =
{1}, and I'-unstable otherwise. We define I'-stability of a vertex simi-
larly. The set of I-stable edges is denoted by 7,""™. For I' = Ty (t), we
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know [LM, §7] that the set of I'; (¢)-stable edges is equal to I'; (t)J (+ep)
with
0 —1
),
Lemma 4.1. A complete set of representatives of 'y (t") 1O’F1(t)'8t/{i1}

15 given by
Al,n = {h(qd)g]eo ‘ C,d € Anfl}.

Proof. Consider the natural map
(4.1) Ay = Dy(ENTP O {1

which is surjective since 7" ™" = 'y (£)J(+eo ). Suppose that (c,d), (¢, d') €
A% satisty

’}/h(gd)JQO = h(c/,d/)J(io or ’}/h(c7d)J(—€0) = h(c/d/)Jeo
with some 7 € I'1(t"). For the former case, since Jeq is I';(t)-stable we
have yh(ca) = h(a) and thus (c,d) = (¢, d’). For the latter case, we
have

J’lh(’c,{d,)fyh(c’d)t]vo = ;.

Since the distance of vy and v, is one, it contradicts [Ser, Ch. II, §1.2,
Corollary]. Hence the map (4.1) is also injective. O

4.2. Harmonic cocycles. In this subsection, we recall a description
of Drinfeld cuspforms using harmonic cocycles due to Teitelbaum [Tei],
following [Boc] and [Hat3].

Let k > 2 be any integer. We denote by Hj_5(Cy) the Cy-subspace
of homogeneous polynomials of degree k — 2 in the polynomial ring
Co[X,Y]. We consider the left action o of GLy(K) on it defined by

o (X,Y) = (X,Y)y.

We put Vi (Cy) = Home, (Hk—2(Cy), Cy), on which GLy(K) acts nat-
urally. For £ € GLy(K), w € Vi(Cyp) and P(X,Y) € Hyp_2(Cy), the
action is given by

(Eow)(P(X,Y)) =w(E "o P(X,Y)) = w(P((X,Y)¢)).

Definition 4.2. A map c: 7 — Vj(Cy) is called a harmonic cocycle
of weight k over C,, if the following two conditions hold:

(1) For any v € Ty, we have
Z c(e) = 0.
eeTy?, t(e)=v

(2) For any e € T, we have ¢(—e) = —c(e).
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For any arithmetic subgroup I' of SLy(A), we say c is I'-equivariant
if ¢c(ye) = yoc(e) for any v € I" and e € T,°. We denote the C,-
vector space of I'-equivariant harmonic cocycles of weight k£ over Cg
by Gy (T).

Let I' be an arithmetic subgroup of SLy(A) which is p'-torsion free.
In this case, for any I'-unstable vertex v, the group Stab(I',v) fixes a
unique rational end which we denote by b(v).

Definition 4.3. A I'-stable edge ¢’ € T,? is called a I'-source of an edge
e € T if the following conditions hold.

(1) If e is I'-stable, then ¢’ = e.

(2) If e is [-unstable, then a vertex v of ¢’ is I'-unstable, e lies on the
unique half line from v to b(v) and e has the same orientation
as € with respect to this half line.

The set of I'-sources of e is denoted by srcr(e).

For any harmonic cocycle ¢ : T,° — Vj(Cy) of weight k over Cy,, we
have

(4.2) cle) = > cle)
e’esrcr(e)

We denote by Si(I') the Cy-vector space of Drinfeld cuspforms of
level I' and weight k. Then, for any rigid analytic function f on €2
and e € T, Teitelbaum defined an element Res(f)(e) € V;(Cy), which
gives a natural isomorphism of C.-vector spaces

(4.3) Resp : Si(T') — CP*(I'), f > (e~ Res(f)(e))

[Tei, Theorem 16]. Note that we are following the normalization in
[Boc, Theorem 5.10]. Moreover, by [Boc, (17)], the slash operator can
be read off via the corresponding harmonic cocycle by

(4.4) Res(flx7)(e) = 77" o Res(f)(ve).
Lemma 4.4.

dime,, Ch (D (£7)) = ¢?( D,

Proof. By [GN, Proposition 5.6] (or Lemma 3.2), the number h of cusps
of Xi(t")c,, equals

h=m+1)¢""'—(n—1)q¢"2
Thus the lemma follows from [Béc, Proposition 5.4, (3.5) and (4.3). O

Lemma 4.5. Let ¢ be any element of O3 (I'y(t7)).
(1) For any v € T'1(t") and e € T, we have c(ve) = c(e).



TRIVIALITY OF THE HECKE ACTION ON DRINFELD CUSPFORMS 19

(2) c is determined by its restriction to the subset Ay, of Lemma

4.1,

Proof. Since the group GLs(K) acts trivially on V5(Cy) = C4, we have
c(ve) = yoc(e) = c(e) and the assertion 1 follows.

For the assertion 2, it suffices to show that if the restriction of ¢ to
Ay, is zero, then c(e) = 0 for any e € 7°. By (4.2), we may assume
that e is I'; (¢)-stable. Then it is written as e = +7y¢’ with some ¢’ € Ay,
and 7y € I'; ("), which yields ¢(e) = £y o ¢(e’) = 0. This concludes the
proof. O

Corollary 4.6. The C,,-linear map
C3(1(t") = @ Co, ¢ (e(€))eeny,n

eEAl’n
s an isomorphism.
Proof. By Lemma 4.5 2, the map is injective. Since #A;, = ¢*™Y,
Lemma 4.4 implies that it is an isomorphism. U

By Corollary 4.6, there exists a unique element [c, d] € C3*(T'; ("))
satisfying
1t (d,d) = (¢, d),
[, d] (e T eo) = { 0 otherwise.

The set {[c,d] | ¢,d € A,_1} forms a basis of the C,-vector space
Ch(0y (1)),

4.3. Proof of the main theorem. Consider the subgroup ©, =
1+tA, of AX. Via the isomorphism Resp, 4 of (4.3), the diamond op-
erator (a)m acting on Sy(I';(¢")) induces an operator on CHa(I'; (")),
which we also denote by (a)m. In particular, the group ©,, acts on
Char (T, (#7)) via a — (a)pm.

Lemma 4.7. For any a,c,d € A,_1, the action of 1 +ta € ©,, on [c,d|
15 given by
(4 taym[c,d] = [(1 +ta)te, (1 + ta) ' (d — a)].
Proof. By (4.4) and Lemma 3.6, for any ¢/, d’ € A,_; we have
(1 +taym[e,d]) (hayJeo) = e, dl (M +ta)e a+d+tad) T €0),

which is equal to one if (¢, d') = ((1 + ta)"t¢, (1 4 ta) " *(d — a)) and
zero otherwise. This concludes the proof. O

Proposition 4.8. The C[0,,]-module S2(I'1(t™)) is isomorphic to the
direct sum of "~ copies of Co[Oy].



20 SHIN HATTORI

Proof. It suffices to show the assertion for Ch*(T'\(¢")). Take any
(c,d) € A%2_,. We claim that the ©,-orbit
{{1 4+ taym|c,d] | ae Ap_1}
of [¢, d] is of cardinality ¢"~'. Indeed, if {1+ta)m[c,d] = {1+ta' ym[c,d]
for some a,a’ € A,,_1, then Lemma 4.7 yields
(1+ta) " (d—a) = (1+td) ' (d—d),

which is equivalent to (1 + td)(a’ — a) = 0 and we obtain a’ = a.

We denote by V (e, d) the C,-subspace of Char(I"; (")) spanned by
the ©,-orbit of [c,d]. Then V(c,d) is stable under the O,-action and
dime, V(c,d) = ¢"!. Consider the map

Cx|On] = Ve, d), aw—{aymle,d].
It is a homomorphism of C,[6,]-modules which is surjective. Since
the both sides have the same dimension, it is an isomorphism. Since

the Cy-vector space Char(T'y(¢")) is the direct sum of V(c,d)’s, the
proposition follows from Lemma 4.4. O

Theorem 4.9. We have
dime,, Sg™(I1(t")) = ¢" 7
and all Hecke operators act trivially on S*(T'y (")) for any k = 2.

Proof. By Theorem 3.11, it is enough to show dimg, SS™(T;(t")) <
n—1
q" . Put

n n 1+ tA, A,
Fg(t):{veSLg(A)‘vmodt e( 0 1+tAn)}’

as in [Hat3, §3]. Then the ©,-fixed part of Sy(I';(t")) is Sa(T'H(t")).
Since the Hecke operator U; commutes with the action of ©, and it
is defined by the same formula for the levels T';(¢") and I'}(¢") [Hat3,
§3.1], we see that S9*4(I";(#")) is stable under the ©,-action and

Syr(Da(t") O = S5m(TR(e),

where the right-hand side is the ordinary subspace of Sy (I (¢™)) defined
similarly to the case of Sy(I';(¢")). Then [Hat3, Proposition 3.5] and
Corollary 3.12 yield

dimg,, Sy™(T1(#"))°" = dime,, SS™(TE(t")) = dime,, S (T (t)) = 1.

On the other hand, Proposition 4.8 gives an injection of Cy[0,]-
modules

n—1

q
St = ST (t") — P Vi, Vi = Cy[On].

=1
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Let I be the set of integers M € [1,¢" '] such that there exists an
injection of Co,[©,]-modules Sg — @7, V;. Then I is nonempty and
let m be its minimal element.

Now we reduce ourselves to showing m = 1. Suppose m > 1 and
consider an injection S§' — @, V;. Since ©,, is an abelian p-group
and C,, contains no non-trivial p-power root of unity, Schur’s lemma
implies that the only irreducible representation of ©,, over C, is the
trivial representation. Since both of

m
S, S5 @Vi
i=2
are Cy,[©,,]-submodules of S$™, if one of them is non-zero then it con-
tains the trivial representation. Since the C.-vector space (S94)€n is
one-dimensional, we see that either of them is zero. Thus either of the
induced maps

m m—1 m m
s (@) =@ s (G () -
i=1 i=1 i=1 =2

is injective, which contradicts the minimality of m. This concludes the
proof of the theorem. O

Theorem 3.11 and Theorem 4.9 yield the following corollary.

Corollary 4.10. The operator Uy acting on Séz)(f‘l(t”)) is nilpotent.

Remark 4.11. By Theorem 3.11, if we could prove the nilpotency of

U acting on 552)(F1(t”)) directly, then Theorem 4.9 would follow. As
the proof of Theorem 4.9 indicates, the reason we can bypass it is that
we know the dimension of S$*4(T";(#)) because X (t)c,, is of genus zero.
The author has no idea of how to show the nilpotency directly.
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