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Ramification correspondence of finite flat group

schemes and canonical subgroups — a survey

By

Shin Hattori ∗

Abstract

Let p > 2 be a rational prime, k be a perfect field of characteristic p and K be a finite

totally ramified extension of the fraction field of the Witt ring of k. Let G and H be finite

flat (commutative) group schemes killed by p over OK and k[[u]], respectively. In this survey

article, we explain the coincidence of ramification subgroups of G and H in the sense of Abbes-

Mokrane when they are associated to the same Kisin module. We also give a survey of its

application to an existence theorem of canonical subgroups of truncated Barsotti-Tate groups

of higher dimension.

§ 1. Introduction: canonical subgroups

This article is a survey of the author’s result on a correspondence of ramification
subgroups of finite flat group schemes over complete discrete valuation rings of mixed
and equal characteristics ([19]) and its application to an existence theorem of canonical
subgroups of truncated Barsotti-Tate groups ([20]).

Let p be a rational prime and N ≥ 5 be an integer which is prime to p. Serre
([29]) defined p-adic elliptic modular forms of level N as p-adic limits of q-expansions
of usual elliptic modular forms of level N , and Katz ([22]) introduced their modular
description as a function on the ordinary locus of the modular curve X1(N) over Qp.
Namely, a p-adic modular form f can be identified with a rule functorially associating
to any triplet (E, ω, ι) over a p-adically complete ring B an element f(E,ω, ι) of B,
where the triplet consists of an elliptic curve E over B such that Ē = E × Spec(B/pB)
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is ordinary, a nowhere vanishing differential form ω on E and a level Γ1(N)-structure
ι : µN → E.

The space of p-adic modular forms admits actions of Hecke operators Tl (l - N)
and Ul (l | N) for l 6= p as usual, and the U operator which affects the q-expansions as

f(q) =
∑

anqn 7→ Uf(q) =
∑

apnqn.

The definition of the U operator is as follows. Let f be a p-adic elliptic modular form
and (E, ω, ι) be a triplet as above. Since Ē is ordinary, we have a unique subgroup
scheme H of E which lifts the Frobenius kernel Ker(FĒ) by Hensel’s lemma. Consider
the projection π : E → E/H and its dual map π∨. Then using the Frobenius operator

(ϕf)(E, ω, ι) = f(E/H, (π∨)∗ω, π(ι)),

the U operator is defined to be U = p−1trϕ. However, the eigenspaces of the U operator
on the whole space of p-adic elliptic modular forms are all isomorphic to each other and
infinite dimensional ([17, Section II.3]).

To obtain a reasonable spectral theory of the U operator, we need to restrict U

to the subspace consisting of the p-adic modular forms which are also defined on some
peripheral area outside the ordinary locus. The resulting class of p-adic modular forms
is called overconvergent. Katz ([22]) showed that the U operator acts complete continu-
ously on the space of overconvergent modular forms and thus has meaningful eigenspaces
via the theory of the Fredholm determinant.

The key point for studying the action of the U operator on the subspace of overcon-
vergent modular forms is an existence theorem of canonical subgroups. When E does
not have ordinary reduction, we do not have any Frobenius lift in general. Nevertheless,
we do have a canonical Frobenius lift C when E has supersingular reduction but lies
sufficiently near to the ordinary locus in X1(N). This subgroup scheme C is called the
canonical subgroup of E, and we can analyze the Frobenius operator and the U operator
by controlling C, instead of H in the ordinary case.

This whole story suits better for the rigid-analytic setting (see for example [9]).
We can realize the locus of elliptic curves “sufficient near to ordinary reduction” as an
admissible open of the associated rigid-analytic space X1(N)rig and the overconvergent
modular forms can be identified with the sections of an invertible sheaf over this ad-
missible open. Moreover, we can patch the canonical subgroup into a family. Namely,
there exists an admissible open subgroup of the p-torsion of the universal elliptic curve
over this locus which gives the canonical subgroup on each fiber.

Katz attributed the existence theorem of canonical subgroups to Lubin ([22, The-
orem 3.1]), and the proof is accomplished by a calculation of formal power series of
one variable for the formal completion of E. In fact, when B is a complete discrete
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valuation ring over Zp, an elliptic curve E over B has the canonical subgroup if and
only if the Newton polygon of the multiplication-by-p formula [p](X) of the formal com-
pletion of E has a vertex at x = p. Thus the proof of Katz-Lubin heavily relies on the
one-dimensionality of elliptic curves, and a similar consideration for higher dimensional
abelian schemes was too hard to carry out, at that time.

This had been one of the obstacles to establish the theory of overconvergent Siegel
modular forms, until Abbes-Mokrane ([1]) achieved a breakthrough. Let K be a com-
plete discrete valuation field of residue characteristic p. They defined, for a finite flat
generically etale group scheme G over OK , a filtration {Gj}j∈Q>0 by finite flat closed
subgroup schemes of G using a ramification theory of Abbes-Saito ([2], [3]), which is
called the upper ramification filtration of G. The canonical subgroup of Katz-Lubin of
an elliptic curve E over OK appears in the upper ramification filtration of the p-torsion
subgroup scheme E[p]. Then they proved that, for an abelian scheme A of arbitrary
relative dimension over OK which is “sufficiently close to ordinary reduction”, a sub-
group scheme which appears in the filtration of A[p] satisfies similar properties to the
canonical subgroup of Katz-Lubin.

Since then several improvements of the result have been obtained, such as [4], [10],
[15], [16], [25], [28], [31] and most recently [12] and [32]. Let us summarize some of main
points of these improvements. First, the canonical subgroup theorem is generalized for
truncated Barsotti-Tate groups ([21]) over OK instead of abelian schemes. In particular,
a higher analogue of the canonical subgroup theorem, namely the existence of a similar
canonical subgroup in A[pn] instead of A[p], is also known. Moreover, this improvement
means that we can construct the canonical subgroup for an abelian scheme A without
deep geometric techniques such as p-adic vanishing cycles but just from the finite flat
group scheme A[pn]. Second, the original condition on “sufficient closeness to ordinarity”
in Abbes-Mokrane’s work is much relaxed.

One of the two main theorems of this survey article is also an improvement of the
canonical subgroup theorem along these two lines. To state the result, we fix some
notations. Let K/Qp be an extension of complete discrete valuation fields. For a finite
flat group scheme G over OK and its module of invariant differentials ωG over OK ,
write ωG ' ⊕iOK/(ai) with some ai ∈ OK and put deg(G) =

∑
i vp(ai), where vp is the

normalized p-adic valuation. Put ÕK = OK/pOK . For a truncated Barsotti-Tate group
G of level n, height h and dimension d < h over OK , let us consider its Cartier dual G∨

and the p-torsion subgroup scheme G∨[p]. Then the Lie algebra Lie(G∨[p]× Spec(ÕK))
over ÕK is a free ÕK-module of rank h−d. We define the Hasse invariant Ha(G) of G to
be the truncated p-adic valuation vp(det(VG∨[p])) ∈ [0, 1] of the determinant of the action
of the Verschiebung VG∨[p] on this ÕK-module. This invariant measures the distance of
G from ordinary reduction. In fact, G is an extension of a finite etale group scheme by
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a finite flat group scheme of multiplicative type if and only if Ha(G) = 0. Finally, we
put Gj+ to be the scheme-theoretic closure in G of the subgroup ∪j′>jGj′

(OK̄). Then
our canonical subgroup theorem is as follows.

Theorem 1.1 ([20], Theorem 1.1). Let p > 2 be a rational prime, K/Qp be an
extension of complete discrete valuation fields and e be the absolute ramification index of
K. Put m≥i

K = {x ∈ K | evp(x) ≥ i}. Let G be a truncated Barsotti-Tate group of level
n, height h and dimension d over OK with 0 < d < h and Hasse invariant w = Ha(G).
If w < 1/(2pn−1), then the upper ramification subgroup scheme Cn = Gj+ for

pew(pn − 1)/(p− 1)2 ≤ j < pe(1− w)/(p− 1)

satisfies Cn(OK̄) ' (Z/pnZ)d. Moreover, the group scheme Cn has the following prop-
erties:

(a) deg(G/Cn) = w(pn − 1)/(p− 1).

(b) Cn×Spec(OK/m
≥e(1−pn−1w)
K ) coincides with the kernel of the n-th iterated Frobenius

homomorphism Fn of G × Spec(OK/m
≥e(1−pn−1w)
K ).

(c) The scheme-theoretic closure of Cn(OK̄)[pi] in Cn coincides with the subgroup scheme
Ci of G[pi] for 1 ≤ i ≤ n− 1.

Since it is known that the upper ramification filtration can be patched into a family,
we have the following corollary.

Corollary 1.2 ([20], Corollary 1.2). Let K/Qp be an extension of complete dis-
crete valuation fields and j be a positive rational number. Let X be an admissible formal
scheme over Spf(OK) which is quasi-compact and G be a truncated Barsotti-Tate group
of level n over X of constant height h and dimension d with 0 < d < h. We let G and X

denote the Raynaud generic fibers of the formal schemes X and G, respectively. For a
finite extension L/K and x ∈ X(L), we put Gx = G×X,x Spf(OL), where we let x also
denote the map Spf(OL) → X induced from x by taking the scheme-theoretic closure
and the normalization. Let Gj+ be the admissible open subgroup of G over X such that
for any x ∈ X(L) as above, the fiber Gj+

x coincides with the upper ramification subgroup
G

je(L/K)+
x (K̄). For a non-negative rational number r, let X(r) be the admissible open

of the rigid-analytic space X defined by

X(r)(K̄) = {x ∈ X(K̄) | Ha(Gx) < r}.

Suppose p > 2. Then the finite etale rigid-analytic group Gj+|X(r) over X(r) is etale
locally isomorphic to the constant group (Z/pnZ)d for r = 1/(2pn−1) and j = (2pn−1 −
1)/(2pn−2(p− 1)).
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In particular, using this corollary, we can generalize results of [1] to the case of
Ha(A) < 1/2.

The idea of the proof of Theorem 1.1 is as follows. By an elementary argument
as in [12] and [32], it suffices to treat the case of level one. Moreover, by a base
change, we may assume that the residue field k of K is perfect. Then, the key point
is that we can reduce ourselves to showing a similar statement to Theorem 1.1 for
the lower ramification filtration of a finite flat generically etale group scheme over a
complete discrete valuation ring of equal characteristic with residue field k. This equal
characteristic counterpart can be shown by an easy calculation in a spirit of the Elkik
approximation ([11, Section I]). The reduction to the equal characteristic case is a
consequence of a ramification correspondence theorem between finite flat group schemes
over complete discrete valuation rings of mixed and equal characteristics, which is the
other main theorem of this survey article (Theorem 3.2).

§ 2. Breuil-Kisin classification

In this section, we recall classification theories of finite flat generically etale (com-
mutative) group schemes over a complete discrete valuation ring with perfect residue
field k of characteristic p. The case of equal characteristic is classical: Let p be a ratio-
nal prime and T be a scheme with pOT = 0. We let φ denote the absolute Frobenius
morphism of T . We define a φ-module over T to be a pair (M, φM) of an OT -module
M and a φ-semilinear homomorphism φM :M→M. A φ-module (M, φM) is said to
be finite locally free if M is a locally free OT -module of finite rank. Then we have the
following classification theorem for finite locally free group schemes over T .

Theorem 2.1 ([14], Théorème 7.4). Let T be a scheme with pOT = 0. For a
finite locally free group scheme H over T , we regard the Lie algebra of the Cartier
dual Lie(H∨) as a φ-module over T via the map Lie(VH∨) induced by the Verschiebung
VH∨ . Then we have an anti-equivalence H(−) from the category of finite locally free
φ-modules over T to the category of finite locally free group schemes over T killed by
their Verschiebung. Its quasi-inverse is given by the functor H 7→ Lie(H∨), and these
anti-equivalences are compatible with any base change.

Let us specialize to the case of T = Spec(k[[u]]). Put S1 = k[[u]] and we also let
φ denote the absolute Frobenius endomorphism of this ring. Let (M, φM) be a finite
(locally) free φ-module over k[[u]]. Namely, this is a pair of a free S1-module of finite
rank with a φ-semilinear map φM : M→M. Put φ∗M = S1⊗φ,S1 M. We say (M, φM)
is a Kisin module of u-height ≤ r if the cokernel of the map 1⊗φM : φ∗M→M is killed
by ur, though it was introduced by Breuil ([5]). Then by Theorem 2.1 we also have
an anti-equivalence H(−) from the category of Kisin modules of u-height ≤ r to the
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category of finite flat group schemes H over k[[u]] killed by VH such that the φ-module
Lie(H∨) is of u-height ≤ r. For a Kisin module M of u-height ≤ r, we can explicitly
write defining equations of the associated group scheme H(M). Indeed, choose a basis
e1, . . . , ed of the S1-module M and define a matrix A = (ai,j) by

φM(e1, . . . , ed) = (e1, . . . , ed)A.

Then the group scheme H(M) is naturally isomorphic to the additive group scheme
defined by the equations

Xp
i −

d∑
j=1

aj,iXj (i = 1, . . . , d).

Next we suppose that K is of mixed characteristic (0, p) with p > 2 and perfect
residue field k. In this case, the classification theorem for finite flat group schemes is due
to Breuil ([5], [7], [8]) and Kisin ([23]). For simplicity, we concentrate on the classification
of finite flat group schemes killed by p. Let e be the absolute ramification index of K.
Let K̄ be an algebraic closure of K, ˆ̄K be its completion and put GK = Gal(K̄/K).
We let Mod1,φ

/S1
denote the category of Kisin modules of u-height ≤ e. Then we have

the following theorem.

Theorem 2.2 ([8], Theorem 3.3.2). Let p > 2 and K as above. Then there
exists an anti-equivalence G(−) from the category Mod1,φ

/S1
to the category of finite flat

group schemes over OK killed by p.

Remark. Breuil ([7]) proved a similar classification in terms of slightly different
linear algebraic data, which are now called Breuil modules, and he showed Theorem 2.2
in [8] by constructing an equivalence of categories between those of Breuil and Kisin
modules. Kisin ([23]) gave a much simpler proof independent of Breuil’s earlier clas-
sification: he first proved directly a classification of Barsotti-Tate groups over OK via
Breuil modules by an elementary argument using the deformation theory of Messing
([27]) and then derived the classification of finite flat group schemes by taking a reso-
lution by Barsotti-Tate groups, the idea which he attributed to Beilinson. These two
construction of the anti-equivalence G(−) are naturally isomorphic to each other.

From a Kisin module M ∈ Mod1,φ
/S1

, we can decode the action of GK on the finite
module G(M)(OK̄) associated to the finite flat group scheme G(M) corresponding to M

as follows. Let us fix a uniformizer π of K and a system of its p-power roots {πn}n∈Z≥0

in K̄ such that π0 = π and πn = πp
n+1. Put Kn = K(πn) and K∞ = ∪n∈Z≥0Kn. We

define a ring R to be

R = lim←−
n

(OK̄/pOK̄ ← OK̄/pOK̄ ← OK̄/pOK̄ ← · · · ),
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where the arrows are the p-th power map, and also an element π of R to be π =
(π, π1, π2, . . .). The ring R is a complete valuation ring whose valuation vR is given
as follows: for x = (x0, x1, . . .) ∈ R, choose a lift x̂n of xn in OK̄ and put x(0) =
limn→∞ x̂pn

n ∈ O ˆ̄K
. Then the valuation of the element x is defined as vR(x) = vK(x(0)).

The ring R admits a natural action of the Galois group GK and an S1-algebra
structure defined by u 7→ π which is compatible with the action of GK∞ = Gal(K̄/K∞).
Moreover, the ring R is considered as a φ-module over S1 via the absolute Frobenius
endomorphism φ. For a Kisin module M ∈ Mod1,φ

/S1
, we put

T ∗
S(M) = HomS1,φ(M, R),

where the module on the right-hand side consists of the S1-linear homomorphisms
compatible with φ’s. The Galois group GK∞ acts naturally on the module T ∗

S(M).
Then there is a natural isomorphism of GK∞ -modules εM : G(M) → T ∗

S(M) ([8, loc.
cit.]).

The field Frac(R) can be identified with the completion of an algebraic closure of
the subfield X = k((u)). This identification induces the “field-of-norms” isomorphism
of Galois groups GK∞ ' GX which is compatible with the upper ramification subgroups
of both sides up to a shift by the Herbrand function of K∞/K ([6, Subsection 4.2], [33]).
On the other hand, we also have a natural isomorphism of GX -modules H(M)(R) →
T ∗

S(M), by which we identify both sides. Thus we have a natural isomorphism of GK∞-
modules

εM : G(M)(OK̄)→ H(M)(R).

We can show that the greatest upper ramification jumps of the Galois modules in the
classical sense ([30]) of both sides are no more than pe/(p − 1), where we follow the
normalization of the upper ramification subgroups in [13]. Since the greatest upper
ramification jump of the extension K1/K is equal to 1 + pe/(p − 1), we see by using
the isomorphism εM that both sides of the isomorphism have exactly the same greatest
upper ramification jump.

§ 3. Ramification correspondence

In this section, we briefly recall the ramification theory of finite flat group schemes
([1]) and state the ramification correspondence theorem mentioned before. For a while,
let p be a rational prime which may be two and K be a complete discrete valuation
field with residue field of characteristic p which may be imperfect. We fix a uniformizer
π and a separable closure Ksep of K, and put GK = Gal(Ksep/K). We let vK denote
the valuation on Ksep with vK(π) = 1 and put m≥i

Ksep = {x ∈ OKsep | vK(x) ≥ i} for
i ∈ Q≥0.
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Let B be a finite flatOK-algebra locally of complete intersection which is generically
etale, that is, B ⊗OK K is etale over K. Put F (B) = HomOK -alg.(B,OKsep). This is a
finite GK-set, namely a finite set where the Galois group GK acts continuously. Fix a
presentation

B ' OK [X1, . . . , Xr]/(f1, . . . , fs)

and consider the K-affinoid variety

Xj
K(B) = {(x1, . . . , xr) ∈ Or

Ksep | vK(fi(x1, . . . , xr)) ≥ j (i = 1, . . . , s)}

for j ∈ Q>0. The set of geometric connected components of Xj
K(B) turns out to be

independent of the choice of a presentation in an appropriate sense and is denoted by
F j(B). This set is also a finite GK-set and, since the set F (B) is identified with the
set of zeros of the equations f1, . . . , fs, we have a GK-equivariant functorial surjection
F (B)→ F j(B).

Let G = Spec(B) be a finite flat generically etale group scheme over OK . Then the
affine algebra B is locally of complete intersection ([7, Proposition 2.2.2]) and thus we
can apply the above formalism to G. Put F (G) = F (B) = G(OKsep) and F j(G) = F j(B).
Then, by a functoriality, the set F j(G) is shown to have a structure of a GK-module,
namely a module where the Galois group GK acts continuously and compatibly with
the module structure. Moreover, the natural map G(OKsep) = F (G)→ F j(G) turns out
to be a surjective homomorphism. Its kernel is denoted by Gj(OKsep) and called the
j-th upper ramification subgroup of G. We also put Gj+(OKsep) = ∪j′>jGj′

(OKsep) and
let Gj and Gj+ denote their scheme-theoretic closures in G.

As in the classical ramification theory of local fields, we also have a “lower” vari-
ant of the upper ramification filtration. Consider the reduction map G(OKsep) →
G(OKsep/m≥i

Ksep) for i ∈ Q≥0 and let Gi(OKsep) denote its kernel, which is called the i-th
lower ramification subgroup of G. We define Gi+(OKsep), Gi and Gi+ similarly. These
two filtrations are compatible with base extensions: for an extension L/K of complete
discrete valuation fields with relative ramification index e(L/K), we have natural iso-
morphisms

Gj × Spec(OL)→ (G × Spec(OL))je(L/K),

Gi × Spec(OL)→ (G × Spec(OL))ie(L/K).

Example 3.1. If the affine algebra of G is generated by one element, we can
easily calculate the ramification filtrations ([18, Corollary 5]). For example, suppose
that K is of mixed characteristic (0, p) with absolute ramification index e and let E be
an elliptic curve over OK . Consider its formal completion Ê along the zero section with
formal parameter X and write the multiplication-by-p formula as

[p](X) = pX + · · ·+ cXp + · · · .
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Put f = vK(c) and define a subgroup scheme C of E[p] to be the scheme-theoretic
closure of the subgroup {x ∈ Ê[p](mK̄) | vK(x) ≥ (e− f)/(p− 1)} of E[p](OK̄). Then,
for f < pe/(p + 1), we have

E[p]j =


E[p] (0 < j ≤ pf/(p− 1))
C (pf/(p− 1) < j ≤ (pe− f)/(p− 1))
0 ((pe− f)/(p− 1) < j),

E[p]i =


E[p] (0 ≤ i ≤ f/(p2 − p))
C (f/(p2 − p) < i ≤ (e− f)/(p− 1))
0 ((e− f)/(p− 1) < i).

On the other hand, for f ≥ pe/(p + 1), we have

E[p]j =

{
E[p] (0 < j ≤ p2e/(p2 − 1))
0 (p2e/(p2 − 1) < j),

E[p]i =

{
E[p] (0 ≤ i ≤ e/(p2 − 1))
0 (e/(p2 − 1) < i).

The subgroup scheme C coincides with the canonical subgroup of E in the sense of
Katz-Lubin.

Now we can state the other main theorem of this survey article, which establishes
a correspondence of ramification filtrations between finite flat group schemes over com-
plete discrete valuation rings of mixed and equal characteristics.

Theorem 3.2 ([19], Theorem 1.1). Let p > 2 be a rational prime and K be a
complete discrete valuation field of mixed characteristic (0, p) with perfect residue field
k and absolute ramification index e. Consider the category Mod1,φ

/S1
of Kisin modules

as before and let M be its object. Then the natural isomorphism εM : G(M)(OK̄) →
H(M)(R) induces isomorphisms of ramification subgroups

G(M)j(OK̄)→ H(M)j(R), G(M)i(OK̄)→ H(M)i(R)

for any j ∈ Q>0 and i ∈ Q≥0.

This can be seen as a generalization of the coincidence of the classical greatest
upper ramification jumps of both sides mentioned before.

§ 4. Sketch of the proofs

In this section, we give a brief sketch of the proofs of the main theorems. First we
show compatibilities of the Breuil-Kisin classification with base extensions inside K∞/K
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and Cartier duality. For the compatibility with the base change, put S′
1 = k[[v]] and

let φ also denote the absolute Frobenius endomorphism of the ring S′
1. Fix a positive

integer n and consider the category Mod1,φ
/S′

1
of Kisin modules over S′

1 of v-height ≤ epn.

Using the k-algebra homomorphism S′
1 → R defined by v 7→ π1/pn

, we define a similar
functor T ∗

S′ to T ∗
S. The homomorphism of k-algebras S1 → S′

1 defined by u 7→ vpn

induces a natural functor (−)′ : Mod1,φ
/S1
→ Mod1,φ

/S′
1

by

M 7→M′ = S′
1 ⊗S1 M1, φM′ = φ⊗ φM.

Then we have a natural isomorphism of GK∞-modules T ∗
S(M) → T ∗

S′(M′). On the
other hand, by Theorem 2.2 the category Mod1,φ

/S′
1

classifies finite flat group schemes
over OKn killed by p, and we let G′(−) denote the anti-equivalences of the theorem over
OKn . Then we can show the following proposition.

Proposition 4.1 ([19], Proposition 4.3). Let M be an object of the category Mod1,φ
/S1

and M′ be the associated object of the category Mod1,φ
/S′

1
. Then there exists a natural

isomorphism
G′(M′)→ G(M)× Spec(OKn)

of finite flat group schemes over OKn which makes the following diagram commutative:

G(M)(OK̄)|GK∞ ∼
//

oεM

��

G′(M′)(OK̄)|GK∞

oεM′

��
T ∗

S(M) ∼
// T ∗

S′(M′).

Remark. The author does not know if a similar base change compatibility of the
Breuil-Kisin classification holds for wildly ramified extensions in general. Thus it seems
difficult to prove Theorem 3.2 by killing the Galois action, taking scheme-theoretic
closures on both sides of the isomorphism εM and reducing to the case of rank one.
Instead, by using the restricted compatibility as in Theorem 4.1, we reduce ourselves to
comparing the defining equations of both sides, as we explain below.

For the compatibility with Cartier duality, we recall a duality of the category
Mod1,φ

/S1
([26, Section 3]). Let W = W (k) be the Witt ring and E(u) be the Eisen-

stein polynomial over W of the uniformizer π of K. Put c0 = p−1E(0). We also fix
a system of p-power roots of unity {ζpn}n∈Z≥0 in K̄ with ζp 6= 1 and ζpn = ζp

pn+1 .
Then we have an element t̄ of the ring R associated to the system on which the Galois
group GK∞ acts via the modulo p cyclotomic character ([26, loc. cit.]). Let M be an
object of the category Mod1,φ

/S1
and put M∨ = HomS1(M, S1). Consider the natural

pairing 〈 , 〉M : M×M∨ → S1. Then we can give M∨ a natural structure of an object
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of Mod1,φ
/S1

satisfying 〈φM(m), φM∨(m∨)〉M = c−1
0 ueφ(〈m,m∨〉M) for any m ∈ M and

m∨ ∈ M∨ ([26, Proposition 3.1.7]). This induces a natural perfect pairing of GK∞-
modules T ∗

S(M)× T ∗
S(M∨)→ (Z/pZ)̄t, which is also denoted by 〈 , 〉M. Then we can

also show the following compatibility with Cartier duality.

Proposition 4.2 ([19], Proposition 4.4). Let M be an object of the category Mod1,φ
/S1

and M∨ be its dual object. Then there exists a natural isomorphism G(M)∨ → G(M∨)
of finite flat group schemes over OK such that the induced map

δM : G(M)∨(OK̄)→ G(M∨)(OK̄)
εM∨→ T ∗

S(M∨)

fits into the commutative diagram of GK∞-modules

G(M)(OK̄)× G(M)∨(OK̄) //

oεM

��
oδM

��

Z/pZ(1)

o
��

T ∗
S(M)× T ∗

S(M∨)
〈 , 〉M

// (Z/pZ)̄t,

where the top arrow is the Cartier pairing of G(M) and the right vertical arrow is the
isomorphism defined by ζp 7→ t̄.

We also need the following duality result for upper and lower ramification sub-
groups. For G, this is due to Tian and Fargues ([31, Theorem 1.6], [12, Proposition 6]),
while the case of H(M) is [19, Theorem 3.3].

Proposition 4.3. Let K be a complete discrete valuation field of mixed char-
acteristic (0, p) with residue field k and absolute ramification index e. Put l(j) =
e/(p− 1)− j/p.

1. Let G be a finite flat group scheme over OK killed by p. Then we have the equality
Gj(OK̄)⊥ = (G∨)l(j)+(OK̄) for j ≤ pe/(p − 1), where ⊥ means the orthogonal
subgroup with respect to the Cartier pairing.

2. Assume that the residue field k is perfect and let M be an object of the cate-
gory Mod1,φ

/S1
. Then we have the equality H(M)j(R)⊥ = (H(M∨))l(j)+(R) for

j ≤ pe/(p− 1), where ⊥ means the orthogonal subgroup with respect to the pairing
〈 , 〉M.

To prove Theorem 3.2, it is enough by Proposition 4.2 and Proposition 4.3 to show
the assertion on lower ramification filtrations. By Proposition 4.1, we may replace K

with K1 and assume that the entries of a representing matrix of φM for some basis
are contained in the subring k[[up]] of S1. In this case, we can write down defining
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equations of the group scheme G(M) explicitly in terms of M, by using [7, Proposition
3.1.2]. Let us consider the isomorphism of k-algebras k[[u]]/(ue) → ÕK = OK/pOK

sending u to π, by which we identify both sides. Then we can check that the defining
equations of the group schemes G(M) and H(M) over ÕK ' k[[u]]/(ue) coincide with
each other and this coincidence preserves zero sections. In other words, we can construct
an isomorphism of schemes

ηM : G(M)× Spec(ÕK)→ H(M)× Spec(k[[u]]/(ue))

which preserves zero sections. Though this is is not compatible with group structures
in general, we can show that this induces the commutative diagram of sets

G(M)(OK̄)
εM

∼
//

��

H(M)(R)

��
G(M)(OK̄/m≥i

K̄
) ηM

// H(M)(R/m≥i
R )

for any i ≤ e, where we put m≥i
R = {x ∈ R | vR(x) ≥ i}. In the diagram, the arrows are

homomorphism of groups except the bottom one, which is at least a bijection compatible
with zero elements. Moreover, the i-th lower ramification subgroups on both sides of
εM are the inverse images of the zero elements by the vertical arrows. Hence the
isomorphism εM is compatible with the i-th lower ramification filtrations for i ≤ e.
Since we can easily show that the i-th lower ramification subgroups of both sides vanish
for i > e/(p− 1), we can conclude the proof of Theorem 3.2.

Example 4.4. Put M = S1e for a basis e with φM(e) = c−1
0 uee. Then we

have G(M) = µp = Spec(OK [X]/(Xp−1)) ([5, Exemple 2.2.3]). On the other hand, the
additive group scheme H(M) is isomorphic to Spec(k[[u]][Y ]/(Y p−c−1

0 ueY )). Reducing
modulo p and modulo ue respectively, we have an isomorphism of schemes over ÕK '
k[[u]]/(up)

ÕK [X]/(Xp − 1)→ (k[[u]]/(ue))[Y ]/(Y p)

defined by X 7→ 1+Y . This isomorphism is compatible with zero sections, but not with
group structures. Nevertheless, the j-th upper (resp. i-th lower) ramification subgroups
of G(M) and H(M) are zero if and only if j > pe/(p− 1) (resp. i > e/(p− 1)).

As for Theorem 1.1, we may assume n = 1, as mentioned before. By Proposition
4.3, it suffices to show the following.

Proposition 4.5 ([19], Theorem 3.2). Let p > 2 and K be as in Theorem 1.1.
Let G be a truncated Barsotti-Tate group of level one, height h and dimension d over
OK with d < h and Hasse invariant w = Ha(G).
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1. If w < (p− 1)/p, then the lower ramification subgroup scheme D = Ge(1−w)/(p−1) is
of order pd. The group scheme D has the following properties:

(a) deg(G/D) = w.

(b) The reduction modulo m
≥e(1−w)
K of the closed subgroup scheme (G/D)∨ of G∨

coincides with the kernel of the Frobenius homomorphism of the reduction G∨×
Spec(OK/m

≥e(1−w)
K ).

(c) D × Spec(OK/m
≥e(1−w)
K ) also coincides with the kernel of the Frobenius ho-

momorphism of G × Spec(OK/m
≥e(1−w)
K ).

2. If w < 1/2, then D coincides with the lower ramification subgroup scheme Gb for
ew/(p− 1) < b ≤ e(1− w)/(p− 1).

To prove the proposition, we may assume that the residue field k is perfect. Let
M be the object of the category Mod1,φ

/S1
corresponding to G via the anti-equivalence

G(−). We identify the k-algebras ÕK and k[[u]]/(ue) as before. Then we can read off
the Hasse invariant from the Kisin module M, as follows. Put M1 = M⊗ÕK . This can
be considered as a finite (locally) free φ-module over ÕK . Consider the natural exact
sequences of ÕK-modules

0→ (1⊗ φM1)(φ
∗M1)→M1 →M1/(1⊗ φM1)(φ

∗M1)→ 0.

Since G is a truncated Barsotti-Tate group of level one, we can show from the construc-
tion of the functor G(−) that we have natural isomorphisms of ÕK-modules

ωG×ÕK
' Ker(1⊗ φM1 : φ∗M1 →M1),

Lie(G∨ × ÕK) ' (1⊗ φM1)(φ
∗M1)

and thus the first term of the exact sequence above is a free ÕK-module of rank h− d.
Moreover we can show that this term is stable under φM1 and the exact sequence of
ÕK-modules above splits. Then the Hasse invariant Ha(G) is equal to the truncated
p-adic valuation of the determinant of the φM1-action on the module of the first term
of the exact sequence.

We choose a basis e1 . . . , eh of M such that e1, . . . , eh−d (resp. eh−d+1, . . . , eh) is
a lift of a basis of the ÕK-module of the first (resp. third) term of the exact sequence
above. Then we have

φM(e1, . . . , eh) = (e1, . . . , eh)

(
P1 P2

ueP3 ueP4

)

for some matrices Pi with entries in k[[u]], where P4 is a d×d-matrix. Set A ∈Mh(k[[u]])
to be the matrix on the right-hand side and put AM1 = SpanÕK

((e1, . . . , ed)A). Then
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the exact sequence above is equal to the exact sequence

0→ AM1 →M1 →M1/AM1 → 0

of φ-modules over ÕK , where we have the equality vp(det(φAM1)) = w. Let vu be
the u-adic valuation on k[[u]] with vu(u) = 1. Since w < 1, we also have the equality
vu(det(P1)) = ew and thus we can define the object L of the category Mod1,φ

/S1
by

L = ⊕h−d
i=1 S1ei and

φL(e1, . . . , eh−d) = (e1, . . . , eh−d)P1.

Now, using Theorem 3.2, we switch to H(M) for calculating the lower ramification
filtrations. Then the proofs of the following two lemmas are straightforward.

Lemma 4.6 ([20], Lemma 3.3). Let l be a positive integer, U be an element of
Ml(k[[u]]) and w′ be a rational number such that vu(det(U)) = ew′. Let T be the scheme
over k[[u]] defined by the system of equations

(Xp
1 , . . . , Xp

l ) = (X1, . . . , Xl)U.

Suppose that we have the inequality w′ < (p− 1)/p. Then the natural map

T (R)→ Im(T (R/m≥e
R )→ T (R/m≥b

R ))

is a bijection for ew′/(p− 1) < b ≤ e(1− w′).

Lemma 4.7 ([20], Lemma 3.4). There exists a unique injection ι : L → M of
the category Mod1,φ

/S1
such that the S1-submodule L is a direct summand of M and the

reduction modulo ue(1−w) of the injection ι coincides with the inclusion

AM1 ⊗ (k[[u]]/(ue(1−w)))→M1 ⊗ (k[[u]]/(ue(1−w))).

Let b be a rational number with ew/(p − 1) < b ≤ e(1 − w). Then the map
ι ⊗ (R/m≥b

R ) also coincides with the inclusion AM1 ⊗ (R/m≥b
R ) → M1 ⊗ (R/m≥b

R ).
Hence we have a commutative diagram

H(M)(R) //

��

H(L)(R)

��
H(M1 ⊗ (R/m≥b

R ))(R/m≥b
R ) //

++VVVVVVVVVVVVVVVVVVV
H(L⊗ (R/m≥b

R ))(R/m≥b
R )

H(AM1 ⊗ (R/m≥b
R ))(R/m≥b

R )
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whose upper right vertical arrow is an injection by Lemma 4.6. Put N = M/L. This
is an object of the category Mod1,φ

/S1
which is free of rank d over S1. Then the group

H(N)(R) is of order pd and we have the equality

H(N)(R) = Ker(H(M)(R)→ H(AM1)(R/m≥b
R )).

Then, by an elementary calculation of the valuations of roots of the defining equations
of H(M), we can also show the following lemma, which settles the first assertion of
Proposition 4.5 (1) and the assertion (2).

Lemma 4.8 ([20], Lemma 3.5). The subgroup H(N)(R) of H(M)(R) is equal to
the subgroup H(M)e(1−w)/(p−1)(R).

By the description of the module of invariant differentials of truncated Barsotti-
Tate groups stated before, we can show by taking a resolution that we have the same
description for any finite flat group scheme over OK killed by p. From this the assertion
(1a) follows. Replacing K with K1, the explicit description of defining equations of
G(L∨)× Spec(ÕK) shows the assertion (1b), which in turn implies the assertion (1c).
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