DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
000	0000	00	000000

Dimension variation of Gouvêa-Mazur type for Drinfeld cuspforms of level $\Gamma_1(t)$

Shin Hattori

Tokyo City University

Nov. 9, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
●oo	0000	00	

Notation

- For any field F, denote by \overline{F} its algebraic closure
- p: rational prime, q: p-power, $A = \mathbb{F}_q[t]$, $K_\infty = \mathbb{F}_q((1/t))$
- \mathbb{C}_∞ : the (1/t)-adic completion of $\overline{K_\infty}$
- $\Omega = \mathbb{C}_{\infty} \setminus K_{\infty}$: Drinfeld upper half plane

•
$$\Gamma_1(t) = \left\{ \gamma \in SL_2(A) \mid \gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod t \right\}$$

• $v_t : \mathbb{F}_q((t)) \to \mathbb{Z} \cup \{+\infty\}$: additive valuation, $v_t(t) = 1$, extended to $\overline{\mathbb{F}_q((t))} \to \mathbb{Q} \cup \{+\infty\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DMFs	t-adic analytic families?	Main theorem	Sketch of proof
000			

Drinfeld modular form

Definition

 A rigid analytic function f : Ω → C_∞ is called Drinfeld modular form of weight k and level Γ₁(t) if

$$f\left(rac{az+b}{cz+d}
ight)=(cz+d)^kf(z) ext{ for any } z\in\Omega, egin{pmatrix}a&b\\c&d\end{pmatrix}\in {\sf \Gamma}_1(t)$$

and satisfies a holomorphy condition at cusps

- f is called Drinfeld cuspform if it vanishes at cusps
- S_k(Γ₁(t)): C_∞-vector space of DCFs of weight k and level Γ₁(t)

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
oo●	0000	00	

Slope

Definition

U: endomorphism of $S_k(\Gamma_1(t))$ defined by

$$Uf(z) = \frac{1}{t} \sum_{b \in \mathbb{F}_q} f\left(\frac{z+b}{t}\right)$$

- $S_k(\Gamma_1(t))$ has an $\mathbb{F}_q(t)$ -structure preserved by U
- So we may think them over $\mathbb{F}_q(t)$, $\mathbb{F}_q((t))$ and $\overline{\mathbb{F}_q((t))}$

Definition

 v_t of any eigenvalue of U is called slope, which is in $\mathbb{Q}_{\geq 0} \cup \{+\infty\}$

 d(k, α) := dimension of generalized eigenspace for U ∩ S_k(Γ₁(t)) with eigenvalues of slope α

DMFs	t-adic analytic families?	Main theorem	Sketch of proof
	0000		

interlude: *p*-adic slope for elliptic modular forms

 For elliptic cuspform f of weight k and level Γ₀(Np), we have analogous

$$Uf(z) = \frac{1}{p} \sum_{b=0,1,\dots,p-1} f\left(\frac{z+b}{p}\right),$$

slopes using normalized *p*-adic valuation and $d_0(k, \alpha)$

Gouvêa-Mazur conjecture, refuted by Buzzard-Calegari

For any integer $m \ge \alpha$,

$$\begin{array}{l} k_1, k_2 \geq 2\alpha + 2 \\ k_1 \equiv k_2 \bmod p^m (p-1) \end{array} \right\} \stackrel{?}{\Rightarrow} d_0(k_1, \alpha) = d_0(k_2, \alpha)$$

DMFs	t-adic analytic families?	Main theorem	Sketch of proof
	0000		

interlude: *p*-adic family of eigenforms

- *p*-adic weight space W: a rigid analytic space over Q_p with W(C_p) = Hom_{cont.}(Z[×]_p, C[×]_p)
- "weight k, level $\Gamma_1(N) \cap \Gamma_0(p)$ " $\leftrightarrow (t \mapsto t^k) \in \mathcal{W}(\mathbb{Q}_p)$

Hida, Coleman, Coleman-Mazur,...

There exist families of elliptic eigenforms of finite slope parametrized by rigid analytic spaces over \mathcal{W}

Consequence (Coleman)

For any non-negative rational number α , $\exists m(\alpha) \in \mathbb{Z}_{\geq 0}$ such that

$$\begin{cases} k_1, k_2 > \alpha + 1 \\ k_1 \equiv k_2 \mod p^{m(\alpha)}(p-1) \end{cases} \end{cases} \Rightarrow d_0(k_1, \alpha) = d_0(k_2, \alpha)$$

DMFs	t-adic analytic families?	Main theorem	Sketch of proof
	0000		

Why not mimic elliptic case?

- \mathbb{C}_t : t-adic completion of $\overline{\mathbb{F}_q((t))}$
- $\bullet\,$ Why don't we consider an adic space $\mathfrak W$ with

 $\mathfrak{W}(\mathbb{C}_t) = \operatorname{Hom}_{\operatorname{cont.}}(\mathbb{F}_q[[t]]^{\times}, \mathbb{C}_t^{\times}),$

• and try to find *t*-adic analytic families of Drinfeld eigenforms over \mathfrak{W} ?

For Drinfeld case

parallel construction to elliptic case does not work (so far)

Why *t*-adic analytic family breaks down

Reason 1: scarce analytic characters (Jeong)

Only analytic characters $1 + t\mathbb{F}_q[[t]] \to \mathbb{C}_t^{\times}$ are $(t \mapsto t^c), c \in \mathbb{Z}_p$ $\to \text{No } t\text{-adic analytic interpolation of weights}$

Reason 2: no known characteristic power series (Buzzard)

 $\mathbb{F}_q[[t]]^{\times}$ top. infinitely generated, \mathfrak{W} locally non-Noetherian \rightarrow No known definition of characteristic power series

- Want to define it as a limit (of something)
- For convergence we use Noetherian assumption
- Key: "any submodule of complete module is closed" fails if non-Noether

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
000	0000	●0	
Slope pat	terns		

• Nonetheless there seem some patterns for slopes on $S_k(\Gamma_1(t))$

weight	slopes for $p = q = 2$
2	01
3	$0^1, +\infty^1$
4	$0^{1},1^{1},+\infty^{1}$
5	$0^{1}, \frac{3}{2}^{2}, +\infty^{1}$
6	$0^{1}, ar{1}^{1}, 2^{1}, +\infty^{2}$
7	$0^1, 2^1, \frac{5}{2}^2, +\infty^2$
8	$0^{1}, 1^{1}, 3^{\overline{3}}, +\infty^{2}$
9	$0^{1}, \frac{3}{2}^{2}, \frac{7}{2}^{2}, +\infty^{3}$
10	$0^1, 1^1, 2^1, 4^3, +\infty^3$
11	$0^1, 2^1, 4^1, \frac{9}{2}^4, +\infty^3$
12	$0^1, 1^1, 3^1, \bar{4}^1, 5^3, +\infty^4$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
000	0000	⊙●	

Main theorem

Theorem (H.)

For any integer $m \geq \alpha$,

$$\begin{cases} k_1, k_2 > \alpha + 1 \\ k_1 \equiv k_2 \mod p^m \end{cases} \} \Rightarrow d(k_1, \alpha) = d(k_2, \alpha)$$

Natural questions

- What if nebentypus and type allowed?
- What about higher tame level and ℘-adic case for deg(℘) > 1?
- Does it reflect existence of families of DMFs whatsoever?
- Are *n*-th smallest slopes periodic?
- Does anyone want to compute slopes for $g(X_1(\wp)) > 0$ case?

DMFs	t-adic analytic families?	Main theorem	Sketch of proof
			000000

Proof: Bandini-Valentino formula and glissandoness

• Note: genus of $X_1(t)$ is zero and dim $(S_k(\Gamma_1(t))) = k - 1$

Theorem (Bandini-Valentino)

For a certain basis $\mathbf{c}_0^{(k)}, \ldots, \mathbf{c}_{k-2}^{(k)}$ of $S_k(\Gamma_1(t))$, we have

$$U(\mathbf{c}_{j}^{(k)}) = (-t)^{j} {\binom{k-2-j}{j}} \mathbf{c}_{j}^{(k)} - t^{j} \sum_{h \in \mathbb{Z}, h \neq 0} \{*\} \, \mathbf{c}_{j+h(q-1)}^{(k)}$$

where
$$* = \binom{k-2-j-h(q-1)}{-h(q-1)} + (-1)^{j+1} \binom{k-2-j-h(q-1)}{j}$$

• So the representing matrix $U^{(k)}$ of $U \frown S_k(\Gamma_1(t))$ with this basis is glissando, namely

entries of *j*-th column (starting with zeroth) are in $t^{j}\mathbb{F}_{p}$

DMFs	t-adic analytic families?	Main theorem	Sketch of proof
			000000

Proof: Consequences of B-V formula

B-V formula and glissandoness imply:

- d(k,0) = 1
- /-th smallest elementary divisor of $U^{(k)}$ is $\geq l-1$
- we have

$$U^{(k+p^m)} \equiv \left(\begin{array}{c|c} U^{(k)} & O \\ * & t^{k-1}D & O \end{array}\right) \mod t^{p^m}$$

with $D\in M_{p^m,p^m-k+1}(\mathbb{F}_q[[t]])$

• Let V be the matrix on RHS, then

$$\operatorname{Slopes}(V) \cap [0, k-1) = \operatorname{Slopes}(U^{(k)}) \cap [0, k-1),$$

where Slopes(V) is the multiset of *t*-adic valuations of eigenvalues of V

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
000	0000	00	

Proof: Perturbation

Definition

For any $B \in M_m(\mathbb{F}_q[[t]])$, define reciprocal characteristic poly by

 $P_B(X) := \det(I - BX), \quad a_n(B) := \text{coeffcient of } X^n$

Lemma (cf. Kedlaya's book on *p*-adic differential equations)

For any integers $m \ge 1$ and $n \ge 2$, we have

$$v_t(a_n(U^{(k+p^m)}) - a_n(V)) > m(n-1)$$

• $V = U^{(k+p^m)} + t^{p^m}W$ with some $W \in M_{k+p^m-1}(\mathbb{F}_q[[t]])$

• $a_n(V) = (-1)^n \sum (\text{prinicipal } (n \times n) \text{-minors of } V)$

 By Laplace expansion, LHS is controlled by elementary divisors of U^(k+p^m), which are bounded below by glissandoness

DMFs				<i>t</i> -adic analytic families?						Main theorem	Sketch of proof	
000				0000						00	000●00	
D	c	•										

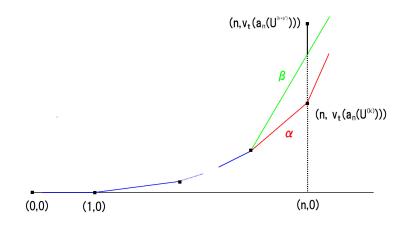
- Proof: Analyzing Newton polygons
 - For α ∈ Q≥0, multiplicity of slope α in S_k(Γ₁(t)) equals width of slope α segment of NP of P_{U^(k)}(X)

Want to show

NPs for k and
$$k + p^m$$
 agree on slope $\left\{ \begin{array}{c} < k - 1 \\ \leq m \end{array} \right\}$ segments

- 1st segments: agree by d(k,0) = 1
- Suppose NPs agree up to N-th such segments
- Let $0 < \alpha \le \beta$ be the slopes of the (N + 1)-st segments, suppose $\alpha < k 1$ and $\alpha \le m$
- Let *n* be the *x*-coordinate of the terminus of the lower (*N* + 1)-st segment

• When slope α appears in NP for k,



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
000	0000	00	00000●

Proof: Analyzing Newton polygons

- Picture $\Rightarrow v_t(a_n(U^{(k)})) \le \alpha(n-1) \le m(n-1)$
- Lemma $\Rightarrow v_t(a_n(U^{(k)})) < v_t(a_n(U^{(k+p^m)}) a_n(V))$
- $\operatorname{Slopes}(V) \cap [0, k-1) = \operatorname{Slopes}(U^{(k)}) \cap [0, k-1)$ implies

$$v_t(a_n(V)) = v_t(a_n(U^{(k)}))$$

• These imply $v_t(a_n(U^{(k)})) = v_t(a_n(U^{(k+p^m)}))$ and thus

$$\alpha = \beta, \quad d(k + p^m, \alpha) \ge d(k, \alpha)$$

When α appears in NP for k + p^m: can be treated similarly
 → get opposite inequality & (N + 1)-st segments agree

DMFs	<i>t</i> -adic analytic families?	Main theorem	Sketch of proof
000	0000	00	00000●

Proof: Analyzing Newton polygons

- Picture $\Rightarrow v_t(a_n(U^{(k)})) \le \alpha(n-1) \le m(n-1)$
- Lemma $\Rightarrow v_t(a_n(U^{(k)})) < v_t(a_n(U^{(k+p^m)}) a_n(V))$
- $\operatorname{Slopes}(V) \cap [0, k-1) = \operatorname{Slopes}(U^{(k)}) \cap [0, k-1)$ implies

$$v_t(a_n(V)) = v_t(a_n(U^{(k)}))$$

• These imply $v_t(a_n(U^{(k)})) = v_t(a_n(U^{(k+p^m)}))$ and thus

$$\alpha = \beta, \quad d(k + p^m, \alpha) \ge d(k, \alpha)$$

When α appears in NP for k + p^m: can be treated similarly
 → get opposite inequality & (N + 1)-st segments agree

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00