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Ramification theory and perfectoid spaces — a

survey

By

Shin Hattori∗

Abstract

In 1980s, Deligne proved that, if two complete discrete valuation fields with perfect residue

fields are “close” enough, then their absolute Galois groups are isomorphic to each other modulo

certain upper ramification subgroups. In this article, we give a brief survey on the author’s

generalization of this result to the case where the residue fields are imperfect.

§ 1. Classical ramification theory

This article is a survey of the author’s result on a comparison between ramification

of complete discrete valuation fields of mixed and equal characteristics [10], generalizing

Deligne’s theorem for the case of perfect residue fields [5]. After giving some background

in the first four sections, the main theorem (Theorem 5.1) and its corollaries are stated

in Section 5. We also give a sketch of the proof of the main theorem in Section 6.

Let p be a rational prime and K a complete discrete valuation field whose residue

field k is of characteristic p. We denote the ring of integers of K by OK . We fix

an algebraic closure K̄ of K, and let Ksep be the separable closure of K inside K̄.

We put GK = Gal(Ksep/K). Let vK be the additive valuation of K normalized as

vK(K×) = Z, and we extend it naturally to K̄. We denote a uniformizer of K by πK

and the completion of K̄ by C.
Ramification theory measures an extent of how far a finite separable extension L

of K is from unramified extensions: we can define a normal subgroup GjK of GK for

any positive rational number j, which is called the j-th (non-log) upper ramification

subgroup of GK . For any finite separable extension L/K, the Galois group GK acts
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continuously on the finite set FK(L) = HomK-alg.(L, K̄). Then the extension L/K is

unramified if and only if the group GjK acts trivially on the set FK(L) for any positive

rational number j. The number

c(L/K) = inf{j ∈ Q>0 | GjK acts trivially on FK(L)}

can be considered as a measure of ramification of the extension L/K, and it is called

the conductor of the extension L/K. We say that the ramification of L/K is bounded

by j if c(L/K) < j.

For the case where the residue field k is perfect, the definition of the group GjK
is classical (see [17]): Let L/K be a finite Galois extension with Galois group G =

Gal(L/K). For any real number i ≥ −1, we define the i-th lower ramification subgroup

Gi of G by

Gi = {g ∈ G | vL(g(πL)− πL) ≥ i+ 1}.

This group is not compatible with quotients. Namely, for a Galois extension M/K

inside L with Galois group H = Gal(M/K), the image of Gi by the surjection G→ H

is not necessarily equal to Hi. Thus we renumber them to define GjK by using the

Hasse-Herbrand function

φL/K(s) =

∫ s

0

dt

[G0 : Gt]
.

Set ψL/K(j) to be the inverse function of φL/K and put Gj = GψL/K(j−1) (Note that

our definition is shifted from that of [17] by one). Then it is compatible with quotients.

Define

GjK = lim←−
L/K

Gal(L/K)j ,

where the limit is taken over the filtered ordered set of finite Galois extensions L/K

inside K̄. By the compatibility with quotients, the image ofGjK by the natural surjection

GK → Gal(L/K) is equal to Gal(L/K)j . Note that, since the residue field k is perfect,

the extension L/K can be written as an Eisenstein extension of an unramified extension

of K. In other words, in the case of perfect residue fields, we can reduce the study of

ramification to extensions L/K such that the OK-algebra OL is generated by a single

element (i.e. monogenic). This property is a key point both to define Gj and to prove

its compatibility with quotients in the classical ramification theory.

§ 2. Deligne’s equivalence

Consider two complete discrete valuation fields K and F , and suppose that their

residue fields are isomorphic to each other. Since the category FE<0+
K (resp. FE<0+

F )

of finite unramified extensions of K (resp. F ) is equivalent to that of finite separable
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extensions of its residue field, we obtain an equivalence of categories FE<0+
K ≃ FE<0+

F .

Let FE<jK be the category of finite separable extensions of K whose ramification is

bounded by j. In this article, we mainly focus on the following:

Question 2.1. Suppose that we have an isomorphism of rings OK/(πmK ) ≃
OF /(πmF ) for some positive integer m. Then, can we show an equivalence of categories

FE<jK ≃ FE<jF for some j?

For the case where the residue field of K (and F ) is perfect, this was studied

by Deligne and he proved the following theorem, which gives a striking isomorphism

between the absolute Galois groups of complete discrete valuation fields of possibly

different characteristics modulo ramification subgroups:

Theorem 2.2 ([5], 1.3). Let K and F be complete discrete valuation fields with

perfect residue fields and m a positive integer. Suppose that we have an isomorphism

of rings OK/(πmK ) ≃ OF /(πmF ). Then there exists an equivalence of categories FE<jK ≃
FE<jF for any j satisfying 0 < j ≤ m. In particular, there exists an isomorphism of

topological groups GK/G
j
K ≃ GF /G

j
F .

Suppose moreover that F is of characteristic p. Then for any m, we can find a

p-adic field Km such that there exists an isomorphism of rings OF /(πmF ) ≃ OKm/(π
m
Km

)

(Indeed, we can take OKm = C(k)[[u]]/(um − p), where C(k) is a Cohen ring of the

residue field k of F ). In other words, any complete discrete valuation field of equal

characteristic can be written as a limit of a family of complete discrete valuation fields

of mixed characteristic. Combining this fact with Theorem 2.2, we see the following:

If the residue field is perfect, then we can reduce the study of the absolute Galois

group of a complete discrete valuation field of equal characteristic to that of mixed

characteristic! This trick is known as (the Galois side of) the theory of close local

fields due to Deligne and Kazhdan, and it provides a powerful tool for proving the local

Langlands correspondence for reductive groups over local fields of equal characteristic

where harmonic analysis is much harder than the mixed characteristic case (see [4] for

the inner forms of SLn, and [6] for GSp4).

The key point of the proof of Theorem 2.2 is the fact that ramification of a finite

Galois extension L/K with trivial residue extension can be read off from the Newton

polygon of a translation of the minimal polynomial f(X) of a uniformizer πL over OK .

Write as

f(X + πL) = a0X
n + a1X

n−1 + · · ·+ an−1X.

Consider the subset {(i, vK(ai))} ⊆ R2. The Newton polygon NPK(L, πL) associated

to the extension L/K and the uniformizer πL is by definition its lower convex hull.

Then the y-intercept of the leftmost slope is equal to c(L/K) [5, Proposition 1.5.1].
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More precisely, the Hasse-Herbrand function φL/K can be recovered completely from

P = NPK(L, πL) by the formula

φL/K(s) = φP (
s+ 1

e(L/K)
)− 1,

where e(L/K) is the relative ramification index of L/K and φP is the dual polygon of

P :

φP (s) = inf{t ∈ R | y = −sx+ t intersects P}

(for example, see [7, Section 3]. Note that the corresponding formula there contains an

error). From this we see that if c(L/K) < m, then the Newton polygon NPK(L, πL)

depends only on OL/(πmK ). This allows us to prove that the category FE<jK depends

only on OK/(πmK ), and hence Theorem 2.2 follows.

§ 3. Residually imperfect case: ramification theory of Abbes-Saito

Next we consider the case where the residue field k of K is imperfect. Let L/K

be a finite Galois extension. The problem is that, in this case, the integer ring OL is

not necessarily monogenic over the integer ring of the maximal unramified extension

inside L/K, and ramification appears not only in the uniformizer πL but also in the

inseparable residue extension. Therefore the classical definition of upper ramification

subgroups does not work for this case. A ramification theory generalizing the classical

one to such non-monogenic extensions is due to Abbes-Saito [2, 3], for which we briefly

explain their idea.

First we assume again that k is perfect, to illustrate the idea. Let L/K be a

finite Galois extension with trivial residue extension and Galois group G. We fix a

uniformizer πL of L and let f(X) be its minimal polynomial over OK , as above. Let

z1 = πL, z2, . . . , zn be the roots of f(X) in K̄. Put

Xj
C(OL, πL) = {x ∈ OC | vK(f(x)) ≥ j}.

Note that it also depends on the base field K, and that GK acts naturally on it. We

write it as the disjoint union of discs, as follows. For any x ∈ OC, we have

vK(f(x)) =

n∑
l=1

vK(x− zl).

Take i such that vK(x− zi) = maxl=1,...,n vK(x− zl). Since vK(x− zl) = vK((x− zi) +
(zi − zl)), we have

vK(x− zi) ≤ vK(zi − zl)⇒ vK(x− zl) = vK(x− zi),
vK(x− zi) > vK(zi − zl)⇒ vK(x− zl) = vK(zi − zl)
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and

vK(f(x)) =
∑

l: first case

vK(x− zi) +
∑

l: second case

vK(zi − zl).

Since G acts transitively on the roots of f(X), the set {vK(zi−zl) | l ̸= i} is independent
of i and thus the valuation vK(f(x)) depends only on u = maxl=1,...,n vK(x− zl). Put

vK(f(x)) = φ̃(u). This is a piecewise linear function passing the origin. On a smooth

point (u, φ̃(u)), the slope of this function is equal to

♯{l | u ≤ vK(zi − zl)} = ♯{g ∈ G | vK(g(πL)− πL) ≥ u} = ♯Ge(L/K)u−1.

Hence we obtain the equality

φ̃(u) = φL/K(e(L/K)u− 1) + 1,

and its inverse function ψ̃(j) is

ψ̃(j) =
1

e(L/K)
(ψL/K(j − 1) + 1).

Put θ = 1/p and write the disc with radius θj centered at z as

D(z, θj) = {x ∈ OC | vK(x− z) ≥ j}.

Then the set Xj
C(OL, πL) can be written as

Xj
C(OL, πL) =

∪
l=1,...,n

D(zl, θ
ψ̃(j)).

We define an equivalence relation ∼s on OC by

z ∼s w ⇔ vK(z − w) ≥ s.

It satisfies

z ∼s z′ ⇔ D(z, θs) = D(z′, θs),

z ≁s z′ ⇔ D(z, θs) ∩D(z′, θs) = ∅.

Note that, for any g, h ∈ G, we have

g(πL) ∼ψ̃(j) h(πL)⇔ g−1h ∈ Gj .

Thus we obtain the decomposition

Xj
C(OL, πL) =

⨿
g∈G/Gj

D(g(πL), θ
ψ̃(j)).
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This decomposition can be interpreted as the decomposition into connected compo-

nents if we consider both sides as analytic varieties over C. Namely, we can recover

the ramification subgroup Gj as the stabilizer in G of any single element of the set

π0(X
j
C(OL, πL)). This observation can be generalized to the non-monogenic case, which

is the idea of Abbes-Saito to define ramification subgroups GjK for K with imperfect

residue field.

Now we recall their definition in a slightly different, but equivalent, manner from

the original one [2]. Here we describe their ramification theory via adic spaces, in order

to pass to perfectoid spaces (see [10, Section 2]). For this, we briefly explain about the

definition of adic spaces (see [12, Section 3] and [16, Section 2]).

Let R be a ring. A valuation on R is a multiplicative map | · | : R→ Γ∪{0}, where
Γ is a totally ordered abelian group with its group structure written multiplicatively,

such that |0| = 0, |1| = 1 and |f + g| ≤ max{|f |, |g|} for any f, g ∈ R. We denote by Γ|·|

the subgroup of Γ generated by {|f | | f ̸= 0 ∈ R}. For a topological ring R, a valuation

| · | : R→ Γ∪{0} on R is said to be continuous if the subset {f ∈ R | |f | < γ} is open in

R for any γ ∈ Γ|·|. Two valuations | · | and | · |′ are said to be equivalent if the condition

|f | ≤ |g| ⇔ |f |′ ≤ |g|′

is satisfied for any f, g ∈ R. We denote this equivalence relation by ∼.
Let F be a topological field whose topology is given by a non-trivial valuation of

rank one. A topological F -algebra R is called a Tate F -algebra if there exists a subring

R0 of R such that {aR0 | a ∈ F×} forms a basis of open neighborhoods of 0. An element

f of a Tate F -algebra R is said to be power-bounded if there exists a ∈ F× such that

{fn | n ∈ Z≥0} ⊆ aR0. We denote the subring of power-bounded elements in R by R◦.

Let R+ be an open subring of R which is integrally closed in R and contained in R◦.

We define

Spa(R,R+) = {| · | : R→ Γ ∪ {0} | | · | is continuous and |f | ≤ 1 for any f ∈ R+}/ ∼ .

Hence any point x ∈ Spa(R,R+) defines an equivalence class of valuations on R. We

write a valuation representing x as f 7→ |f(x)|. Note that the group Γ may vary for

each point x ∈ Spa(R,R+).

Let f1, . . . , fr, g be elements of R satisfying (f1, . . . , fr) = R. Then the subset

{x ∈ Spa(R,R+) | |fi(x)| ≤ |g(x)| ̸= 0 for any i}

is called a rational subset of Spa(R,R+). We give Spa(R,R+) the topology generated

by the rational subsets.

Put π = πK . Let B̃ be a finite flat OK-algebra. Fix a finite system of generators

Z = (z1, . . . , zn) of the OK-algebra B̃. Consider the surjection OK [X1, . . . , Xn] → B̃
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defined byXi 7→ zi and write its kernel as (f1, . . . , fr). Let us write asX = (X1, . . . , Xn)

and

OC⟨X⟩ = OC[X1, . . . , Xn]
∧, C⟨X⟩ = OC⟨X⟩[1/π],

where ∧ means the π-adic completion. Put

Xad
C = Spa(C⟨X⟩,OC⟨X⟩),

which also depends on n. Define a rational subset Xj,ad
C (B̃, Z) of Xad

C by

Xj,ad
C (B̃, Z) = {x ∈ Xad

C | |fi(x)| ≤ |π(x)|j for any i}

and put

F jK(B̃) = π0(X
j,ad
C (B̃, Z)).

Then we can show that this is a finite GK-set which is independent of the choice of Z

up to an isomorphism and functorial on B̃.

Definition 3.1. We say that the ramification of B̃/OK is bounded by j if

♯F jK(B̃) = rankOK (B̃). For a finite extension L/K, we say that the ramification of

L/K is bounded by j if the ramification of OL/OK is bounded by j.

This definition is equivalent to [2, Definition 6.3] if B̃ is of relative complete inter-

section over OK and B̃⊗OKK is etale over K. Then we have the following compatibility

with base change.

Lemma 3.2 ([1], Proof of Lemme 2.1.5). Let K ′/K be an extension of complete

discrete valuation fields which is not necessarily finite. Let B̃ be a finite flat OK-algebra.

Then we have a natural bijection

F jK(B̃) ≃ F je(K
′/K)

K′ (B̃ ⊗OK
OK′).

For any finite Galois extension L/K with Galois group G, we define the j-th upper

ramification subgroup Gj as

Gj = Ker(G→ Aut(F jK(OL)))

and GjK as their projective limit. In this case, the above definition of the boundedness

of ramification is equivalent to what is mentioned earlier. Moreover, for the residually

perfect case, this subgroup GjK coincides with the one defined before.

As we can see from the above definition, one of the advantages of Abbes-Saito’s

ramification theory is that we can measure ramification of finite flat algebras. This

advantage had been used for a study of canonical subgroups of abelian varieties [1, 8,
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9, 18, 19]. To pass to finite flat algebras to measure ramification is also a key step in

what follows.

§ 4. Ramification of truncated discrete valuation rings

Since we have the higher dimensional ramification theory of Abbes-Saito, it is

natural to expect that Theorem 2.2 can be generalized to the residually imperfect case.

The point is to define an analogue of the category FE<jK over OK/(πmK ) ≃ OF /(πmF )

to bridge between the sides of K and F . In other words, what we need is an intrinsic

definition of a ramification theory of local rings similar to the ringOK/(πmK ) — truncated

discrete valuation rings.

Definition 4.1 ([5], Subsection 1.1, [11], Section 2). We say that a ring A is a

truncated discrete valuation ring if A is a local ring with nilpotent principal maximal

ideal. We refer to a generator of its principal maximal ideal as a uniformizer of A. A

truncated discrete valuation ring A is said to be of length m if the length of A as an

A-module is m.

A typical example of truncated discrete valuation rings of length m is the ring

OK/(πmK ). Conversely, for any truncated discrete valuation ring A of length m, we can

always find a complete discrete valuation field K and a local surjection ι : OK → A

inducing an isomorphism OK/(πmK ) ≃ A [5, Subsection 1.1]. We refer to such a pair

(K, ι) as a lift of A.

A notion of finite extension of A is defined as follows:

Definition 4.2 ([11], Section 2). Let A be a truncated discrete valuation ring of

length m. A finite flat A-algebra B is said to be a finite extension of truncated discrete

valuation rings over A if B is a truncated discrete valuation ring for m ≥ 2, and B is a

field if m = 1.

For any finite extension L/K of complete discrete valuation fields and any inte-

ger m ≥ 2, the OK/(πmK )-algebra OL/(πmK ) is a finite extension of truncated discrete

valuation rings in this sense. We have the following converse:

Theorem 4.3 ([11], Proposition 2.2). Let A be a truncated discrete valuation

ring of length m and B/A a finite extension of truncated discrete valuation rings. Let

(K, ι) be a lift of A. Then there exists a finite separable extension L/K with a cocartesian

diagram

OK //

��

OL

��
A // B.



Ramification theory and perfectoid spaces — a survey 9

Remark. Though the proof of [11, Proposition 2.2] for the claim that we can take

a separable L/K has a gap, it can be easily fixed. Note that in [10] we do not use the

claim, since [10, Lemma 4.10 (ii)] is enough for applications.

The idea of Hiranouchi-Taguchi [11] to attack a generalization of Theorem 2.2 is

to define ramification of any finite extension B/A of truncated discrete valuation rings

as ramification of L/K as in Theorem 4.3. Namely, for any positive rational number

j ≤ m, they defined that the ramification of B/A is bounded by j if the ramification

of L/K is bounded by j. This notion is independent of the choice of L once we fix a

lift (K, ι) of A, by [7, Lemma 1]. Then they also defined a category FFP<jA,(K,ι) of finite

extensions of A whose ramification is bounded by j along the lift (K, ι) (in fact, they

denote it by FFP≤j
A ) and showed that it is naturally equivalent to the category FE<jK .

If the category FFP<jA,(K,ι) is independent of the choice of a lift (K, ι), then we can

obtain an equivalence of categories generalizing Theorem 2.2 immediately. However,

this independence had remained open.

§ 5. Main theorems

For any complete discrete valuation field K of residue characteristic p, we set e(K)

to be the absolute ramification index of K if K is of characteristic zero and an arbitrary

positive integer if K is of characteristic p. Then the main result of the author’s paper

[10] is the following, which settles this problem for the case where pA = 0.

Theorem 5.1 ([10], Theorem 1.1 (i)). Let L1/K1 and L2/K2 be finite exten-

sions of complete discrete valuation fields of residue characteristic p. Let m be a positive

integer satisfying m ≤ mini e(Ki). Suppose that we have compatible isomorphisms of

rings OK1/(π
m
K1

) ≃ OK2/(π
m
K2

) and OL1/(π
m
K1

) ≃ OL2/(π
m
K2

). Then, for any positive

rational number j ≤ m, the ramification of L1/K1 is bounded by j if and only if the

ramification of L2/K2 is bounded by j.

The assumption m ≤ mini e(Ki), which means that what we are considering are

only the truncated discrete valuation rings killed by p, is crucial. This is because, to

prove the theorem, we first lift A = OKi/(π
m
Ki

) to a complete discrete valuation field F

of equal characteristic using pA = 0, and then compare ramification over F and Ki by

passing to perfectoid spaces. The author has no idea of how to drop this assumption,

while he thinks that the p-torsion case is the main case of interest, since it enables us

to switch mixed and equal characteristics.

We also have the following corollaries of Theorem 5.1.

Corollary 5.2.
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1. ([10], Theorem 4.16) If pA = 0, then the category FFP<jA,(K,ι) is independent of the

choice of a lift (K, ι) of A.

2. ([10], Corollary 4.18) Let K1 and K2 be complete discrete valuation fields, with

residue fields k1 and k2 of characteristic p, respectively. Let j be a positive rational

number satisfying j ≤ mini e(Ki). Suppose that the fields k1 and k2 are isomorphic

to each other. Then there exists an equivalence of categories

FE<jK1
≃ FE<jK2

.

In particular, there exists an isomorphism of topological groups

GK1/G
j
K1
≃ GK2/G

j
K2
.

3. ([10], Theorem 6.2) The functor of higher fields of norms [15] is compatible with

ramification in the sense of Abbes-Saito.

4. ([10], Theorem 7.2) Suppose char(K) = 0. Let V be a p-adic representation of GK

with finite local monodromy. Define the Artin conductor of V as

Art(V ) =
∑
j∈Q>0

j dimQp(V
Gj+

K /V G
j
K ).

If Art(V ) < e(K), then Art(V ) is an integer.

Remark.

1. Corollary 5.2 (3) gives a totally different proof of a theorem of Ohkubo [13, Theorem

3.42].

2. In the ramification theory of Abbes-Saito, we also have another ramification sub-

group which generalizes the classical ramification subgroup Gj−1
K in our notation—

the j-th log ramification subgroup GjK,log. Theorem 5.1 and Corollary 5.2 can be

generalized to the case of log ramification under the slightly stronger assumption of

j ≤ min{e(Ki)− 2}, except Corollary 5.2 (1) (see [10]).

The reason why we need the stronger assumption is as follows: For the log case, we

have to compare the elements π
e(Li/Ki)
Li

/πKi mod πmKi
for i = 1, 2. For these two

elements to be equal, we need to have an isomorphism OK1/(π
m+1
K1

) ≃ OK2/(π
m+1
K2

)

and this forces us to havem+1 ≤ e(Ki). Moreover, the log ramification is defined by

counting the number of connected components of an analytic variety whose defining

equations include

|(Xe(Li/Ki)
n − πKig)(x)| ≤ |πKi(x)|j+1
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with some polynomial g ∈ OKi [X], and this forces j + 1 ≤ m.

On the other hand, the reason why Corollary 5.2 (1) remains open for the log case

is that, if we try to prove a functoriality for any extension L′
i/Li of a comparison

result of ramification, we encounter an analytic variety whose defining equations

include

|(Xe(L′
i/Ki)

n − πe(L
′
i/Li)

Ki
g′)(x)| ≤ |πKi(x)|j+e(L

′
i/Li).

The power on the right-hand side can be arbitrarily large and we cannot compare

ramification functorially through modulo πmKi
with a fixed m.

3. Corollary 5.2 (4) is a part of a theorem of Xiao [20, Subsection 1.1, Theorem]. How-

ever, the log version of this corollary proves the integrality of the Swan conductor

of V for a case which had not been known previously.

§ 6. Sketch of the proof

In this section, we explain main ideas for the proof of Theorem 5.1. For the resid-

ually perfect case, the key point of the proof of Theorem 2.2 is to bridge between

ramification theories of complete discrete valuation fields with possibly different char-

acteristics, by extracting the combinatorial objects of Newton polygons which recover

ramification and then comparing these objects inside R2. As we mentioned before, if

the residue field k of a complete discrete valuation field K is imperfect, then the integer

ring OL of a finite Galois extension L/K is not necessarily monogenic and we cannot

define the Newton polygon.

Tropical analytic geometry (see [14]) produces higher dimensional combinatorial

objects generalizing the Newton polygon. Using them, it may be possible to study

lower ramification subgroups of Gal(L/K) whose definition involves the valuations of

differences of common zeros of the defining equations of OL over OK as in the clas-

sical case. However, in the non-monogenic case, upper ramification subgroups do not

necessarily coincide with lower ramification subgroups even after renumbering [3, Sub-

section 2.1, Example]. Thus it is unclear how to define a combinatorial object which

recovers the Abbes-Saito ramification of L/K. The idea to bypass this difficulty is a

use of perfectoid spaces [16] to bridge between ramification theories of mixed and equal

characteristics.

Let m be a positive integer and j a positive rational number satisfying j ≤ m.

Let A be a truncated discrete valuation ring of length m which is killed by p and B a

finite flat A-algebra. Let (K, ι) and (F, ι) be two lifts of A. Suppose that we have a
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cocartesian diagram

(6.1)

B̃K // B B̃Foo

OK ι
//

OO

A

OO

OF

OO

ι
oo

with B̃K = OL and B̃F = OE for some finite separable extensions L/K and E/F .

What we have to show is that the ramification of L/K is bounded by j if and only if

the ramification of E/F is bounded by j. For this, it is enough to show the equality

♯F jK(B̃K) = ♯F jF (B̃F ).

We identify the residue field of A with those of K and F and denote it also by k.

Since pA = 0, we can choose a section k → A of the reduction map A → k. We fix

once and for all such a k-algebra structure of A. Let π̄ be a uniformizer of A. Then

the map k[[u]]→ A sending u to π̄ defines a lift of A, and by Theorem 4.3, we can find

another similar cocartesian diagram over k[[u]]. Thus, by comparing ramification over

k((u)) with those over K and F , we may assume F = k((u)) and ι(u) = π̄. Let π be a

uniformizer of K satisfying ι(π) = π̄. Let K̄ and C be as before.

For simplicity, we assume that K is of characteristic zero. Fix a Cohen ring C(k)

of k. Then we can find a local homomorphism C(k) → OK which makes the following

diagram commutative.

C(k) //

��

OK
ι

��
k // A

By fixing such a local homomorphism, we consider K0 = Frac(C(k)) as a subfield of

K. We also fix a p-basis {b̄λ}λ∈Λ of k and its lift {bλ}λ∈Λ in C(k), and a system of

p-power roots (bλ,l)l≥0 of bλ in K̄ satisfying bλ,0 = bλ and bpλ,l+1 = bλ,l. Let K
′
0 be the

completion of the discrete valuation field∪
λ,l

K0(bλ,l),

which is naturally considered as a subfield of C. Put K ′ = K ′
0K, the composite field

inside C. Then we have e(K ′/K) = 1, OK′ = OK ⊗C(k) OK′
0
and the residue field k′ of

K ′
0 is the perfect closure of k in the residue field k̄ of C.

Consider the k-algebra A as a C(k)-algebra by the map C(k) → k → A. Put

A′ = A ⊗k k′ = A ⊗OK
OK′ and similarly for B′. Then the lift ι : k[[u]] → A induces
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a lift ι′ : k′[[u]] → A′. Put F ′ = k′((u)). Then we obtain the following cocartesian

diagram

B̃K ⊗OK
OK′ // B′ B̃F ⊗OF

OF ′oo

OK′ //

OO

A′

OO

OF ′ .

OO

oo

By Lemma 3.2 and the equalities e(K ′/K) = e(F ′/F ) = 1, it is enough to show the

equality

♯F jK′(B̃K ⊗OK
OK′) = ♯F jF ′(B̃F ⊗OF

OF ′).

Note that the residue field k′ of both K ′ and F ′ is perfect, while the rings B̃K ⊗OK
OK′

and B̃F ⊗OF OF ′ are not necessarily normal anymore. Namely, by this base changing

argument, we may assume that the residue field k is perfect, at the cost of assuming

that B̃K and B̃F are just finite flat algebras over OK and OF .
Next we choose the completion C♭ of an algebraic closure of F as follows. Define

the ring OC♭ as the inverse limit ring

OC♭ = lim←−(OC/(π
m)← OC/(π

m)← · · · ),

where all the transition maps are given by x 7→ xp. Here we consider the leftmost entry

in the limit as the zeroth entry, and write any element x of OC♭ as x = (x0, x1, . . .). We

can see that the reduction modulo πm induces a bijection

lim←−(OC ← OC ← · · · )→ lim←−(OC/(π
m)← OC/(π

m)← · · · ),

where all the transition maps in the former limit are also given by x 7→ xp. Composing

this bijection with the zeroth projection, we obtain a natural multiplicative map (·)♯ :
OC♭ → OC, which can be written explicitly as follows: for x = (x0, x1, . . .) ∈ OC♭ , take

any lift x̂l of xl in OC and put x♯ = liml→∞ x̂p
l

l . This map extends to a multiplicative

map C♭ = Frac(OC♭) → C. The field C♭ is an algebraically closed complete valuation

field whose integer ring is OC♭ and additive valuation is vC♭(x) = vK(x♯).

We fix a system (πl)l≥0 of p-power roots of π satisfying π0 = π and πpl+1 = πl. This

gives the element π = (π0, π1, . . .) ∈ OC♭ with π♯ = π. Since we are assuming that k

is perfect, the residue field of the maximal unramified extension Knr of K in K̄ is k̄,

and we have a unique multiplicative section [·] : k̄ → OKnr of the reduction map. Using

this, we consider OC♭ as a k̄-algebra by the map

x 7→ ([x], [x1/p], [x1/p
2

], . . .).

We also consider OC♭ as an OF -algebra by this map and u 7→ π. Then we see that the

field C♭ is the completion of an algebraic closure of F . Moreover, we have a commutative
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diagram of k-algebras

(6.2)

OF //

ι

��

OC♭

pr0

��

A

ι−1 ≀
��

OK/(πm) // OK̄/(πm).

Let us return to the diagram (6.1) with finite flat algebras B̃K and B̃F , as we

are assuming. Let Z̄ = (z̄1, . . . , z̄n) be a finite system of generators of the A-algebra

B. Consider the surjection A[X] → B defined by Xi 7→ z̄i, and write its kernel as

Ī = (f̄1, . . . , f̄r). Let fi be a lift of f̄i to the ring OK [X] by the map ι : OK → A, and

let fi be its lift to the ring OF [X] by the map ι : OF → A. Let zi be a lift of z̄i to B̃K .

Then the set Z = (z1, . . . , zn) is a finite system of generators of the OK-algebra B̃K .

Let I be the kernel of the surjection OK [X]→ B̃K defined by Z. Then we have

I + πmOK [X] = (f1, . . . , fr) + πmOK [X].

Since j ≤ m, the rational subset Xj,ad
C (B̃K , Z) is equal to

Xj,ad
C (B, Z̄) = {x ∈ Xad

C | |fi(x)| ≤ |π(x)|j for any i}.

Similarly, the rational subset we have to consider on the side of F is equal to

Xj,ad
C♭ (B, Z̄) = {x ∈ Xad

C♭ | |fi(x)| ≤ |π(x)|j for any i}.

To compare the sets of connected components of these two adic spaces over C and

C♭, we pass to perfectoid spaces [16]. Put

OC[X
1/pl ] = OC[X

1/pl

1 , . . . , X1/pl

n ], OC[X
1/p∞ ] = lim−→

l∈Z≥0

OC[X
1/pl

1 , . . . , X1/pl

n ]

and denote their π-adic completions by OC⟨X1/pl⟩ and OC⟨X1/p∞⟩. We also put

C⟨X1/pl⟩ = OC⟨X1/pl⟩[1/π], C⟨X1/p∞⟩ = OC⟨X1/p∞⟩[1/π].

We define the rings OC♭⟨X1/pl⟩, OC♭⟨X1/p∞⟩, C♭⟨X1/pl⟩ and C♭⟨X1/p∞⟩ on the side of

F similarly, using π instead of π. Then the ring C⟨X1/p∞⟩ is a perfectoid C-algebra with

tilt C♭⟨X1/p∞⟩ [16, Definition 5.1, Proposition 5.20]. In particular, we have a canonical

ring isomorphism

OC♭⟨X1/p∞⟩ ≃ lim←−(OC⟨X1/p∞⟩/(πm)← OC⟨X1/p∞⟩/(πm)← · · · ),
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where all the transition maps are x 7→ xp, such that the composite with the zeroth

projection is equal to

OC♭⟨X1/p∞⟩ → OC♭⟨X1/p∞⟩/(πm) ≃ OC⟨X1/p∞⟩/(πm),

where the right isomorphism is defined by pr0 : OC♭/(πm) ≃ OC/(π
m) and X

1/pl

i 7→
X

1/pl

i [10, Lemma 3.2]. Moreover, the reduction modulo πm induces a bijection

lim←−(OC⟨X1/p∞⟩ ← OC⟨X1/p∞⟩ ← · · · )
→ lim←−(OC⟨X1/p∞⟩/(πm)← OC⟨X1/p∞⟩/(πm)← · · · ),

as in the case of OC and OC♭ . Composing these bijections with the zeroth projection,

we obtain a continuous multiplicative map

(·)♯ : C♭⟨X1/p∞⟩ → C⟨X1/p∞⟩

[16, Proposition 5.17]. From the commutative diagram (6.2), we also obtain the con-

gruence

(6.3) f ♯i ≡ fi mod πm.

Put

Xad
C,l = Spa(C⟨X1/pl⟩,OC⟨X1/pl⟩), Xad

C,∞ = Spa(C⟨X1/p∞⟩,OC⟨X1/p∞⟩)

and similarly for Xad
C♭,l

, Xad
C♭,∞. By [16, Theorem 6.3], we have a homeomorphism

τ : Xad
C,∞ → Xad

C♭,∞

defined by |f(τ(x))| = |f ♯(x)| for any x ∈ Xad
C,∞ and any f ∈ C♭⟨X1/p∞⟩.

Now we denote byXj,ad
C,∞(B, Z̄) the inverse image of the rational subsetXj,ad

C (B, Z̄) ⊆
Xad

C by the natural projection p∞,0 : Xad
C,∞ → Xad

C . This is the rational subset

{x ∈ Xad
C,∞ | |fi(x)| ≤ |π(x)|j for any i}

of the adic space Xad
C,∞. Similarly, we define Xj,ad

C♭,∞(B, Z̄) to be the inverse image of

Xj,ad
C♭ (B, Z̄) by the projection p♭∞,0 : Xad

C♭,∞ → Xad
C♭ . This is equal to

{x ∈ Xad
C♭,∞ | |fi(x)| ≤ |π(x)|

j for any i}.

Thus we have a commutative diagram

Xj,ad
C,∞(B, Z̄) �

� //

��

Xad
C,∞

τ
∼

//

p∞,0

��

Xad
C♭,∞

p♭∞,0

��

Xj,ad
C♭,∞(B, Z̄)

��

? _oo

Xj,ad
C (B, Z̄) �

� // Xad
C Xad

C♭ Xj,ad
C♭ (B, Z̄)? _oo

whose two squares are cartesian. Then Theorem 5.1 follows from the proposition below:
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Proposition 6.1.

1. ([10], Lemma 3.5) τ−1(Xj,ad
C♭,∞(B, Z̄)) = Xj,ad

C,∞(B, Z̄).

2. ([10], Lemma 3.6) The projections p∞,0 and p♭∞,0 induce bijections

π0(X
j,ad
C,∞(B, Z̄))→ π0(X

j,ad
C (B, Z̄)), π0(X

j,ad
C♭,∞(B, Z̄))→ π0(X

j,ad
C♭ (B, Z̄)).

Outline of proof. The first part of the proposition follows from the congruence

(6.3) and the assumption j ≤ m, since

|fi(x)| ≤ |π(x)|j ⇔ |f ♯i (x)| ≤ |π
♯(x)|j = |π(x)|j .

For the second part, the assertion on p♭∞,0 follows from the fact that this projection is

a homeomorphism. Consider the assertion on p∞,0. By a limit argument, it is enough

to show a similar assertion for the projection pl,0 : Xad
C,l → Xad

C for any l ≥ 0.

Put Xj,ad
C,l (B, Z̄) = p−1

l,0 (X
j,ad
C (B, Z̄)). Note that the map pl,0 is surjective, and

also open since it is flat and finitely presented. It is enough to show that for any

connected component C of Xj,ad
C (B, Z̄), its inverse image p−1

l,0 (C) is connected. Since

the adic spaces Xj,ad
C (B, Z̄) and Xj,ad

C,l (B, Z̄) are locally of finite type, the numbers

of their connected components are finite and the components are open. The inverse

image p−1
l,0 (C) is the disjoint union of some connected components of Xj,ad

C,l (B, Z̄). If it

had more than one connected components, then the intersection of their images in C

would be a nonempty open subset and thus contain a classical point (namely, a point

of Xad
C defined by the valuation f 7→ p−vK(f(x)) for some closed point x ∈ Spec(C⟨X⟩)).

Hence it suffices to show that, for any classical point x in Xj,ad
C (B, Z̄) defined by the

map Xi 7→ xi with xi ∈ OC, any two points y, y′ ∈ p−1
l,0 (x) are contained in the same

connected component of Xj,ad
C,l (B, Z̄).

Consider the polydisc

U = {z ∈ Xad
C | |(Xi − xi)(z)| ≤ |π(z)|m for any i}.

Since j ≤ m, this polydisc is an open neighborhood of x contained in Xj,ad
C (B, Z̄). Its

inverse image p−1
l,0 (U) is equal to

{z ∈ Xad
C,l | |(Xi − xi)(z)| ≤ |π(z)|m for any i}.

Since m ≤ e(K), we have

|(Xi − xi)(z)| ≤ |π(z)|m ⇔ |(X1/pl

i − x1/p
l

i )(z)| ≤ |π(z)|m/p
l

.

Hence, the inverse image p−1
l,0 (U) is also a polydisc, thus connected, which is contained

in Xj,ad
C,l (B, Z̄) and contains both y and y′. This concludes the proof.
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