TRIVIALITY OF THE HECKE ACTION ON
ORDINARY DRINFELD CUSPFORMS OF LEVEL I'(t")

SHIN HATTORI

ABSTRACT. Let k > 2 and n > 1 be any integers. In this paper, we
prove that all Hecke operators act trivially on the space of ordinary
Drinfeld cuspforms of level I'; (¢") and weight k.

1. INTRODUCTION

Let p be a rational prime, ¢ > 1 a p-power integer, A = F[t],
K =F,(t) and Ky, = F,((1/t)). Let Cy be the (1/t)-adic completion
of an algebraic closure of K, and put {2 = Cy,\ Ky, which has a natural
structure as a rigid analytic variety over K. For any non-zero element
ne A, we put

Ty (n) = {’ye SLy(A) ‘ Y= ((1] 1) mod n}.

For any arithmetic subgroup I' of SLy(A) and integer k > 2, a rigid
analytic function f : 0 — C is called a Drinfeld modular form of level
[' and weight k if it satisfies

f <az+b> = (cz+d)*f(z) for any (Z Z) el

cz+d

and a certain regularity condition at cusps. A Drinfeld modular form
is called a cuspform if it vanishes at all cusps, and a double cuspform if
it vanishes twice at all cusps. They form C-vector spaces Si(I') and

S,EQ)(F), respectively. These spaces admit a natural action of Hecke
operators.

Let p € A be an irreducible polynomial, K, the p-adic completion
of K and C,, the gp-adic completion of an algebraic closure of K. For
the algebraic closure K of K in Cy, we fix an embedding L ! K — C,.

Suppose that @ divides n. The Hecke operator at g acting on
Si(I'1(n)) is denoted by U,. Note that any eigenvalue of U, is an
element of K. We say f € Sx(I'1(n)) is ordinary (with respect to ¢,,)

if f is in the generalized eigenspace belonging to an eigenvalue A\ € K
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satisfying 1,(A) € Og . We denote the subspace of ordinary Drinfeld

cuspforms by S¢'4(T'; (n)). It is an analogue of the notion of ordinariness
for elliptic modular forms studied in [Hid].

Let us focus on the case n = t" and o = ¢ with some integer n > 1. In
this case, the structure of S™(T"; (t")) seems quite simple. For n = 1, it
is known that all Hecke operators act trivially on the one-dimensional
Coo-vector space So™4(T'y(t)) [Hat3, Proposition 4.3]. In this paper, we
prove that this holds in general, as follows.

Theorem 1.1 (Theorem 4.9). Let k > 2 and n = 1 be any integers.
Then we have
dime,, SP(I4(1")) = ¢"

and all Hecke operators act trivially on SP™4(T'y (t7)).

This suggests that Hida theory for Drinfeld cuspforms should be
trivial for the level I'y (™).

For Drinfeld modular forms, it is well-known that the weak multi-
plicity one, which states that any Hecke eigenform is determined up to
a scalar multiple by the Hecke eigenvalues, is false. Gekeler [Gek, §7]
raised a question if the property holds when we fix the weight. The-
orem 1.1 gives a negative answer to it (see also [Boc, Examples 15.4
and 15.7] for a variant ignoring Hecke eigenvalues at places dividing
the level).

For the proof of Theorem 1.1, we study a subspace S} of S =
Sk(I'1(t™)) containing 5,5,2) = S,(CQ)(Fl(t")). It consists of cuspforms
which vanish twice at unramified cusps (§3.3). We show that all Hecke
operators act trivially on Sy/S), and Uy is nilpotent on S}, /S 22) (Lemma
3.8 and Proposition 3.9). Then, using the constancy of the dimension
of Se*d(T'y(#")) with respect to k [Hat3, Proposition 3.4], we reduce
Theorem 1.1 to showing that the dimension of S$*4(I";(#")) is no more
than ¢"~! (Theorem 3.10).

Consider the multiplicative group 6,, = 1 + tA/t" A, which acts on
Sk(I'y(t™)) via the diamond operator. To obtain the upper bound of the
dimension, the key point is the freeness of Sa(I';(¢")) as a module over
the group ring Co,[©,,] (Proposition 4.8): From the fact that S9*4(T'; (¢))
is one-dimensional [Hat2, Lemma 2.4] and another constancy result of
the dimension of the ordinary subspace [Hat3, Proposition 3.5], we see
that the ©,-fixed part of Sg*(I';(#")) is also one-dimensional. Thus
the freeness implies that it injects into a single component Cy,[0©,,] of
the free C,[0,]-module Sa(I';(¢")), which gives the desired bound.

The paper is organized as follows. In §2, we will recall the defini-
tion of Hecke operators and study their effect on Fourier expansions of
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Drinfeld cuspforms at cusps. In §3, we will define the subspace S}, and
study its properties analytically. In §4, using the description of Drinfeld
cuspforms via harmonic cocycles on the Bruhat-Tits tree [Tei, Boc]|, we
will give an explicit basis of the Cy-vector space So(I'1(t")) and a de-
scription of the diamond operator in terms of the basis. These enable
us to show the freeness and Theorem 1.1.

Acknowledgements. The author would like to thank Ernst-Ulrich
Gekeler and Federico Pellarin for helpful conversations on this topic,
and Gebhard Bockle for pointing out an error in a previous manuscript.
A part of this work was carried out during the author’s visit to Uni-
versité Jean Monnet. He wishes to thank its hospitality. This work
was supported by JSPS KAKENHI Grant Numbers JP17K05177 and
JP20K03545.

2. DRINFELD CUSPFORMS OF LEVEL [ (n)

Let k = 2 be any integer and n any element of A\F,. In this section,
we study Hecke operators acting on Si(I'1(n)). For any group I' acting
on a set X, we denote the stabilizer of x € X in I' by Stab(T', z).

2.1. Cusps and uniformizers. Consider the action of SLy(A) on

P!(Cy) defined by
a b\ (z\ [ax+by
c d)\y) \cx+dy/"

We refer to any element of P!(K) as a cusp. For any arithmetic sub-
group I' of SLy(A), put

Cusps(I') = T\P!(K).

We abusively identify an element of Cusps(I") with a cusp representing
it.

Next we recall the definition of the uniformizer at each cusp [GR,
(2.7)], following the normalization of [Gek, (4.1)]. Let C be the Carlitz
module. It is the Drinfeld module of rank one over A defined by the
homomorphism of F,-algebras

A=F,t] - End(G,), t— (Z—tZ+ 27,
where we put G, = Spec(A[Z]). For any a € A, we denote by ®¢(Z7)
the element of A[Z] such that the image of a by the map above is
defined by (Z — ®%(2)).
For any subgroup b of A containing a non-zero ideal of A, we define

eb(z)zzH (1—%),

0+£beb
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which is an entire function on 2. Let m € C, be a Carlitz period, so
that
(2.1) O (7es(2)) = mea(tz).

For any integer [ > 0, we put
1 1 z
up(z) = Fee()’ u(z) = ua(z), w(z) =uuw(z) = at (ﬁ) .

Since n € A\F,, the group I';(n) is p’-torsion free. For any cusp
s € PI(K), choose vs € SLy(A) satisfying v,(00) = s and put

b, = {b €A ‘ (é ll)) € Stab(z/sll“l(n)ys,oo)} o (n).
Then we refer to the function

us(2) == up,(2)

as the uniformizer at s for I'y(n). Note that by depends only on s up to
a multiple of an element of FX. Thus b, and u,(z) are independent of
the choice of v, if by is an ideal of A for some choice of v,. For example,
we have by, = A for any choice of vy, and the uniformizer at oo is u(z).

For any function f on €, integer k > 2 and v € GLy(K), we define
the slash operator by

(1) () = den0) ez + @t (250), 5= (4 1).

cz+d
Then, for any f € Si(I'1(n)), we can write
(f|k7/s)(2) = Z aius(z)i7 a; € Cyp
i1

when the (1/t)-adic absolute value |us(2)| of us(z) is sufficiently small.
We refer to it as the Fourier expansion of f at the cusp s and put

ord(s, f) = min{i > 1| a; # 0}.
The latter is independent of the choice of v;.

Lemma 2.1. Let m € A be any monic irreducible polynomial and 1 > 1
any integer.

(‘Z) Zdeg(ﬁ)<deg(m) u (%) - mu(z) )

(2) ]fZ = 27 then2 Zdeg(5)<deg(m) u (2:16) € mu(z)QA[u(z)]

(3) u(mz) € u(z)*Af[u(2)]].
Here the sum Zdeg(5)<deg(m) runs over the set of f € A satisfying
deg(f) < deg(m).
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Proof. Put r = deg(m) and ®¢(Z) = mZ + ¢, Z9+--+¢, 1 29 + 27
Then we have

(2.2) = I (1 - %) — m~'oC(2).

0beCm](C0)

Let a; be the coefficient of Z¢ in m~1®¢ (7). By [Hatl, Lemma 3.2],
we have o; € Aforany 0 <i<r—1and o, = m™L.

Let Gim(X) be the i-th Goss polynomial with respect to the F-
vector space C|m](Cy). Then [Gek, computation above (7.3)] gives

(2.3) S 2+ P i:Gi,m(mu(z)).
50

deg(B)<deg m

For i = 1, we have G; n(X) = X and (1) follows. For i > 2, [Gek,
(3.8)] and (2.2) show that G;,(X) has no linear term and G; ,(mX) €
mA[X], which yields (2). Moreover, we have

u(z)?
Lt cpqu(2)? 07" 4 mu(z)e
which implies (3). -
Put (4 = 7ea (&) € Cy, so that @G (¢u) = 0 by (2.1).

t

u(mz) =

Lemma 2.2. Let [ > 1 be any integer. For any B € F,, we have

ws (Z52) € @Al

t
Here A|Cqu] is the A-subalgebra of Cy, generated by Cu.

Proof. This follows from

. <z+5) B t .t 1
=1 t  fl7ey (Z:“lﬂ) " tiiey (t%) 14 tirea( )

tlﬁeA(il)

tw

-

1

~ ) GGy

O

2.2. Hecke operators. Now we recall the definition of Hecke opera-
tors (for example, see [Hat3, §3.1]). Let m € A be any monic irreducible
polynomial. Then the Hecke operator Ty, acting on S (I’ (n)) is defined
as

Tuf =), [l
13
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where £ runs over any complete set of representatives of the coset space

(2.4) Ty (n)\T'1 (n) (1 0) Ty (n).

0 m

When m|n, we write Ty, also as Uy,.
Let a € A be any element which is prime to n. Take any matrix
Nao € SLa(A) satisfying

Nao = (0 a) mod n

a 0
éa,o = na,o (0 1) .
Note that we have

na,orl(n)n;i =T (n), ga,orl(an)fa_,i < I'i(n).
Hence we obtain
(2.5)  feSk(Tin) = flenae € Sk(T'1(n)), flrao € Sk(l'(an)).
For any v € (A/(n))*, we choose a lift a € A of a and put

(nf = fliNao

for any f € Sk(I';(n)), which is independent of the choices of a and 7, .
Then a — {a), defines an action of the group (A/(n))* on Sk(I'1(n)).

and put

Lemma 2.3. For any o € (A/(n))*, the diamond operator {c), com-
mutes with all Hecke operators.

Proof. Let m € A be any monic irreducible polynomial. First suppose

m | n. Write
S 9
Nao = T T

with some S, 5", T,T" € A satisfying T =0, 7" = amod n and ST’ —
ST = 1. Since S is prime to n, there exists § € A satisfying 55 =
S" mod n. Then we have

23 meron(t 2)-ro (D 0

which yields

26) Tt () mels =1 ()T

0 m 0 m

The lemma in this case follows from this equality.
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Next suppose m { n. Note that the natural map
SLy(A) = SLy(A/(n)) x SLa(A/(m))

is surjective. Since (@), is independent of the choices of a and 7., we
may assume that 7, . satisfies

Nao = (é (1)> mod m.
1({1 0 1 0
na,i (0 m) Na,o € Fl(n) (0 m)

and (2.6) holds also in this case, which yields the lemma. O

Then we have

Let us give an explicit description of the Hecke operator T;,. For any
B € A satistying deg(3) < deg(m), put

-5 2)

When m = ¢, we also write £z for & 5. Then the operator Uy for m | n
is given by

1 2+
GHE = N M- Y 1(5).
deg(B)<deg(m) deg(B)<deg(m)
When m 1 n, the set
{&mp | deg(B) < deg(m)} U {&Emo}
forms a complete set of representatives of the coset space (2.4) and thus

Tof = ), fl&ns+ Flikme

deg(B)<deg(m)

3. U;-~OPERATOR OF LEVEL Iy (")

Let kK > 2 and n > 1 be any integers. In the rest of the paper, we
assume n = t".

In this section, we study the operator U; acting on Si(I'i(t")), and
prove a criterion, in terms of Uy, for all Hecke operators to act trivially
on Se(T'y (¢")) (Theorem 3.10). We denote Sy(I';(t")) and S (T, ("))
also by S; and S,(f), respectively.

Put A, = A/(t"). Let v, be the t-adic valuation on K normalized as
v (t) = 1. For any c € A,, 1, take any lift ¢ € A of ¢ and put

U(c) = min{v,(¢),n — 1},

which is independent of the choice of ¢.
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3.1. Cusps of I'1(t"). For any ¢,d € A, 1, put

- 1 0
_ | T4
e ( te 1+ td) € SLa(An).

Since the natural map SLy(A) — SLy(A,,) is surjective, we can take a
lift he,q) € T'1(t) of hc,q) by this map. Then the set

{hiea | c,de Anr}

forms a complete set of representatives of T'y (t")\I'1 (¢).
Note that for
SB(A) = {(0 :) € SLg(A)},

L1 (t\SLa(A)/SB(A) = Ti(t\PH(K), 7= ()
is bijective. Hence we obtain
Cusps(I'y(t)) = {00, 0}.
Consider the natural map
Cusps(I';(t")) — Cusps(I'y(t)).

For e € {00, 0}, we denote by Cusps, (I'1(t")) the inverse image of e by
this map. Then we have a bijection

Iy (£")\1 (2)/Stab('1(t), ¢) — Cusps, (I'1 (")), v = ().
From the equalities

Stab(I' (£), 00) = {(é 11’) ‘beA},

Stab(Fl(t),O)z{(tlc ‘D ceA},

we can show the following lemma.

Lemma 3.1. (1) Let Ay be a subset of A% | which forms a com-
plete set of representatives for the equivalence relation

(c,d) ~(d,d)<=c=( andd —de cA, .
Then the set

the map

{hea () | (¢, d) € A}
forms a complete set of representatives of Cusps,, (I'1(t")).
(2) The set
hoa(0) [ de Ap i}

forms a complete set of representatives of Cusps,(I'y(t")).
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Lemma 3.2. Let (¢,d) be any element of A2_,. Put m = u(c) €
[0,n —1].

(1) For s = h(ca)(o0), we have

n—1l—-m 1 Z
by = ("), () = tnrom(2) = o (o)
(2) For s = h(o,4)(0), we have
. z
b, = ("),  wus(2) = un(z) = —u (—) .

Proof. For any x € A, the element

1 «x
(3.1) h(gd) (O 1) (cd) € SLQ(A)

is congruent modulo ¢" to

1— _tex x
( 1+td (1+td)? )
2.2 tcx
—t°ccr 14 155

and thus the element of (3.1) lies in T'y(¢") if and only if

U(x) Zmax{n—1—m,n—2—-2m} =n—1—m,

which yields (1).

For (2), observe

0 -1
ho.0)(0) = hoayJ (), J = (1 0 ) |

Since

1 = 1,1 1 0 n
hoa (0 1)‘] fo.a) = (—x(1+td)2 1) mod #7,

the element of the left-hand side lies in T'y(¢") if and only if = € (¢").
This concludes the proof. ([l

3.2. Hecke operators of level I';(¢").

Lemma 3.3. For any f € Si(I'1(t")), monic irreducible polynomial
meAandde A,_1, we have

Ddeg(s y S leho.a)és (m=1)
Tm h _ eg(B)<deg(m ’
(Talhios = | Yoyt Fleh0ons + Flehione (% 1).
Moreover, when m # t, we can write
(f|kh(0,d)€m,<>)(z) = Z ciu(z)i, ¢ € Cowo
22

if |u(z)| is sufficiently small.
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Proof. Since f|ph,q = {1 + td)y f, Lemma 2.3 shows the former as-
sertion.
Let us show the latter assertion for m # ¢. We have

(flrh©.aéme) (z) = m* 7 (flrho.a)Tme) (m2).
For any x € A, observe

1 = _ n
h((],d)nm,o <0 1) (h(O,d)nm,o) le Fl(t ),

which shows that the uniformizer at the cusp ho,gynm,0(o0) is u(2). Then
we can write

(f|kh(0,d)77m,<>) (Z) = Z bz’LL(Z)Z, bZ € Coo;

i>1
and the assertion follows from Lemma 2.1 (3). O

Lemma 3.4. Let B € F, and (c,d) € A2 | be any elements.

(1) &ghic.a) € T1(t") hte,a—pe)és-
(2) If B # 0, then

n 10\ /8 -1
Eshic,ay) € D1(t")his—1(14td),d—Be) (0 t) (O 51) .

t 0
(3) goh(c,d)t] € Fl(tn)h(tgd)(] <O 1> .

Proof. Write

Pt
h(qd) = (tR SQ> R P,Q,R,S e A.

Since S = P mod t, we have ¢t }(S — P) € A and the element

S=P\ _ 2 n—1
fﬁh(c,d)fg_l = <P ;EBR (% )S _Bté%Pj— t Q) e ' (1)

satisfies
*

-1 _ * * n
EphicaySs = (tgc 1 —i—t(d—ﬂc)) mod t",

which shows (1).
For (2), the matrix &ghc,q)J equals

(tn5—1Q+S B (%) +t”—1Q—62R) (1 o) (5 —1).

t3=1S S —tBR 0 t/\0 B

The first matrix lies in T';(¢), and it is congruent modulo " to

(tﬁ‘l(f +td) 1+ t(; — 50)) '
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Hence this matrix is contained in I'y (") h(s-1(141d),a—gc) and (2) follows.
For (3), the matrix &hq)J equals

(e F) G )= )6 %)

The first matrix of the right-hand side lies in I'; (¢), and it is congruent

modulo t" to
£ *
t2c 1+td)’

from which (3) follows. O

Lemma 3.5. Let a,c,d € A,,_1 be any elements. Take any lift a € A
of 1 +tae A,. Then we have
na,oh(c,d) el (tn)h((l-i-ta)c,a-‘rd-i-tad)-

Proof. Since a = 1 mod ¢, the matrix 7, lies in I'; (¢). Thus the lemma
follows from

* *

oo ey = (t(l +ta)e (1+ta)(1 +td)> mod #".

3.3. Unramified double cuspforms. Put
Sy, ={f € Sk | ord (R a)(e0), f) =2 for any d € A,_1}.
Lemma 3.6. S is stable under all Hecke operators.

Proof. Let f be any element of S} and m € A any monic irreducible
polynomial. By Lemma 3.2 (1) the uniformizer at the cusp h.q)(o0) is
u(z) and we can write

(flrhoa)(2) = Z a;u(z)’, a; € Cop.
122
Then Lemma 2.1 (2) shows that the term
D1 flkhoaéms
deg(B)<deg(m)

in the equality of Lemma 3.3 has no linear term of w(z). Thus the
lemma follows from the latter assertion of Lemma 3.3. O

For any f € S and d € A,,_1, we write

(flrhoa)(z) = > au(z)’,  a;€ Cy

121
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and put Ly(f) = a;. Then the Cy-linear map
L: Sk/Sllg - (‘B Co, [ (Ld(f))d
dEAn_l
is injective.
Lemma 3.7.
dime, Si./S, = ¢" .

In particular, the map L is bijective.

Proof. We denote Cusps(I'; (™)) also by Cusps. By Lemma 3.1 (1), the
points
h(o,d)(OO), de Ap

form a subset Cusps’ of cardinality ¢"~! of Cusps. We abusively identify
Cusps and Cusps’ with the reduced divisors they define on the Drinfeld
modular curve X;(t")c, over Co, and put D = Cusps + Cusps’. Let
g be the genus of X;(t")c, and h the number of cusps. Since 0 €
Cusps\Cusps', we have h > ¢" 1.

Let @ be the Hodge bundle on X (t")c,, , so that deg(w®?) = 2g—2+
2h and deg(w) = 0 (see for example [Hat1, Corolary 4.2] with A = {1}).
For k > 2, we have

deg(w®*(—=D)) = k deg(w) — deg(D)
= (k—2)deg(@w) +29 —2+h—¢"' =29 —1.
Since S, can be identified with H(X;(t")c, ,@®*(—D)), the Riemann-
Roch theorem implies
dime, S; = deg(w® (=D))+1—g=(k—1)(g—1+h)—q".

From dimc, Sk = (k —1)(g — 1 + h) [Bbc, Proposition 5.4], we obtain
dimg, Si/S; = ¢"'. Since the both sides of the injection L have the
same dimension, it is a bijection. 0

Lemma 3.8. All Hecke operators act trivially on Sy/S),.

Proof. Let m € A be any monic irreducible polynomial. Take any
f € Sk. By Lemma 2.1 and Lemma 3.3, we obtain Lg(Twf) = La(f) for
any d € A, and the injectivity of the map L shows T,,f = f mod ).
This concludes the proof. [l
3.4. Nilpotency of U; on S,’C/S,?). For any integer i, put
Cy = {(c,d) e A2 | | v,(c) =1}
To study the U-action on S, we define
S,'C’Z- = {f € Sk | ord(hc.a)(o0), f) = 2 for any (c,d) € C;}
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so that
St =S, 128,02 25,,=5_,25.
Proposition 3.9. Let i € [0,n — 1] be any integer.
(1) U(Ski) = Skior-
(2) Ui(Si.o) < 5,7
In particular, the operator Uy acting on S,Q/S,gz) is milpotent.

Proof. For the assertion (1), take any f € S ; and (c,d) € Cj;. We
need to show

(3.2) ord(h(c’d) (OO), Utf) = 2.

Since the case of ¢ = 0 follows from Lemma 3.6, we may assume c # 0.
Put m = ©;(c). For any f € F,, we have (tc,d — Bc) € C; and the
assumption yields v;(tc) = m + 1. By Lemma 3.2 (1), we can write

(f|kh(t07d—ﬂc))(z) == a§’8)un_2_m(z)j, agﬁ) c (COO

j>2
and Lemma 3.4 (1) yields

(Uh)lkbeay) () = X (Fle€shen)(z) = D (Flkhea—soés)(2)

Bqu BE]Fq
1 (B) Z+ ﬁ J
- ; Z Z aj “Un—2-m t )
BeFq 722

Since the uniformizer at A 4y(0) is up—1-m(2), Lemma 2.2 gives the
inequality (3.2).

Let us show the assertion (2). Take any f € S} ; and d € A,,_;. Since
we already know U, f € S} , by (1), it is enough to show

(3.3) ord(h,a)(0), U f) = 2.
By Lemma 3.2 (2), the uniformizer at h4)(0) = h(o,a)J () is un(2).
Consider the equality
(3.4) (Uef)kho.ad = Z Fle€sh,ay) + flr€oho.a) -
BEFS
For the first term in the right-hand side of (3.4), we have
u(8 (1 +td) =0
and by Lemma 3.2 (1) we can write

(f|kh(6*1(1+td),d))(z) = Z aj“n—l(z)ja a; € Co.

j=2
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Then Lemma 3.4 (2) gives

(héhan ) =060 Dams (557
j=2

= %k D ;B Py (z _tﬂl)J

j=2

and by Lemma 2.2 this term lies in u,(2)?Ce[[un(2)]].
For the second term in the right-hand side of (3.4), write

(flkhoad)(z) = Y agun(z), ;€ Co.
=1
By Lemma 3.4 (3), we have
(flkéoho.ay ) (2) =t (flehoayd) (tz) = t* Z ajun(tz)’.
j>1
Since Lemma 2.1 (3) shows

n (£2) € tn(2)*Coo[[un (2)]],

we obtain the inequality (3.3). This concludes the proof of the propo-
sition. ]

Recall that we fixed an embedding ¢, : K — C,. We say A € K is a
t-adic unit if ¢,(A) € O, .

Theorem 3.10. For any integer k = 2, the following are equivalent.
(1) U; acting on 5,22)(F1(t”)) has no t-adic unit eigenvalue.
(2) U; acting on S}, has no t-adic unit eigenvalue.
(5) dime, STy (")) < ¢"
(4) Uy acting on 552)(F1(t”)) is nilpotent.
(5) Uy acting on S} is nilpotent.
(6) dime,, S3(T'1 (")) < ¢" .
If these equivalent conditions hold, then for any k > 2 we have
dime, ST () = "
and all Hecke operators act trivially on SP*(T'; (t7)).

Proof. The equivalence of (1)—(3) follows from Lemma 3.7, Lemma 3.8
and Proposition 3.9. By [Hat3, (2.6) and Proposition 2.2], any eigen-
value of Uy acting on So(I';(t")) is algebraic over F,. Thus U; acts on
a subspace of Sy(I'y(t")) without t-adic unit eigenvalue if and only if
the action is nilpotent. This shows the equivalence of (4)—(6). The
equivalence of (3) and (6) follows from [Hat3, Proposition 3.4 (1)].
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If these conditions hold, then we have dime, S™4(T' (")) = ¢" ' and
the natural map
ST (")) — Sk/Sh,
is an isomorphism compatible with all Hecke operators. Now the last
assertion follows from Lemma 3.8. O

Since Xi(t)c, is of genus zero, we have S§2)(F1(t)) = 0 and the
nilpotency of U; acting on it holds trivially. Thus Theorem 3.10 yields
the following corollary, which reproves [Hat2, Lemma 2.4] and [Hat3,
Proposition 4.3] without using the theory of A-expansions [Pet] or
Bandini-Valentino’s formula [BV, (4.2)].

Corollary 3.11. For any k = 2, we have
dime, ST (t) = 1
and all Hecke operators act trivially on Sg*4(T'y(t)).
Note that by [GN, Corollary 5.7] the genus of X;(t")c,, is
1+ 22—+ 1)¢" '+ (n—1)¢"?

and for n = 2 it is zero only if n = ¢ = 2.

4. FREENESS AND TRIVIALITY

In this section, we prove the triviality of the Hecke action on Sy (I'; ("))
for any k = 2 and n = 1 (Theorem 4.9). Put ©,, = 1+tA, < AY. The
key point of the proof is to show that Sa(I'1(¢")), which we consider
as a Cy[0,]-module via the diamond operator, is the direct sum of
copies of C[0,,]| (Proposition 4.8). For this, we need a description of
Sa(I'q (")) using harmonic cocycles on the Bruhat-Tits tree.

4.1. Bruhat-Tits tree and I';(t"). We consider K2 as the set of row
vectors, and define an action o of GLy(Ky) on K2 by

vy o (z1,22) = (331#52)’)’71-

Let 7 be the Bruhat-Tits tree for SLy(K). Recall that the set Ty of
vertices of T is by definition the set of K -equivalence classes of O -
lattices in K2, where O, is the ring of integers of K. The action o
induces an action of GLy(K ) on the tree 7, and also on the oriented
tree T° associated to 7. We denote by 7T, the set of oriented edges.
For any e € 7%, the origin, the terminus and the opposite edge of e are
denoted by o(e), t(e) and —e, respectively. Then the group {+1} acts
on 7? by (—1)e = —e, which commutes with the action of GLy(K,).
Put m = 1/t, which is a uniformizer of K. For any integer i, let
v; be the class of the lattice Ok (7",0) ® Ok, (0,1). Then we have
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T 0

0 1
and terminus v;;1.

For any subgroup I' of SLy(A), we say e € T,? is I'-stable if Stab(T', e) =
{1}, and I'-unstable otherwise. We define I'-stability of a vertex simi-
larly. The set of I-stable edges is denoted by 7:°'™". For I' = I'y(t), we
know [LM, §7] that the set of I'; (¢)-stable edges is equal to I'; (t) J (tep)

with
0 —1
J= (1 ' ) |
By [Ser, Ch. II, §1.2, Corollary]|, this shows:

Lemma 4.1. A complete set of representatives of Ty ")\ T = /{+1}
s given by

vp = v;. We denote by e; the oriented edge with origin v;

Al,n = {h(gd);]eo | C, de An—l}-

4.2. Harmonic cocycles. In this subsection, we recall a description
of Drinfeld cuspforms using harmonic cocycles due to Teitelbaum [Tei],
following [Boc| and [Hat3].

Let k& = 2 be any integer. We denote by Hj o(Cqy) the Cy-subspace
of homogeneous polynomials of degree k — 2 in the polynomial ring
Co[X,Y]. We consider the left action o of GLy(K) on it defined by

vyo (X,Y)=(X,Y)r.
We put Vi (Cy) = Home,, (Hy 2(Cy), Cy), on which GLy(K) acts nat-
urally. For £ € GLy(K), w € Vi(Cyp) and P(X,Y) € Hy 2(Cy), the
action is given by
(Eow)(P(X,Y)) =w(" o P(X,Y)) = w(P((X,Y)E)).

Definition 4.2. A map c¢: T° — Vi(Cy) is called a harmonic cocycle
of weight k over C, if the following two conditions hold:

(1) For any v € 7y, we have

Z c(e) = 0.
eeT?, t(e)=v

(2) For any e € T°, we have c¢(—e) = —c(e).
For any arithmetic subgroup I' of SLy(A), we say c is I-equivariant
if ¢c(ye) = yoc(e) for any v € I" and e € T°. We denote the Cg-
vector space of I'-equivariant harmonic cocycles of weight k£ over Cg
by Cp(L).

Let I' be an arithmetic subgroup of SLy(A) which is p'-torsion free.
In this case, for any I'-unstable vertex v, the group Stab(I',v) fixes a
unique rational end which we denote by b(v).
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Definition 4.3. A I'-stable edge ¢’ € T,? is called a I'-source of an edge
e € T2 if the following conditions hold.

(1) If e is I'-stable, then ¢’ = e.

(2) If e is I-unstable, then a vertex v of €’ is I-unstable, e lies on the
unique half line from v to b(v) and e has the same orientation
as €' with respect to this half line.

The set of I'-sources of e is denoted by srcr(e).

For any harmonic cocycle ¢ : T2 — Vi (Cy) of weight k over C,, we
have

(4.1) c(e) = Z c(e').
e’esrcr(e)

We denote by Si(I') the Cy-vector space of Drinfeld cuspforms of
level I' and weight k. Then, for any rigid analytic function f on €2
and e € T, Teitelbaum defined an element Res(f)(e) € Vi(Cs), which

gives a natural isomorphism of C-vector spaces
(4.2) Resr : S(T') — Cy™(T),  f+ (e~ Res(f)(e))

[Tei, Theorem 16]. Note that we are following the normalization in
[Boe, Theorem 5.10]. Moreover, by [Béc, (17)], the slash operator can
be read off via the corresponding harmonic cocycle by

(4.3) Res(f[k7)(e) = 77" o Res(f)(ve).

Teitelbaum gave another description of Drinfeld cuspforms using the
Steinberg module St, which is defined as the kernel of the augmentation
map

St = Ker(Z[P'(K)] — Z).
It admits a natural right GLy(K)-action via

(v, (2 y) = (z:y)y.

Then, for any arithmetic subgroup I" of SLy(A) which is p/-torsion free,
[Tei, p. 506] gives a Co-linear isomorphism

(4.4) C*(I) — St ®zr) Va(Coo).

Lemma 4.4.

dime, Gy (T (")) = ¢*" Y.
Proof. The isomorphism (4.4) and [Hat3, Lemma 3.6] show that the
dimension is [[';(¢) : 'y (t")], which equals 1A% | = ¢V, 0

Lemma 4.5. Let ¢ be any element of CY*(T';(t")).
(1) For any v € T'1(t") and e € T, we have c(ve) = c(e).
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(2) c is determined by its restriction to the subset Ay, of Lemma

4.1,

Proof. Since the group GLy(K) acts trivially on V5(Cy) = Co,, we have
c(ve) = yoc(e) = c(e) and the assertion (1) follows.

For the assertion (2), it suffices to show that if the restriction of ¢
to Ay, is zero, then c(e) = 0 for any e € 7,°. By (4.1), we may assume
that e is I'; (¢)-stable. Then it is written as e = +y¢’ with some ¢’ € Ay,
and «y € I'; ("), which yields c(e) = £y o ¢(e’) = 0. This concludes the
proof. 0

Corollary 4.6. The Cy,-linear map
Cgar(rl (tn)) - @ (COO7 C— (C(e))eeALn

eeALn
s an isomorphism.
Proof. By Lemma 4.5 (2), the map is injective. Since fA;, = ¢*"~Y,
Lemma 4.4 implies that it is an isomorphism. U

By Corollary 4.6, there exists a unique element [c, d] € C3*(T'; ("))
satisfying
1 if (¢, d) = (c,d),
0 otherwise.

[C, d](h(c’,d’)Jeo) = {

The set {[c,d] | ¢,d € A,_1} forms a basis of the Cy-vector space
Gy (T (t")).

4.3. Proof of the main theorem. Consider the subgroup 6, =
1+tA, of AX. Via the isomorphism Resr, n of (4.2), the diamond op-
erator {a)m acting on Sy(T'1(t")) induces an operator on CHar(T'y (")),
which we also denote by {(a)m. In particular, the group ©,, acts on
Char (T (#7)) via a — (a)pm.

Lemma 4.7. For any a,c,d € A,_1, the action of 1 +ta € ©,, on [c,d]
15 given by
(4 taym[c,d] = [(1 +ta) e, (1 + ta) ' (d — a)].
Proof. By (4.3) and Lemma 3.5, for any ¢/, d’ € A,_; we have
(1 +taye e, d]) (b anJeo) = ¢, dl (M +ta)e a+d +tady T €0);

which is equal to one if (¢/,d") = ((1 + ta) '¢, (1 4 ta) *(d — a)) and
zero otherwise. This concludes the proof. O

Proposition 4.8. The C,[0O,]-module So(I'1(t")) is isomorphic to the
direct sum of "' copies of Coo[Oy].
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Proof. Tt suffices to show the assertion for CYar(T';(t")). Take any
(c,d) € A%2_,. We claim that the ©,-orbit
{(1 +taym|c,d] |ae A, 1}
of [¢, d] is of cardinality ¢"~'. Indeed, if {1+ta)m[c, d] = {1+ta' y|c,d]
for some a,a’ € A,,_1, then Lemma 4.7 yields
(1+ta) '(d—a)=(1+td) '(d—d),

which is equivalent to (1 + td)(a’ — a) = 0 and we obtain ¢’ = a.

We denote by V(c,d) the Cy-subspace of C3ar(T'y(¢")) spanned by
the ©,-orbit of [c,d]. Then V(c,d) is stable under the ©,-action and
dime, V(c,d) = ¢"~'. Consider the map

Co|On] = Ve, d), aw— {ay|c,d].
It is a homomorphism of Cy[O,]-modules which is surjective. Since
the both sides have the same dimension, it is an isomorphism. Since

the Cy-vector space Char(T'y(t")) is the direct sum of V(c,d)’s, the
proposition follows from Lemma 4.4. O

Theorem 4.9. We have
dime,, Sg™(I1(t")) = ¢" ™
and all Hecke operators act trivially on S*(T'y (")) for any k = 2.

Proof. By Theorem 3.10, it is enough to show dimg, S§™(T(t")) <
n—1
q" . Put

n n  (14+tA, A,
Fg(t)={7€SL2(A)‘7modt e< 0 1+tAn)}’

as in [Hat3, §3]. Then the ©,-fixed part of Sy(I';(t")) is Sa(T'H(t")).
Since the Hecke operator U; commutes with the action of ©, and it
is defined by the same formula for the levels T';(¢") and '} (¢") [Hat3,
§3.1], we see that S9*4(I";(#")) is stable under the ©,-action and

Syr(Da(£") O = S5m(TR(e),

where the right-hand side is the ordinary subspace of So(T'5(¢")) defined
similarly to the case of Sy(I';(¢")). Then [Hat3, Proposition 3.5] and
Corollary 3.11 yield

dimg, Sy™(T1(#"))°" = dime, S™(TE(t")) = dime,, ST () = 1.

On the other hand, Proposition 4.8 gives an injection of Cy[0,]-
modules

n—1

q
Sgrd = ST (t") = P Vi, Vi = Coo[On].

=1
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Let I be the set of integers M € [1,¢" '] such that there exists an
injection of Co,[©,]-modules 5§ — @1, V;. Then I is nonempty and
let m be its minimal element.

Now we reduce ourselves to showing m = 1. Suppose m > 1 and
consider an injection S§' — @, V;. Since ©,, is an abelian p-group
and C,, contains no non-trivial p-power root of unity, Schur’s lemma
implies that the only irreducible representation of ©, over C is the
trivial representation. Since both of

m
San, S @Vi
i=2
are Cy[0,,]-submodules of S9™. if one of them is non-zero then it con-
tains the trivial representation. Since the C-vector space (Sg'4)€n is
one-dimensional, we see that either of them is zero. Thus either of the
induced maps

m m—1 m m
s (@) =@ s (v (D) -
i=1 i=1 i=1 =2

is injective, which contradicts the minimality of m. This concludes the
proof of the theorem. O

Theorem 3.10 and Theorem 4.9 yield the following corollary.

Corollary 4.10. The operator U; acting on Séz)(f‘l(t”)) is nilpotent.

Remark 4.11. By Theorem 3.10, if we could prove the nilpotency of

U acting on 552) (T (t™)) directly, then Theorem 4.9 would follow. As
the proof of Theorem 4.9 indicates, the reason we can bypass it is that
we know the dimension of S$*4(I"; (¢)) because X (t)c,, is of genus zero.
The author has no idea of how to show the nilpotency directly.
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