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Abstract. Let p be a rational prime and q ¡ 1 a p-power. Let
SkpΓ1ptqq be the space of Drinfeld cuspforms of level Γ1ptq and
weight k for Fqrts. For any non-negative rational number α, we de-
note by dpk, αq the dimension of the slope α generalized eigenspace
for the U -operator acting on SkpΓ1ptqq. In this paper, we prove a
function field analogue of the Gouvêa-Mazur conjecture for this
setting. Namely, we show that for any α ¤ m and k1, k2 ¡ α � 1,
if k1 � k2 mod pm, then dpk1, αq � dpk2, αq.

1. Introduction

Let p be a rational prime, q ¡ 1 a p-power, A � Fqrts and ℘ P A
a monic irreducible polynomial. For K8 � Fqpp1{tqq, we denote by
C8 the p1{tq-adic completion of an algebraic closure of K8. Then the
Drinfeld upper half plane Ω � C8zK8 has a natural structure of a
rigid analytic variety over K8.

Let k be an integer and Γ a subgroup of SL2pAq. Then a Drinfeld
modular form of level Γ and weight k is a rigid analytic function f :
Ω Ñ C8 satisfying

f

�
az � b

cz � d



� pcz � dqkfpzq for any z P Ω,

�
a b
c d



P Γ

and a holomorphy condition at cusps. The notion of Drinfeld modular
form can be considered as a function field analogue of that of elliptic
modular form and the former often has properties which are parallel
to the latter. However, despite that the theory of p-adic families of
elliptic modular forms is highly developed and has been yielding many
applications, ℘-adic properties of Drinfeld modular forms are not well-
understood yet. A typical difficulty in the Drinfeld case seems that
a näıve analogue of the universal character Z�

p Ñ ZprrZ�
p ss

� is not
locally analytic by [Jeo, Lemma 2.5] and thus similar constructions to
those in the classical case including [AIP] will not immediately produce
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an analytic family of invertible sheaves interpolating automorphic line
bundles.

Still, there seem to exist interesting structures in ℘-adic properties
of Drinfeld modular forms. In [BV1, BV2], Bandini-Valentino studied
an analogue of the classical Atkin U -operator, which we also denote by
U , acting on the space SkpΓ1ptqq of Drinfeld cuspforms of level Γ1ptq
and weight k. The operator U is defined by

(1.1) pUfqpzq �
1

t

¸
βPFq

f

�
z � β

t



.

The normalized t-adic valuation of an eigenvalue of U is called slope.
Note that here we adopt the different normalization from that of Bandini-
Valentino, and as a result our notion of slope is smaller than theirs by
one. For a non-negative rational number α, we denote by dpk, αq the
dimension of the generalized eigenspace of U acting on SkpΓ1ptqq for
the eigenvalues of slope α. Then they proposed a conjecture on a p-adic
variation of dpk, αq with respect to k [BV2, Conjecture 6.1] which can
be regarded as a function field analogue of the Gouvêa-Mazur conjec-
ture [GM1, Conjecture 1]. In this paper, we will prove it.

Theorem 1.1. (Theorem 2.10) Let m ¥ 0 be an integer and α a non-
negative rational number. Suppose α ¤ m. Then the dimension dpk, αq
of the slope α generalized eigenspace in SkpΓ1ptqq satisfies

k1, k2 ¡ α � 1, k1 � k2 mod pm ñ dpk1, αq � dpk2, αq.

We will also prove its variant for level Γ0ptq (Theorem 3.1).
For the proof, put

P pkqpXq � detpI �XU | SkpΓ1ptqqq.

First note that, as is mentioned in [Wan, §4, Remarks], the arguments
of [GM2] and [Wan] can be generalized over suitable Drinfeld modular
curves (including X∆

1 pnq of [Hat]). In particular, the characteristic
power series of U acting on the spaces of ℘-adic overconvergent Drinfeld
modular forms of weight k1 and k2 are congruent modulo ℘p

m
. As

its analogue in our setting, we can show the congruence P pk1qpXq �
P pk2qpXq mod tp

m
up to some factor. However, though with this we

can prove Theorem 1.1 for p ¥ 3, it is not enough to settle the case of
p � 2 on which Bandini-Valentino stated their conjecture.

To go further, we investigate the formula of the representing matrix
of U given by Bandini-Valentino [BV1, (3.1)] more closely. Luckily,
the representing matrix is of very special form: each entry on the j-th
column (with the normalization that the leftmost column is the zeroth)
is an element of Fqtj. Thanks to this fact, we can give a lower bound
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of elementary divisors of the representing matrix (Lemma 2.2). Then
a perturbation argument shows that the n-th coefficients of P pkqpXq
and P pk�pmqpXq are much more congruent than modulo tp

m
up to some

factor of slope ¥ k�1 (Corollary 2.7), which is enough to yield Theorem
1.1 for any p.

Acknowledgments. The author would like to thank Gebhard Böckle
for informing him of Valentino’s table computing characteristic poly-
nomials of U , and Maria Valentino for pointing out an error in the
author’s previous computer calculation. He also would like to thank
the anonymous referee for improving Lemma 2.2 and giving a sugges-
tion to consider the case of Γ0ptq. This work was supported by JSPS
KAKENHI Grant Number JP17K05177.

2. Dimension variation

Let k ¥ 2 be an integer. Put

Γ1ptq �

"
γ P GL2pAq

���� γ �
�

1 �
0 1



mod t

*
� SL2pAq.

On the space SkpΓ1ptqq of Drinfeld cuspforms of level Γ1ptq and weight
k, we consider the U -operator for t defined by (1.1). Note that we
follow the usual normalization of the U -operator which differs from that
of [BV1, §2.4] by 1{t. Then Bandini-Valentino [BV1, (3.1)] explicitly

describe the action of U with respect to some basis c
pkq
0 , . . . , c

pkq
k�2, which

reads as follows with our normalization:

Upc
pkq
j q �p�tqj

�
k�2�j
j

�
c
pkq
j � tj

¸
hPZ,h�0

!�
k�2�j�hpq�1q

�hpq�1q

�

�p�1qj�1
�
k�2�j�hpq�1q

j

�)
c
pkq
j�hpq�1q.

(2.1)

Here it is understood that the binomial coefficient
�
c
d

�
is zero if any of

c, d, c�d is negative and the terms involving c
pkq
j�hpq�1q are zero if j�hpq�

1q R r0, k � 2s. We denote by U pkq � pU
pkq
i,j q0¤i,j¤k�2 the representing

matrix of U for this basis. Then we have U pkq PMk�1pAq. We identify
the t-adic completion of A with Fqrrtss naturally and consider U pkq as
an element of Mk�1pFqrrtssq. Let vt be the t-adic additive valuation
normalized as vtptq � 1.

Definition 2.1. (1) Let B � pBi,jq0¤i¤m�1,0¤j¤n�1 be an element
of Mm,npFqrrtssq and b a non-negative integer. We say B is
b-glissando if Bi,j P Fqtbj for any i, j.
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(2) For such B, write B � B0diagp1, tb, . . . , tbpn�1qq, where B0 P
Mm,npFqq and diagp1, tb, . . . , tbpn�1qq is the diagonal matrix whose
diagonal entries are as indicated. We say a non-negative integer
j is a pivot number of B if in the row reduced form of B0, a
pivot is on the j-th column.

By (2.1), the matrix U pkq is 1-glissando. Moreover, the l-th smallest
pivot number jl of a b-glissando matrix satisfies jl ¥ l � 1.

Lemma 2.2. Let b be a non-negative integer. Let B � pBi,jq0¤i¤m�1,0¤j¤n�1

be a b-glissando matrix in Mm,npFqrrtssq. Let j1   � � �   jr be the pivot
numbers of B. Let s1 ¤ s2 ¤ � � � ¤ su be the elementary divisors of B
(namely, they are integers or �8 such that the pi � 1, i � 1q-entry of
the Smith normal form of B has normalized t-adic valuation si). Then
sl   �8 if and only if l ¤ r, and for any such l, we have sl � bjl.

In particular, we have sl ¥ bpl � 1q for any l.

Proof. Let B0 be as in Definition 2.1 (2) and B1
0 its row reduced form.

Then the Smith normal form ofB agrees with that ofB1
0diagp1, tb, . . . , tbpn�1qq.

The latter product is of row echelon form such that the l-th pivot is
tbjl and every entry of the l-th row is divisible by the pivot. This yields
the lemma. �

For any element P pXq �
°8
n�0 pnX

n P FqrrtssrrXss, the Newton
polygon of P pXq is by definition the lower convex hull of the set

tpn, vtppnqq | n ¥ 0u.

Lemma 2.3. For any B P MmpFqrrtssq and any non-negative integer
c, put

P pXq � detpI � tcXBq �
m̧

n�0

pnX
n P FqrrtssrXs.

Let s1 ¤ s2 ¤ � � � ¤ su be the elementary divisors of B.

(1) vtppnq ¥ cn�
°n
l�1 sl.

(2) Any slope of the Newton polygon of P pXq is no less than c.
(3) If B is b-glissando, then we have vtppnq ¥ cn� b

2
npn� 1q.

Proof. First note that, for the characteristic polynomialQpXq � detpXI�
tcBq, we have P pXq � XmQpX�1q and thus pn is, up to a sign, equal
to the sum of the principal n� n minors of tcB. Since the elementary
divisors of tcB are c� s1, . . . , c� su, this shows (1). Since p0 � 1, the
resulting inequality vtppnq ¥ cn implies (2). By Lemma 2.2 and (1),
we obtain (3). �
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Now we put

P pkqpXq � detpI �XU pkqq �
k�1̧

n�0

apkqn Xn

and a
pkq
n � 0 for any n ¥ k. Let N pkq be the Newton polygon of

P pkqpXq. For any non-negative rational number α, we denote by dpk, αq
the dimension of the generalized U -eigenspace for the eigenvalues of
normalized t-adic valuation α. Then dpk, αq is equal to the width of
the segment of slope α in the Newton polygon N pkq.

Lemma 2.4. dpk, 0q � 1.

Proof. By (2.1), we have U
pkq
0,0 �

�
k�2

0

�
� 1. On the other hand, since

U pkq is 1-glissando, we have vtpU
pkq
i,j q ¥ j and

a
pkq
1 � �

k�2̧

j�0

U
pkq
j,j � �1 mod t.

Moreover, from Lemma 2.3 (3) we obtain vtpa
pkq
n q ¡ 0 for any n ¥ 2.

This yields the lemma. �

Lemma 2.5. Let a and b be non-negative integers. Let m ¥ 1 be an
integer. Then we have�

a�pm

b

�
�
�
a
b

�
�
�

a
b�pm

�
mod p.

Here it is understood that
�
c
d

�
� 0 if any of c, d, c� d is negative.

Proof. This follows from

pX � 1qa�p
m

� pX � 1qapXpm � 1q mod p.

�

Proposition 2.6. Let m ¥ 1 be an integer. Then there exist 1-
glissando matrices C PMpm,k�1pAq and D PMpm,pm�k�1pAq satisfying

U pk�pmq �

�
U pkq O O
C tk�1D O



mod tp

m

.

Here it is understood that the middle blocks are empty if pm ¤ k � 1.

Proof. Let j be an integer satisfying 0 ¤ j ¤ k� pm � 2. By (2.1), the

element Upc
pk�pmq
j q is equal to

p � tqj
�
k�pm�2�j

j

�
c
pk�pmq
j

� tj
¸

hPZ,h�0

!�
k�pm�2�j�hpq�1q

�hpq�1q

�
� p�1qj�1

�
k�pm�2�j�hpq�1q

j

�)
c
pk�pmq
j�hpq�1q.
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Note that both of U
pk�pmq
i,j and U

pkq
i,j are divisible by tp

m
for j ¥ pm.

Since U pk�pmq is 1-glissando, what we need to show is

(1) For any j ¤ mintk � 2, pm � 1u and i P r0, k � 2s, we have

U
pk�pmq
i,j � U

pkq
i,j , and

(2) If k ¤ pm, then for any j P rk � 1, pm � 1s and i P r0, k � 2s, we

have U
pk�pmq
i,j � 0.

First we assume j ¤ mintk�2, pm�1u. By Lemma 2.5, the element

Upc
pk�pmq
j q equals

p�tqj
!�

k�2�j
j

�
�
�
k�2�j
j�pm

�)
c
pk�pmq
j

� tj
¸

hPZ,h�0
j�hpq�1qPr0,k�2s

!�
k�2�j�hpq�1q

�hpq�1q

�
�
�
k�2�j�hpq�1q
�hpq�1q�pm

�

�p�1qj�1
��

k�2�j�hpq�1q
j

�
�
�
k�2�j�hpq�1q

j�pm

�	)
c
pk�pmq
j�hpq�1q

� tj
¸

hPZ,h�0
j�hpq�1q¥k�1

!�
k�pm�2�j�hpq�1q

�hpq�1q

�
� p�1qj�1

�
k�pm�2�j�hpq�1q

j

�)
c
pk�pmq
j�hpq�1q.

Hence Upc
pk�pmq
j q agrees with

k�2̧

i�0

U
pkq
i,j c

pk�pmq
i � p�tqj

�
k�2�j
j�pm

�
c
pk�pmq
j

� tj
¸

hPZ,h�0
j�hpq�1qPr0,k�2s

!�
k�2�j�hpq�1q
�hpq�1q�pm

�
� p�1qj�1

�
k�2�j�hpq�1q

j�pm

�)
c
pk�pmq
j�hpq�1q

� tj
¸

hPZ,h�0
j�hpq�1q¥k�1

!�
k�pm�2�j�hpq�1q

�hpq�1q

�
� p�1qj�1

�
k�pm�2�j�hpq�1q

j

�)
c
pk�pmq
j�hpq�1q.

Since j   pm, we have
�
k�2�j
j�pm

�
� 0. For the case of j � hpq � 1q P

r0, k�2s, we also have �hpq�1q�pm ¤ j�pm   0 and
�
k�2�j�hpq�1q
�hpq�1q�pm

�
��

k�2�j�hpq�1q
j�pm

�
� 0. This proves (1).

Next we assume k ¤ pm and j P rk�1, pm�1s. For any i P r0, k�2s,

the element U
pk�pmq
i,j is equal to

�tj
!�

k�pm�2�j�hpq�1q
�hpq�1q

�
� p�1qj�1

�
k�pm�2�j�hpq�1q

j

�)
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if we can write i � j � hpq � 1q with some h � 0, and zero otherwise.
Since i ¤ k � 2, in the former case we have k � 2 � j � hpq � 1q ¥ 0
and Lemma 2.5 implies�

k�2�j�hpq�1q�pm

�hpq�1q

�
�
�
k�2�j�hpq�1q

�hpq�1q

�
�
�
k�2�j�hpq�1q
�hpq�1q�pm

�
,�

k�2�j�hpq�1q�pm

j

�
�
�
k�2�j�hpq�1q

j

�
�
�
k�2�j�hpq�1q

j�pm

�
.

Since i � j�hpq� 1q P r0, k� 2s and j   pm, we have
�
k�2�j�hpq�1q
�hpq�1q�pm

�
��

k�2�j�hpq�1q
j�pm

�
� 0 as is seen above. Since j ¥ k � 1, we also have�

k�2�j�hpq�1q
�hpq�1q

�
�
�
k�2�j�hpq�1q

j

�
� 0. This proves (2) and the proposi-

tion follows. �

Let V PMk�pm�1pAq be the matrix of the right-hand side of Propo-
sition 2.6. Let D1 be the upper ppm � k� 1q � ppm � k� 1q block of D
if k ¤ pm and D1 � O otherwise. Put

P̃ pXq � detpI �XV q � P pkqpXq detpI � tk�1XD1q

and write P̃ pXq �
°k�pm�1
n�0 ãnX

n. We denote by Ñ the Newton poly-

gon of P̃ pXq.

Corollary 2.7. Let m and n be integers satisfying m ¥ 1 and 1 ¤ n ¤
k � pm � 1. Then we have

vtpa
pk�pmq
n � ãnq ¥ pm �

n�1̧

l�1

mintl � 1, pmu.

Here the sum on the right-hand side is meant to be zero for n � 1.

Proof. Write

V � U pk�pmq � tp
m

W

with some W PMk�pm�1pAq. Let s1 ¤ � � � ¤ sk�pm�1 be the elementary
divisors of U pk�pmq. Since U pk�pmq is 1-glissando, by Lemma 2.2 we
obtain sl ¥ l � 1 for any l. Then [Ked, Theorem 4.4.2] shows

vtpa
pk�pmq
n � ãnq ¥ pm �

n�1̧

l�1

mintsl, p
mu ¥ pm �

n�1̧

l�1

mintl � 1, pmu.

�

Lemma 2.8. Let j0 ¥ 0 be an integer. Let m and n be positive integers.
Then we have

pm �
n�1̧

l�1

mintj0 � l � 1, pmu ¡

"
mpn� 1q pj0 � 0q
mn pj0 ¡ 0q.
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Proof. We denote the left-hand side of the inequality by L. The case
n � 1 follows from L � pm ¡ m ¡ 0. For n ¥ 2, first we assume
n � 2 ¥ pm � j0. Note that in this case j0 � l � 1   pm if and only if
l ¤ pm � j0. If pm ¤ j0, then the minimum in the sum of the lemma is
always pm and thus L � pmn. Since n ¥ 1 and pm ¡ m for m ¥ 1, we
have pmn ¡ mn and the lemma follows for this case. If pm ¡ j0, then
we have

L � pm �
pm�j0¸
l�1

pj0 � l � 1q � pmpn� pm � j0 � 1q

�
1

2
ppm � j0qpp

m � j0 � 1q � pmpn� pm � j0q

�
1

2
pmp2n� 1 � ppm � j0qq �

1

2
j0pp

m � j0 � 1q.

Since we are assuming n� 2 ¥ pm� j0 ¡ 0, we obtain L ¥ 1
2
pmpn� 1q.

For m ¥ 1, we have 1
2
pm ¥ m and

L ¥
1

2
pmpn� 1q ¥ mpn� 1q ¡ mn.

Next we assume n � 2   pm � j0. In this case, put ε � 0 if j0 � 0
and ε � 1 otherwise. Then L equals

pm�
n�1̧

l�1

pj0 � l� 1q ¥ pm�
n�1̧

l�1

pε� l� 1q � pm�
1

2
pn� 1qpn� 2� 2εq.

Since ε2 � ε, the right-hand side is greater than mpn � 1 � εq if and
only if �

n�

�
m� ε�

3

2



2

� 2pm �mpm� 1q �
1

4
¡ 0.

Since m,n and ε are integers, the first term is no less than 1
4
. Since

we can show 2pm ¡ mpm � 1q for any p and m ¥ 1, the lemma also
follows for this case. �

Lemma 2.9. The part of the Newton polygon Ñ of P̃ pXq of slope less
than k � 1 agrees with that of N pkq.

Proof. For any QpXq P FqrrtssrXs and any non-negative rational num-
ber α, the Newton polygon of QpXq has a segment of slope α and width
l if and only if it has exactly l roots of normalized t-adic valuation �α.
By Lemma 2.3 (2), every root of the polynomial detpI � tk�1XD1q has
normalized t-adic valuation no more than �pk � 1q. Thus, for P̃ pXq
and P pkqpXq, the sets of roots of normalized t-adic valuation more than
�pk � 1q agree including multiplicities. This shows the lemma. �
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Theorem 2.10. Let k and m be integers satisfying k ¥ 2 and m ¥ 0.
Let α be a non-negative rational number satisfying α ¤ m and α  
k � 1. Then we have dpk � pm, αq � dpk, αq.

Proof. As in the proof of [Wan, Lemma 4.1], let tα1, . . . , αru be the set
of slopes of the Newton polygons N pk�pmq and N pkq which is no more
than m and less than k � 1, and renumber them so that αi   αi�1 for
any i. It is enough to show dpk � pm, αiq � dpk, αiq for any i.

Suppose the contrary, and take the smallest slope α � αi in this set
satisfying dpk � pm, αq � dpk, αq. By Lemma 2.4, we have α1 � 0 and
dpk� pm, 0q � dpk, 0q � 1. Thus we may assume m ¥ 1, r ¥ i ¥ 2 and
α ¡ 0.

By Lemma 2.9, the Newton polygons N pkq, N pk�pmq and Ñ agree with
each other on the part of slope less than α. We choose k1 P tk, k� pmu
such that the slope α occurs in N pk1q and let k2 be the other.

Let pn, vtpa
pk1q
n qq be the right endpoint of the segment of N pk1q of

slope α, and Q its left endpoint. Note that Q is a common vertex of
the Newton polygons N pkq, N pk�pmq and Ñ . Since the Newton polygon
N pk1q has a segment of slope zero, we have n ¥ 2 and

vtpa
pk1q
n q ¤ αpn� 1q ¤ mpn� 1q.

Then Corollary 2.7 and Lemma 2.8 imply

(2.2) vtpa
pk1q
n q   vtpa

pk�pmq
n � ãnq.

If k1 � k, then Lemma 2.9 shows vtpa
pk1q
n q � vtpa

pkq
n q � vtpãnq and

from (2.2) we obtain vtpa
pk�pmq
n q � vtpãnq � vtpa

pkq
n q. Thus the Newton

polygon N pk�pmq has a segment of finite slope β with left endpoint Q.

Since α is the smallest, we have β ¥ α. The equality vtpa
pk�pmq
n q �

vtpa
pkq
n q implies α � β and dpk, αq ¤ dpk � pm, αq. In particular, the

slope α also occurs in N pk�pmq.

If k1 � k � pm, then (2.2) gives vtpãnq � vtpa
pk�pmq
n q. Thus the

Newton polygon Ñ has a segment of finite slope γ with left endpoint
Q. Then this equality implies γ ¤ α   k � 1. By Lemma 2.9, the
Newton polygon N pkq also has a segment of slope γ with left endpoint
Q. Since α is the smallest, we have γ � α, and the equality above also
implies that the width of the segment of slope α in Ñ is no less than
that in N pk�pmq. Thus Lemma 2.9 again shows dpk, αq ¥ dpk � pm, αq.
In particular, the slope α also occurs in N pkq. Combining these two
cases, we obtain dpk, αq � dpk � pm, αq, which is the contradiction.
This concludes the proof of Theorem 2.10. �



10 SHIN HATTORI

3. Variant for Γ0ptq

We put

Γ0ptq �

"
γ P GL2pAq

���� γ �
�
� �
0 �



mod t

*
.

By a similar argument, we can show a variant of Theorem 2.10 for the
Drinfeld cuspforms of level Γ0ptq, as follows. Let k ¥ 2 be an integer
and w, e P Z{pq � 1qZ. Consider the character

χe : F�q Ñ C�
8, d ÞÑ de.

A Drinfeld cuspform of level Γ0ptq, weight k, type w and nebentypus
character χe is a rigid analytic function f : Ω Ñ C8 satisfying

f

�
az � b

cz � d



� χepdqpad�bcq

�wpcz�dqkfpzq for any z P Ω,

�
a b
c d



P Γ0ptq

which vanishes at cusps. They form a C8-subspace Sk,wpΓ0ptq, χeq of
SkpΓ1ptqq which is stable under the U -action. Then Sk,wpΓ0ptq, χeq � 0
only if k mod q� 1 � 2w� e. For any non-negative rational number α,
we denote by dpk, w, e, αq the dimension of the generalized U -eigenspace
of Sk,wpΓ0ptq, χeq for the eigenvalues of normalized t-adic valuation α.
Since we have

SkpΓ1ptqq �
à

w,ePZ{pq�1qZ
Sk,wpΓ0ptq, χeq, dpk, αq �

¸
w,ePZ{pq�1qZ

dpk, w, e, αq,

the following theorem gives a refinement of Theorem 1.1.

Theorem 3.1. Let w, e be elements of Z{pq � 1qZ. Let m ¥ 0 be an
integer and α a non-negative rational number satisfying α ¤ m. Then
we have

k1, k2 ¡ α� 1, k1 � k2 mod pmpq � 1q ñ dpk1, w, e, αq � dpk2, w, e, αq.

Proof. It is enough to show dpk � pmpq � 1q, w, e, αq � dpk, w, e, αq
for any integer k ¥ 2 and non-negative rational number α satisfying
α ¤ m and α   k � 1. We may assume k mod q � 1 � 2w � e. Let
j0 P t0, . . . , q � 2u be the representative of w � 1. Put

Jk,w � tj P Z | 0 ¤ j ¤ k � 2, j � j0 mod q � 1u, dk,w � 7Jk,w.

Then Sk,wpΓ0ptq, χeq is spanned by tc
pkq
j | j P Jk,wu [BV2, §4.3] and

the representing matrix U pk,w,eq � pU
pk,w,eq
i,j q0¤i,j¤dk,w�1 of U acting on

Sk,wpΓ0ptq, χeq with respect to this basis is the principal submatrix of
U pkq given by

U
pk,w,eq
i,j � U

pkq
j0�pq�1qi,j0�pq�1qj.
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Thus we can write U pk,w,eq � tj0B with some pq � 1q-glissando matrix
B, and by Lemma 2.2 the l-th smallest elementary divisor sl of the
matrix U pk,w,eq satisfies

(3.1) sl ¥ j0 � pq � 1qpl � 1q ¥ j0 � l � 1.

First we consider the case m � 0. By Lemma 2.3 (2), every slope
for Sk,wpΓ0ptq, χeq is no less than j0 and thus dpk�pmpq�1q, w, e, 0q �
dpk, w, e, 0q � 0 unless j0 � 0. When j0 � 0, we see as in the proof of
Lemma 2.4 that dpk, w, e, 0q � 1 for any k ¥ 2 satisfying k mod q�1 �
2w � e. Hence the theorem follows for m � 0.

Now we assume m ¥ 1. Since Jk,w � Jk�pq�1qpm,w, Proposition 2.6
implies that there exist matrices C,D satisfying

U pk�pmpq�1q,w,eq � V pk,w,eq mod tp
m

, V pk,w,eq �

�
U pk,w,eq O O
C tk�1D O



.

We denote by a
pk,w,eq
n and ã

pk,w,eq
n the n-th coefficients of

detpI �XU pk,w,eqq, detpI �XV pk,w,eqq,

respectively. Then the Newton polygon N pk,w,eq of the former agrees
with that of the latter on the part of slope less than k � 1. Moreover,
[Ked, Theorem 4.4.2], (3.1) and Lemma 2.8 yield

vtpa
pk�pmpq�1q,w,eq
n � ãpk,w,eqn q ¡

"
mpn� 1q pj0 � 0q
mn pj0 ¡ 0q.

This enables us to show the theorem just as in the proof of Theorem
2.10: when j0 � 0, the first slope is zero with multiplicity one and
the proof works verbatim. When j0 ¡ 0, consider the set of slopes of
N pk,w,eq and N pk�pmpq�1q,w,eq which is no more than m and less than
k � 1. Let α be the minimal slope in this set satisfying dpk � pmpq �
1q, w, e, αq � dpk, w, e, αq. Let k1 P tk, k � pmpq � 1qu be such that the

segment of slope α appears in N pk1,w,eq and pn, vtpa
pk1,w,eq
n qq the right

endpoint of this segment. Then we have

vtpa
pk1,w,eq
n q ¤ αn ¤ mn   vtpa

pk�pmpq�1q,w,eq
n � ãpk,w,eqn q.

With this inequality, the proof works verbatim also for this case. �

Remark 3.2. The space Sk,wpGL2pAqq of Drinfeld cuspforms of level
GL2pAq, weight k and type w admits an action of the operator Tt given
by

pTtfqpzq � tk�1fptzq �
1

t

¸
βPFq

f

�
z � β

t



.

It is known that every eigenvalue of Tt acting on Sk,wpGL2pAqq appears
also as an eigenvalue of U acting on Sk,wpΓ0ptqq (see for example [BV2,
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Proposition 3.3]). Bandini-Valentino [BV2, §3.5] expect that, with our
normalization, the set of all finite slopes for the latter except k�2

2
is

equal to the set of t-adic valuations of eigenvalues for the former, in-
cluding multiplicities. If this expectation holds true, then Theorem 3.1
will also give a dimension variation of generalized Tt-eigenspaces.

4. Remarks

Computations using (2.1) with Pari/GP indicate that the slopes ap-
pearing in SkpΓ1ptqq have some patterns (see also [BV2, §6]). The
below is a table of the case p � q � 2, where the bold numbers denote
multiplicities.

k slopes
2 01

3 01,�81

4 01, 11,�81

5 01, 3
2

2
,�81

6 01, 11, 21,�82

7 01, 21, 5
2

2
,�82

8 01, 11, 33,�82

9 01, 3
2

2
, 7

2

2
,�83

10 01, 11, 21, 43,�83

11 01, 21, 41, 9
2

4
,�83

12 01, 11, 31, 41, 53,�84

k slopes

13 01, 3
2

2
, 41, 11

2

4
,�84

14 01, 11, 21, 51, 65,�84

15 01, 21, 5
2

2
, 61, 13

2

4
,�85

16 01, 11, 33, 75,�85

17 01, 3
2

2
, 7

2

2
, 15

2

6
,�85

18 01, 11, 21, 43, 85,�86

19 01, 21, 41, 9
2

2
, 81, 17

2

6
,�86

20 01, 11, 31, 41, 51, 81, 97,�86

21 01, 3
2

2
, 41, 11

2

2
, 81, 19

2

6
,�87

22 01, 11, 21, 51, 61, 81, 91, 107,�87

23 01, 21, 5
2

2
, 61, 81, 101, 21

2

8
,�87

From the table, it seems that only small denominators are allowed for
slopes: In the author’s computation, as is already mentioned in [BV2,
§1], the only case a non-trivial denominator appears is the case of p � 2
and the denominator is at most 2. Moreover, it seems likely that the
finite slopes of SkpΓ1ptqq are less than k � 1, and that for any n, the
n-th smallest finite slope of SkpΓ1ptqq is bounded independently of k
(say, by qn�1). If the latter observations hold in general, then combined
with Theorem 2.10 it follows that for any n, the n-th smallest finite
slopes of SkpΓ1ptqq are periodic of p-power period with respect to k
including multiplicities. For example, it seems from the table that the
third smallest finite slopes of SkpΓ1ptqq in the case of p � q � 2 are the
repetition of

21, 5
2

2
, 33, 7

2

2
, 21, 41, 31, 41.

This could be thought of as a function field analogue of Emerton’s
theorem [Eme] which asserts that the minimal slopes of SkpΓ0p2qq are
periodic of period 8.
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