
RAMIFICATION OF CRYSTALLINE REPRESENTATIONS

SHIN HATTORI

Abstract. This is a survey on integral p-adic Hodge theory, especially
on the Fontaine-Laffaille theory, and a ramification bound for crystalline
representations due to Abrashkin and Fontaine, based on the author’s
talks at the spring school “Classical and p-adic Hodge theories”.
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1. Introduction

Let p be a rational prime, k a perfect field of characteristic p and W =
W (k) the Witt ring for k. Put Wn = W/pnW for any n ∈ Z>0. We write
σ for the p-th power Frobenius maps of various p-torsion rings, and also
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for the natural lift (x0, x1, . . .) 7→ (xp0, x
p
1, . . .) to W of the Frobenius map

on k. Put K0 = Frac(W ). Let K be a finite totally ramified extension of
K0 of degree e with integer ring OK , maximal ideal mK and uniformizer
πK . We fix an algebraic closure K̄ of K and let k̄ be the residue field of K̄,
which is an algebraic closure of k. Let vp and vK be the p-adic valuations
on K̄ normalized as vp(p) = 1 and vK(πK) = 1, respectively. Put GK =
Gal(K̄/K). Let C be the completion of K̄ and OC its integer ring. Let Kur

be the maximal unramified extension of K inside K̄ and IK = Gal(K̄/Kur)
the inertia subgroup of GK . We denote the category of Zp-modules with a
continuous GK-action for the p-adic topology by RepZp

(GK).

Recall that p-adic Hodge theory has the following two aspects:

(i) to study, or classify if possible, nice p-adic GK-representations (such
as Hodge-Tate, de Rham, semi-stable and crystalline representa-
tions), using semi-linear algebraic data (such as filtered (φ,N)-
modules).

(ii) to study a relation between p-adic etale cohomology of algebraic
varieties over K and other cohomology theories on the differential
side, such as de Rham, log-crystalline and crystalline cohomology.

Integral p-adic Hodge theory is its variant of Zp- or p-power torsion coef-
ficients. Namely, its aim can be summarized as:

(i) to study, or classify if possible, subquotients of nice p-adic repre-
sentations, using semi-linear algebraic data which are in a sense
subquotients of the data attached to p-adic representations (such
as filtered (φ,N)-modules).

(ii) to study a relation between etale cohomology of Zp- or p-power tor-
sion coefficients of algebraic varieties over K and other cohomology
theories on the differential side, such as de Rham, log-crystalline
and crystalline cohomology.

Example 1.1. (i) Let A be an Abelian variety over K of dimension
g. Let Tp(A) = lim←−nA[p

n](K̄) be the Tate module of A and put

Vp(A) = Tp(A) ⊗Zp Qp. The module Tp(A) is a free Zp-module of
rank 2g on which GK acts continuously (for the p-adic topology).
Similarly, the module Vp(A) is a p-adic GK-representation of dimen-
sion 2g, and moreover it is de Rham with Hodge-Tate weights in
[0, 1]. The module Tp(A) is a GK-stable Zp-lattice in Vp(A), and the
GK-module A[pn](K̄) is isomorphic to the quotient Tp(A)/p

nTp(A).
These subquotients of Vp(A) are typical examples of what integral
p-adic Hodge theory studies on the aspect (i).

More generally, let V be a de Rham GK-representation. Then
we want to study any GK-stable Zp-lattice T in V and the quotient
T/T ′ for any such lattices T ⊇ T ′ in V .
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(ii) Let X be a proper smooth scheme over K. Then the etale cohomol-
ogy groups H i

et(XK̄ ,Zp) and H i
et(XK̄ ,Z/pnZ) are what we want to

study on the aspect (ii).

The integral theory captures more subtle information than the p-adic
counterpart, such as ramification of Galois representations. We can pass
from the theory of Zp-coefficients both to that of Qp-coefficients by inverting
p, and to that of Fp-coefficients by reducing modulo p. For example, let V
be a semi-stable GK-representation with associated filtered (φ,N)-module
D and T a GK-stable Zp-lattice in V . By integral p-adic Hodge theory,
we can associate with T a semilinear algebraic data M . The data M is a
finitely generated module over a coefficient ring which is a W -algebra, and
M is endowed with additional structures (such as a Frobenius map). We can
recover the filtered (φ,N)-module D via M ⊗W K0, and the data M/pM
has information of the GK-representation T/pT . In some casesM is defined
as a W -lattice in D as we will see in §2, while it is not the case in general.

Downsides are the following: In the integral case, the coefficient ring of
semi-linear algebraic data is not a field, unlike the coefficient field K0 of fil-
tered (φ,N)-modules. Actually, it is not even a complete discrete valuation
ring but a largerW -algebra, unless the base field K is absolutely unramified
(namely, K = K0), and the theory becomes more complicated compared to
the p-adic theory. Moreover, it is often very hard to describe explicitly the
semilinear algebraic data associated with a given integralGK-representation.

In this article, we will focus on the classical integral theory of Fontaine-
Laffaille [FL82], which treats the subquotients of crystallineGK-representations
with Hodge-Tate weights in [0, p− 1] for the case where K is absolutely un-
ramified. We introduce basic definitions and state main theorems of the
theory in §2. We also give a sketch of proofs for some of the main theorems
(Theorem 2.9 and Theorem 2.19) in §4. In fact, now we have an integral the-
ory without these three restrictions (crystalline representations, small range
of Hodge-Tate weights, absolutely unramified base field) thanks to works of
many people including Breuil, Kisin and Liu. We will discuss such recent
developments of the integral theory in §3.

The author would like to thank Yoshiyasu Ozeki, Takeshi Saito and
Yuichiro Taguchi for helpful comments on an earlier draft of the article.
The interested reader is recommended also to consult other survey articles
[Bre02, BMs02, BC14+], to which this article owes very much.

2. Fontaine-Laffaille modules

Let the notation be as in §1. Let V be a p-adic GK-representation and
D = D∗

crys(V ) = HomQp[GK ](V,Bcrys) the associated filtered φ-module. The
module D is a K0-vector space satisfying dimK0(D) ≤ dimQp(V ). We say
V is crystalline if the equality holds. Put DK = D⊗K0 K. The Hodge-Tate
weights are the integers i such that griD•

K ̸= 0. Note that here we adopt the
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convention such that the cyclotomic character Qp(1) has the Hodge-Tate
weight one.

Remark 2.1. This dual convention to the usualDcrys(V ) = (V ⊗QpBcrys)
GK

is preferred in integral p-adic Hodge theory. A reason for this dual preference
seems to be the following: The module D∗

crys(V ) is a Hom group, and so is
its quasi-inverse V ∗

crys(D) = HomK0,φ,Fil(D,Bcrys). In the integral theory, we
use a similar Hom group to construct Galois representations from semilinear
algebraic data, as we will see later. One of the advantages of Hom and Ext
compared to ⊗ and Tor is that we can study them in a more explicit way, by
using the Yoneda extension. This makes the analysis of the associated Galois
representations easier especially in the integral theory, where the coefficient
ring of semilinear algebraic data is not a field and we cannot always resort
to dimension calculation or flatness. However, in many cases we can develop
covariant integral theories and they are also useful (for example, see §2.3).

Now we concentrate on the case of K = K0. Let V be a crystalline GK0-
representation with Hodge-Tate weights in [0, p− 1] and put D = D∗

crys(V ).
The module D is a K0-vector space of dimension dimQp(V ) endowed with

a decreasing filtration {Di}i∈Z and a σ-semilinear bijection φ : D → D
satisfying the admissibility condition.

The idea of the integral p-adic Hodge theory of Fontaine-Laffaille is to clas-
sify GK0-stable Zp-lattices in V and their quotients by φ-stable W -lattices
M in D and their quotients. We have to impose on M an integral version of
admissibility; namely, the conditions that φ(M ∩Di) ⊆ piM for any i and
that

∑
i∈Z p

−iφ(M ∩Di) = M . In fact, these conditions originated from a
structure of integral crystalline cohomology [Fon83, 1.3, Proposition]. This
idea leads to the following definitions.

2.1. Definition of Fontaine-Laffaille modules.

Definition 2.2. (i) A Fontaine-Laffaille module over W is a triplet
(M, {M i}i∈Z, {φiM}i∈Z), which we denote abusively by M , consist-
ing of
• a W -module M ,
• a decreasing filtration {M i}i∈Z of M by W -submodules satis-
fying M =

∪
i∈ZM

i and
∩
i∈ZM

i = 0,

• a family of σ-semilinear maps {φiM :M i →M}i∈Z which makes
the diagram

M i+1
φi+1
M //� _

��

M

×p
��

M i

φi
M

// M

commutative for any i. We often drop the subscript M in φiM
if no confusion occurs.
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(ii) A morphism of Fontaine-Laffaille modules f : M → N over W is
a W -linear map f : M → N between the underlying W -modules
satisfying f(M i) ⊆ N i and f ◦ φiM = φiN ◦ f for any i.

(iii) A sequence of Fontaine-Laffaille modules 0→ L→M → N → 0 is
exact if the sequence on the underlying W -modules 0→ L→M →
N → 0 is exact, and also the sequence induced on the i-th filtration
0→ Li →M i → N i → 0 is exact for any i.

We denote the category of Fontaine-Laffaille modules over W by MFW .
We also denote by MFk its full subcategory consisting of those killed by
p. With the above notion of exact sequence, the categories MFW and MFk
are exact categories in the sense of Quillen [Qui73]. Thus we can define
Extn groups via the Yoneda extension and we have long exact sequences of
Hom and Ext for these categories. Though Yoneda Extn groups in an exact
category may be a proper class in general, we can see that Ext1MFW

(M,N)

and Ext1MFk
(M,N) are sets, since any equivalence class of such an extension

is represented by a Fontaine-Laffaille module whose underlying set is N×M .
For any W -module M , put Mσ = M ⊗W,σ−1 W . We identify the data

{φiM}i∈Z in the above definition with a family of W -linear maps {φiM :
M i → Mσ}i∈Z making the diagram there commutative. Note that if M is
of finite length, then so is Mσ and lgW (M) = lgW (Mσ).

We define a category of torsion Fontaine-Laffaille modules satisfying a
torsion version of the admissibility condition, as follows.

Definition 2.3. (i) For any integers a ≤ b, we denote by MF
[a,b]
W the

full subcategory of MFW consisting of M such that Ma = M and
M b+1 = 0.

(ii) We denote by MFf
W,tor the full subcategory of MFW consisting of

M such that
• M is a W -module of finite length,
•
∑

i∈Z φ
i(M i) =Mσ.

The full subcategory of MF
[a,b]
W defined by the same conditions is

denoted by MF
f,[a,b]
W,tor.

(iii) We denote by MF
f,[0,p−1]′

W,tor the full subcategory of MF
f,[0,p−1]
W,tor con-

sisting of M such that

• There exists no non-zero quotient M → N in MF
f,[0,p−1]
W,tor satis-

fying N = Np−1.

This category is denoted in [FL82, Théorème 6.1] by MFf,p′

tor . Note

that MF
f,[0,p−2]
W,tor ⊆ MF

f,[0,p−1]′

W,tor .

(iv) Similar full subcategories of MFk are denoted by MF
[a,b]
k , MFf

k,

MF
f,[a,b]
k and MF

f,[0,p−1]′

k .

Finally, we define the category of free objects over W , which classifies
GK0-stable Zp-lattices in crystalline GK0-representations.
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Definition 2.4. For any integers a ≤ b, we denote by MF
fd,[a,b]
W the full

subcategory of MF
[a,b]
W consisting of M such that

• M is a free W -module of finite rank,
• M i is a direct summand of the W -module M for any i,
•
∑

i∈Z φ
i(M i) =Mσ.

The sign fd stands for the French word fortement divisible, or strongly di-
visible (Definition 2.10).

What is striking for the category MF
f,[a,b]
W,tor is the following.

Proposition 2.5 ([FL82], 1.10 (b)). Any morphism f : M → N of the

category MF
f,[a,b]
W,tor is strict with filtrations. Namely, we have

f(M i) = f(M) ∩N i

for any i.

Proof. First let M be any object of MF
[a,b]
W and define a W -module M̄ by

the exact sequence

0 //
⊕b

l=a+1M
l θM //

⊕b
l=aM

l // M̄ // 0,

where θM is given by

(xa+1, . . . , xb) 7→ (xa+1,−pxa+1 + xa+2, . . . ,−pxb−1 + xb,−pxb).
Then the map

b⊕
l=a

M l →Mσ; (ya, . . . , yb) 7→
b∑
l=a

φl(yl)

induces a W -linear map φM : M̄ →Mσ. These constructions are functorial,
and the functor M 7→ M̄ is exact by the snake lemma. If the underlying
W -module M is of finite length, then we have the equality

lgW (M) = lgW (M̄).

Moreover, such M is contained in MF
f,[a,b]
W,tor if and only if φM is surjective,

and from the above length equality, it is equivalent to saying that φM is
injective or bijective.

To prove the proposition, first we assume that f is injective, and identify
M with a submodule of N . By the commutative diagram

M̄ //

≀
��

N̄

≀
��

Mσ
� � // Nσ

the induced map M̄ → N̄ is injective (note that here we cannot use the
exactness of M 7→ M̄ , since the cokernel object N/M is well-defined only if
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M l = M ∩N l for any l). On the other hand, suppose that there exists an
element x ∈ (N i ∩M) \M i. Take j < i such that x ∈M j \M j+1. Since M
is p-power torsion, we have psx /∈M j+1 and ps+1x ∈M j+1 for some integer
s ≥ 0. Replacing x by psx, we may assume px ∈M j+1. Put

y = (0, . . . , 0, x,−px, 0, . . . , 0) ∈
b⊕
l=a

M l,

where x is at the j-th entry. Then y /∈ Im(θM ) since x /∈ M j+1, while
y ∈ Im(θN ) since x ∈ N i ⊆ N j+1. Thus the image of y in M̄ is non-zero,
while the image in N̄ is zero. This contradicts the injectivity of M̄ → N̄ .

For a general f , put L = f(M) and Li = f(M i). Since Ker(M i →
Li) = Ker(f) ∩ M i and f ◦ φiM = φiN ◦ f , the map φiM induces a map
φiL : Li → L for any i. Then the triplet L = (L, {Li}i∈Z, {φiL}i∈Z) is an

object of MF
[a,b]
W whose underlying W -module is of finite length, and the

natural maps M → L → N are morphisms of this category. Now we have
the commutative diagram

M̄ //

≀
��

L̄

��
Mσ

// // Lσ,

which yields the surjectivity of the map L̄ → Lσ. This implies that L ∈
MF

f,[a,b]
W,tor. Applying the former half of the proof to the injection L→ N , we

obtain f(M i) = f(M) ∩N i. □

Corollary 2.6. (i) ([FL82], Proposition 1.8) The category MF
f,[a,b]
W,tor is

Abelian.
(ii) ([Win84], Proposition 1.4.1 (ii)) For any object M ∈ MF

f,[a,b]
W,tor, the

W -submodule M i ⊆M is a direct summand for any i.

Proof. For the first assertion, let f :M → N be a morphism of MF
f,[a,b]
W,tor and

put Ker(f)i = Ker(f) ∩M i. Then, by using the exact sequence

0 // Ker(f) // M // L // 0

with L as in the proof of Proposition 2.5, we can show that the triplet

(Ker(f), {Ker(f)i}i∈Z, {φiM |Ker(f)i}i∈Z)

is an object of MF
f,[a,b]
W,tor, just as in the proof of the latter part of Proposition

2.5. Moreover, since the map φiN induces a map φ̄iN : N i/f(M i)→ N/f(M),
Proposition 2.5 implies that the Fontaine-Laffaille module

(Coker(f), {N i/f(M i)}i∈Z, {φ̄iN}i∈Z)

is well-defined, and it is an object of MF
f,[a,b]
W,tor similarly. These construc-

tions give the kernel and cokernel of f in MF
f,[a,b]
W,tor. To show this category
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is Abelian amounts to showing that the filtrations {f(M i)}i∈Z (coimage fil-
tration) and {f(M) ∩N i}i∈Z (image filtration) on f(M) coincide, which is
Proposition 2.5.

On the other hand, applying Proposition 2.5 to the map pn : M → M
yields pnM i = M i ∩ pnM for any n, which implies the second assertion by
an Ext calculation. □

2.2. Associated Galois representations. In this subsection, we will at-

tach to any object M ∈ MF
f,[0,p−1]
W,tor a GK0-module T ∗

crys(M) in a similar way

to V ∗
crys(D), using Acrys instead of Bcrys. Recall that we have the projective

limit ring

R = lim←−(OC/pOC ← OC/pOC ← · · · ),
where every transition map is the p-th power map. For any element x =

(x0, x1, . . .) ∈ R, take any lift x̂l ∈ OC of xl and put x(m) = liml→∞ x̂p
l

m+l ∈
OC , which is independent of the choice of lifts. Then the ring R is a com-
plete valuation ring of characteristic p with algebraically closed fraction field
whose valuation is given by vR(x) = vp(x

(0)) for any element x ∈ R. This
ring admits a natural action of GK0 induced by the action on each entry.
Moreover, using the natural inclusion W (k̄) → OC , we consider R as a k-

algebra by the map k → R given by a 7→ ([a], [a1/p], [a1/p
2
], . . .). Then the

Witt ring W (R) has a natural W -algebra structure.
We also have a natural W -linear, GK0-equivariant surjection θ :W (R)→

OC sending (r0, r1, . . .) ∈W (R) to
∑∞

l=0 p
lr

(l)
l . Choose a system of p-power

roots of −p in OC satisfying ((−p)1/pl+1
)p = (−p)1/pl for any l. Put

β = (−p, (−p)1/p, (−p)1/p2 , · · · ) ∈ R

and ξ = p+ [β] ∈ W (R). Then we have Ker(θ) = (ξ). The ring Acrys is by
definition

Acrys =W (R)[
ξn

n!
| n ∈ Z≥0]

∧,

where ∧ means the p-adic completion.
The natural GK0-action on R induces a GK0-action on Acrys. Other addi-

tional structures on Acrys are defined as follows: The p-th power map R→ R
induces a natural map φ :W (R)→W (R) by (r0, r1, . . .) 7→ (rp0, r

p
1, . . .) and

it extends to a ring endomorphism φ : Acrys → Acrys. Note that

φ(ξ) = p+ [βp] = p+ (ξ − p)p = p(1 + (−1)ppp−1 +

p−1∑
l=1

1

p

(
p

l

)
ξl(−p)p−l + ξp

p
)

= p(1 +
ξp

p
+ p(· · · )).

Let FiliAcrys be the closure of the ideal of Acrys generated by ξn/n! for any

n ≥ i. Then we have φ(FiliAcrys) ⊆ piAcrys for i = 0, 1, . . . , p − 1. Put
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φi = p−iφ|FiliAcrys
for such i. The above equality implies

(1) φ1(ξ) = 1 +
ξp

p
mod pAcrys.

All these structures are compatible with the GK0-action. By putting

Aicrys =


Acrys (i < 0)
FiliAcrys (0 ≤ i ≤ p− 1)
0 (i ≥ p)

and φiAcrys
=

 p−iφ0 (i < 0)
φi (0 ≤ i ≤ p− 1)
0 (i ≥ p)

we consider the ring Acrys as a Fontaine-Laffaille module over W with a

natural GK0-action. On the other hand, since Acrys/Fil
iAcrys is p-torsion free

for any i, the natural map FiliAcrys/p
nFiliAcrys → Acrys/p

nAcrys is injective.

Put Fili(Acrys/p
nAcrys) = FiliAcrys/p

nFiliAcrys. We also have the induced

map φi : Fil
i(Acrys/p

nAcrys) → Acrys/p
nAcrys from φi : Fil

iAcrys → Acrys.
Using these induced structures, we consider Acrys/p

nAcrys and

Acrys,∞ = Acrys ⊗W (K0/W ) ≃ lim−→
n

Acrys/p
nAcrys

as Fontaine-Laffaille modules over W with a natural GK0-action similarly,
by setting i-th filtration to be zero for any i ≥ p.

Let M be an object of MF
f,[0,p−1]
W,tor . We define

T ∗
crys(M) = HomMFW

(M,Acrys,∞).

This is a W -module with a GK0-action induced by the natural action on
Acrys,∞. This construction is functorial on M , and we obtain a functor

T ∗
crys : MF

f,[0,p−1]
W,tor → RepZp

(GK0).

Remark 2.7. In [FL82, Théorème 3.3], an associated GK0-module with
M is defined as U(M) = Ext1MFW

(M,SFL) by using the subring SFL =

W (R)[ ξ
p

p ] of Acrys which they denote by S [FL82, Lemme 5.4] and it is

identified by [FL82, Lemme 3.8] with HomMFW
(M,SFL,∞), where SFL,∞ =

SFL ⊗W (K0/W ). In fact, we can show that the natural map SFL,∞ →
Acrys,∞ induces an isomorphism of GK0-modules U(M) ≃ T ∗

crys(M) (Remark
4.13).

Note that M 7→M ⊗W W (k̄) defines a functor

MF
f,[0,p−1]
W,tor → MF

f,[0,p−1]

W (k̄),tor
.

The effect of this base extension on the associated Galois representation is
the following. Let IK0 be the inertia subgroup of GK0 , which we identify

with the absolute Galois group of K̂ur
0 = Frac(W (k̄)). By using the natural

embedding W (k̄) → OC , we identify the associated IK0-module T ∗
crys(M

′)

of an object M ′ ∈ MF
f,[0,p−1]

W (k̄),tor
with

HomMFW (k̄)
(M ′, Acrys,∞).
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From this we can see:

Lemma 2.8 ([FL82], 3.11). For any object M ∈ MF
f,[0,p−1]
W,tor , the natural

map

T ∗
crys(M)|IK0

→ T ∗
crys(M ⊗W W (k̄))

is an isomorphism of IK0-modules.

Now the first main theorem of this article is the following:

Theorem 2.9. (i) ([FL82], Théorème 3.3 (ii)) The functor T ∗
crys is

exact and faithful.

(ii) ([FL82], Théorème 3.3 (i)) For any M ∈ MF
f,[0,p−1]
W,tor , the Zp-module

T ∗
crys(M) is of finite length. Moreover, the invariant factors of the

Zp-module T ∗
crys(M) and the W -module M are the same.

(iii) ([FL82], Théorème 6.1 (ii)) The restriction of T ∗
crys to the full sub-

category MF
f,[0,p−1]′

W,tor is full.

(iv) The essential image of the restricted functor T ∗
crys : MF

f,[0,p−1]′

W,tor →
RepZp

(GK0) is stable under subquotients.

Next we consider the case where M is free over W . Let r be an integer

satisfying 0 ≤ r ≤ p− 1 and M an object of MF
fd,[0,r]
W . Then the associated

GK0-representation with M is defined by

T̂ ∗
crys(M) = HomMFW

(M,Acrys).

Note that M/pnM is an object of MF
f,[0,r]
W,tor. From Theorem 2.9 (ii) and

M ≃ lim←−nM/pnM , we can show that T̂ ∗
crys(M) is a free Zp-module of rank

equal to rankW (M).
Moreover, put D = M ⊗W K0, D

i = M i ⊗W K0 and φ = φ0 ⊗ 1. These
define on D a structure of a filtered φ-module over K0, which is admissible
by a theorem of Laffaille [Laf80, Théorème 3.2]. From the definition, we can
show that the natural map

T̂ ∗
crys(M)⊗Zp Qp → V ∗

crys(D) = HomK0,φ,Fil(D,B
+
crys)

is an isomorphism of GK0-representations.
Conversely, let us start from a crystalline GK0-representation V with

Hodge-Tate weights in [0, r]. PutD = D∗
crys(V ), which is a filtered φ-module

over K0.

Definition 2.10. A strongly divisible lattice in D is a W -submodule M of
D such that

• M is free of finite rank and M ⊗W K0 = D,
• φ(M ∩Di) ⊆ piM for any i,
•
∑

i∈Z
1
pi
φ(M ∩Di) =Mσ.
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For such M , put M i = M ∩Di and φi = 1
pi
φ|M i . With these structures

we consider M as an object of MF
fd,[0,r]
W , and the structure of a filtered φ-

module on D can be recovered by Di = M i ⊗W K0 and φ = φ0 ⊗ 1. Then
we can show the following.

Theorem 2.11. (i) ([FL82], Théorème 8.4 (i)) For any r ∈ {0, . . . , p−
1} and any M ∈ MF

fd,[0,r]
W , the p-adic GK0-representation V =

T̂ ∗
crys(M)⊗Zp Qp is crystalline with Hodge-Tate weights in [0, r] sat-

isfying D∗
crys(V ) ≃M ⊗W K0 as filtered φ-modules over K0.

(ii) ([Bre99], Proposition 3) Suppose r < p − 1. Let V be a crys-
talline GK0-representation with Hodge-Tate weights in [0, r] and put

D = D∗
crys(V ). Then the functor T̂ ∗

crys induces an anti-equivalence
between the category of strongly divisible lattices in D and that of
GK0-stable Zp-lattices in V .

In fact, the first assertion is now a part of the “weakly admissible implies
admissible” theorem of Colmez-Fontaine [CF00, Théorème A]. The second
assertion follows from Theorem 2.9, except the essential surjectivity. For
this, by the theorem of Laffaille [Laf80, Théorème 3.2], D contains a strongly
divisible latticeM . Using Theorem 2.9 (iv), we can modifyM to produce the
strongly divisible lattice corresponding with a given GK0-stable Zp-lattice
in V .

Definition 2.12. A GK0-representation T̄ ∈ RepZp
(GK0) is said to be tor-

sion crystalline with Hodge-Tate weights in [0, r] if there exist a crystalline
GK0-representation V with Hodge-Tate weights in [0, r] and GK0-stable Zp-
lattices T ⊇ T ′ in V such that T̄ is isomorphic as a GK0-module to T/T ′.

Corollary 2.13 ([BMs02], Theorem 3.1.3.3). For any r ∈ {0, . . . , p−2}, the
functor T ∗

crys induces an anti-equivalence between the category MF
f,[0,r]
W,tor and

the full subcategory of RepZp
(GK0) consisting of torsion crystalline GK0-

representations with Hodge-Tate weights in [0, r].

For this, first we can show by using Corollary 2.6 (ii) that any object

M ∈ MF
f,[a,b]
W,tor has a resolution in MFW

0 // L′ // L // M // 0

with objects L,L′ ∈ MF
fd,[a,b]
W [Win84, Proposition 1.6.3]. This and Theorem

2.11 show that the functor in Corollary 2.13 is well-defined, since we have
T ∗
crys(M) ≃ T̂ ∗

crys(L
′)/T̂ ∗

crys(L). Theorem 2.9 and Theorem 2.11 imply that
it is an anti-equivalence.

As we will see in §4, the proof in [FL82] of Theorem 2.9 is based on a

classification of the simple objects of the category MF
f,[0,p−1]
k and an explicit

description of their associated Galois representations, for the case where k is
algebraically closed (Propositions 4.7 and 4.9). They also have the following
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interesting corollary. Let h be a positive integer. We define a character
θh : IK0 → F×

ph
by

θh(g) =
g(p1/(p

h−1))

p1/(ph−1)
mod mK̄ ∈ µph−1(k̄) = F×

ph
,

which is independent of the choice of a (ph − 1)-st root p
1

ph−1 of p. It
factors through the quotient IK0/PK0 by the wild inertia subgroup PK0 .
The character θh is called the fundamental character of level h.

Theorem 2.14 ([FL82], Théorème 5.3). Let r be an integer satisfying 0 ≤
r ≤ p− 1 and M an object of MF

f,[0,r]
W,tor. Then the semi-simplification of the

IK0-module T ∗
crys(M)|IK0

is a direct sum of characters of the form

θ
i0+pi1+···+ph−1ih−1

h

with integers h ≥ 1 and ij ∈ [0, r].

In fact, each character appearing in the semi-simplification comes from a
Jordan-Hölder factor N of the Fontaine-Laffaille module M ⊗W W (k̄) over
W (k̄), and the ij ’s in the theorem are exactly the integers i satisfying N i ̸=
N i+1. Thus we have a complete understanding of the semi-simplification
of T ∗

crys(M)|IK0
in terms of M . As for the extension structure of these

characters, we will prove an estimate of ramification of T ∗
crys(M) (Theorem

2.19).

2.3. Relation to crystalline cohomology. Let X be a proper smooth
scheme overW and put Xn = X×W Spec(Wn). For any r ∈ {0, 1, . . . , p−1},
we can give the r-th de Rham cohomology group Hr

dR(Xn) = Hr(Xn,Ω
•
Xn

) a

structure as an object of MF
[0,r]
W , as follows. The i-th filtration for 0 ≤ i ≤ r

is the usual Hodge filtration:

Hr
dR(Xn)

i = Hr(Xn, σ≥iΩ
•
Xn

),

where σ≥iΩ
•
Xn

is the truncation (0→ · · · → 0→ ΩiXn
→ Ωi+1

Xn
→ · · · ) of the

de Rham complex of Xn over Wn. Note that we have the isomorphism

Hr(Xn, σ≥iΩ
•
Xn

) ≃ Hr((Xn/Wn)crys,J [i]
Xn/Wn

),

where the right-hand side is the r-th crystalline cohomology group of the i-
th divided power of the natural ideal sheaf JXn/Wn

on the crystalline site of
Xn/Wn [Bert74, Chapitre V, Corollaire 2.3.7]. Hence we obtain a crystalline
Frobenius map φ0 : Hr

dR(Xn) → Hr
dR(Xn), and by [FMe87, II, 2.3] we can

also define a σ-semilinear map

φi : Hr(Xn, σ≥iΩ
•
Xn

)→ Hr
dR(Xn).

Theorem 2.15 ([FMe87], II, Corollary 2.7 (ii)). With these structures,

Hr
dR(Xn) is an object of MF

f,[0,r]
W,tor.
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For any M ∈ MF
f,[0,r]
W,tor, the map FillAcrys ⊗W M i−l → Acrys ⊗W M is

injective, since Acrys/Fil
lAcrys is p-torsion free and theW -submoduleM i−l of

M is a direct summand by Corollary 2.6 (ii). Using this, we give Acrys⊗WM
the tensor product structure as a Fontaine-Laffaille module. Namely, we put

(Acrys ⊗W M)i =
∑
l∈Z

Alcrys ⊗W M i−l

and φiAcrys⊗WM =
∑

l∈Z φ
l
Acrys

⊗ φi−lM . We define

Tcrys(M) = ((Acrys ⊗W M)r)φ
r=1(−r),

where (−r) means the Tate twist. Note that we can show Tcrys(M) ≃
T ∗
crys(M)∨ [Bre98b, Proposition 3.2.1.7]. Then we can state a torsion version

of the comparison isomorphism between etale and de Rham cohomology.

Theorem 2.16 ([FMe87], III, Remark 6.4). For any r ∈ {0, . . . , p − 2},
there exists a natural isomorphism of GK0-modules

Tcrys(H
r
dR(Xn)) ≃ Hr

et(X ×W Spec(K̄),Z/pnZ).

From this and Theorem 2.14, we obtain the following corollary, which
settles a conjecture of Serre [Ser72, 1.13] on tame characters appearing in
torsion etale cohomology of proper smooth schemes over OK , for the case
where K is absolutely unramified.

Corollary 2.17 ([FMe87], I, 3.2). Let X be as above. Then the semi-
simplification of the IK0-module Hr

et(X ×W Spec(K̄),Z/pnZ)|IK0
is a direct

sum of characters of the form

θ
−(i0+pi1+···+ph−1ih−1)
h

with integers h ≥ 1 and ij ∈ [0, r].

2.4. Ramification of torsion crystalline representations. For any fi-
nite Galois extension L/K in K̄ and any j ∈ R≥−1, we have the j-th up-

per numbering ramification subgroups Gal(L/K)j ⊆ Gal(L/K) and GjK =

lim←−L/K Gal(L/K)j ⊆ GK [Ser68, Chapitre IV]. Put G
(j)
K = Gj−1

K . We also

define Gj+K to be the closure of the union
∪
j′>j G

j′

K , and similarly for G
(j+)
K .

Then G
(0+)
K is equal to the inertia subgroup IK , and G0+

K is equal to the wild
inertia subgroup PK . For any finite Galois extension L/K in K̄, the value

uL/K = inf{j ∈ R>0 | G(j)
K ⊆ GL}

measures the extent of ramification of L/K. For example, uL/K = 0 if and
only if L/K is unramified and uL/K = 1 if and only if it is tamely ram-
ified and not unramified. It is also related to the different DL/K [Fon85,
Proposition 1.3], and used as a local term to calculate the different and
the discriminant of a finite extension of number fields. In algebraic num-
ber theory, imposing local constraints in terms of ramification everywhere
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often yields the finiteness, and even the non-existence, of number fields. For
example, the Hermite-Minkowski theorem states that for any integer d and
any finite set S of primes, there exist only finitely many number fields of
degree d which is unramified outside S, and that there exists no nontrivial
unramified extension over Q.

More generally, a GK-representation V is said to be unramified (resp.
tamely ramified) if IK (resp. PK) acts trivially on V . We want to study
ramification (resp. wild ramification) of V , namely how far V is from un-
ramified (resp. tamely ramified) ones. For any p-adic GK-representation V
of finite local monodromy (in other words, when IK acts on V through a
finite quotient), the Artin and Swan conductors

Art(V ) =
∑
j>0

j dimQp V
G

(j+)
K /V G

(j)
K , Sw(V ) =

∑
j>0

j dimQp V
Gj+

K /V Gj
K ,

which are integers by the Hasse-Arf theorem, measure the extent of ram-
ification and wild ramification of V , respectively. They are also used, for
any number field F with absolute Galois group GF and any p-adic GF -
representation V which factors through a finite quotient, to compute the
global Artin conductor of V

Art(V ) =
∏

p∈Spec(OF )

p
Art(V |GFp

)
,

which appears in the functional equation of the Artin L-function of V .
If V is not of finite local monodromy (say V is Hodge-Tate with a non-zero

Hodge-Tate weight), these definitions of conductors do not work well. When
V is de Rham, one way to study ramification is to pass to the Weil-Deligne
representationDpst(V ), by which any crystalline representation is considered
unramified. For any number field F and any p-adic GF -representation V
which is unramified outside a finite set of places and de Rham at any place
dividing p, by usingDpst(V ) at places over p and Grothendieck’s monodromy
theorem at places over primes l ̸= p, we can attach to V aGFv -representation
of finite local monodromy for any finite place v of F and can define the global
Artin conductor Art(V ) for V .

For the case where F = Q and V is of dimension two over a coefficient field
which is a finite extension of Qp, Fontaine-Mazur [FMa95] conjectured that
such V is modular, namely it is isomorphic to the p-adic GQ-representation
attached to an elliptic modular form of level equal to the global Artin con-
ductor Art(V ) and weight determined by the Hodge-Tate weights of V |GQp

.

Such modularity theorems often give finiteness or non-existence results for
global objects, since the set of normalized Hecke eigenforms of fixed level
and weight is finite, and even empty for some cases. One of the examples of
such results is the proof of Fermat’s last theorem [TW95, Wil95] via prov-
ing modularity of elliptic curves over Q (the Shimura-Taniyama conjecture).
The Fontaine-Mazur conjecture was proved in many cases by works of Kisin
[Kis10] and Emerton [Eme11+].
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Another way to study ramification of a p-adicGK-representation V , which
we will consider in this article, is to take a GK-stable Zp-lattice T in V
and consider its quotients T/pnT . Define the finite extension Ln/K by
GLn = Ker(GK → Aut(T/pnT )). Then by a theorem of Sen [Sen72], there
exists a constant c such that for any n we have

e(n− c) ≤ uLn/K ≤ e(n+ c).

Though uLn/K itself depends on the choice of a lattice T , we may consider
that such an estimate of ramification reflects how good V is. In fact, for the
case where V is crystalline with Hodge-Tate weights in [0, 1], the GK-module
T/pnT is isomorphic to the one attached to a finite flat (commutative) group
scheme over OK , and we have the following upper bound of ramification:

Theorem 2.18. ([Fon85], Théorème A and Corollaire) Let G be a finite flat

group scheme over OK which is killed by pn. Then the subgroup G
(j)
K acts

trivially on the GK-module G(K̄) for any j > e(n + 1/(p − 1)). Namely, if
we define a finite Galois extension L/K by GL = Ker(GK → Aut(G(K̄))),
then we have

uL/K ≤ e(n+
1

p− 1
).

Moreover, we have vK(DL/K) < e(n+ 1
p−1), where DL/K is the different of

L/K.

Fontaine’s proof makes an essential use of the fact that G is locally of
complete intersection over OK , while the special case of n = 1 and e = 1
was obtained independently by Abrashkin [Abr87] via the theory of Honda
systems (§2.5). Combining this theorem with the Odlyzko bound of the root
discriminant of a number field, Abrashkin and Fontaine deduced that there
exists no Abelian variety with everywhere good reduction over Q, and even
over a couple of other small number fields [Abr87, Fon85]. Note that Faltings
[Fal83] proved that for any number field F , any finite set S of places of F
and any positive integer g, there exist finitely many isomorphism classes of
Abelian varieties over F of dimension g which has good reduction outside
S. These generalizations of the Hermite-Minkowski theorem to Abelian
varieties had originally been conjectured by Shafarevich.

On the other hand, Fontaine also conjectured that, for any proper smooth

scheme X over OK , the subgroup G
(j)
K acts trivially on the GK-module

H i
et(X ×OK

Spec(K̄),Z/pnZ)

for any j > e(n+ i/(p−1)) [Fon85, Remarques 2.2]. Though this conjecture
is still wide open, Abrashkin and Fontaine independently gave a proof for
the case where K = K0, i < p − 1 and n = 1. Theorem 2.16 reduces it to
the following theorem on ramification of Galois representations associated
with Fontaine-Laffaille modules, which is the second main theorem of this
article.
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Theorem 2.19 ([Abr89b], §2, Assertion 8.1 and [Fon93], Théorème 2). Let

r ∈ {0, . . . , p − 2} be an integer and M an object of the category MF
f,[0,r]
k .

Then the subgroup G
(j)
K0

acts trivially on the GK0-module T ∗
crys(M) for any

j > 1 + r/(p − 1). Namely, if we define a finite extension L/K0 by GL =
Ker(GK0 → Aut(T ∗

crys(M))), then we have

uL/K0
≤ 1 +

r

p− 1
, vK0(DL/K0

) < 1 +
r

p− 1
.

Moreover, this also holds for r = p− 1 and M ∈ MF
f,[0,p−1]′

k .

For 0 ≤ r ≤ p − 2, Corollary 2.13 implies that the same assertions as
Theorem 2.19 hold for any torsion crystalline GK0-representation T̄ with
Hodge-Tate weights in [0, r] such that pT̄ = 0. Note that uL/K0

= 0 for
r = 0, since Corollary 4.6 shows that the GK0-module T ∗

crys(M) is unramified

for any M ∈ MF
f,[0,0]
k .

2.5. Classification of finite flat group schemes. Another application
of Fontaine-Laffaille modules is a classification theory of finite flat group
schemes killed by some p-power over W . First recall the classification of
finite group schemes over k via Dieudonné modules. Let Ḡ be a finite group
scheme over k which is killed by some p-power. Let Ḡ(p) be the pull-back
of Ḡ by the Frobenius map Spec(σ) : Spec(k) → Spec(k). Let FḠ : Ḡ →
Ḡ(p) and VḠ : Ḡ(p) → Ḡ be the (relative) Frobenius and the Verschiebung
homomorphisms of Ḡ. On the other hand, a Dieudonné module over W is
a W -module M endowed with a σ-semilinear endomorphism F and a σ−1-
semilinear endomorphism V satisfying FV = V F = p. Then there exists an
anti-equivalence

Ḡ 7→M∗
k(Ḡ)

from the category of finite group schemes over k which are killed by some
p-power to that of Dieudonné modules over W whose underlying W -module
is of finite length, in a way that F and V correspond with FḠ and VḠ , respec-
tively [Fon77, III, Théoremè 1]. Moreover, M∗

k induces an anti-equivalence
between the category of p-divisible groups over W and that of Dieudonné
modules over W whose underlying W -module is free of finite rank [Fon77,
Proposition 6.1].

The crystalline Dieudonné theory of Grothendieck-Messing [Gro74, Mes72]
suggested that finite flat group schemes and p-divisible groups G over W
should be classified by a pair of the Dieudonné module associated with the
special fiber Ḡ = G ×W Spec(k) and its submodule (the Hodge filtration).
Fontaine constructed such a classification via Honda systems, which were
named after a work of Honda [Hon70] (see [Fon77, IV, Théorème 1] for p-
divisible groups, and [Con99, Fon75] for finite flat group schemes, where we
need the additional assumption that group schemes are unipotent or p ̸= 2).
Using this, Fontaine-Laffaille also obtained the following:
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Theorem 2.20 ([FL82], 9.11 and Proposition 9.12). Suppose p ̸= 2. Then
there exists an anti-equivalence ILM from the category of finite flat group

schemes over W killed by some p-power to the category MF
f,[0,1]
W,tor, with a

natural isomorphism of GK0-modules

G(K̄) ≃ T ∗
crys(ILM(G)).

The same assertion holds for any p if we restrict to the category of finite

flat unipotent group schemes and MF
f,[0,1]′

W,tor .

The Fontaine-Laffaille moduleM = ILM(G) for a finite flat group scheme
G over W is defined as follows: the underlying W -module M is M =
M∗

k(Ḡ) ⊗W,σ W for the special fiber Ḡ. The first filtration M1 is the im-
age by V : M∗

k(Ḡ) → M∗
k(Ḡ) ⊗W,σ W of the Hodge filtration L ⊆ M∗

k(Ḡ).
The restricted map V |L is injective, and the Frobenius structure on M is
defined by φ0 = F and φ1 = V −1.

3. Further developments

3.1. Applications and generalizations of the Fontaine-Laffaille the-
ory. Typical applications of the Fontaine-Laffaille theory are as follows:

(i) Studying crystalline deformation rings, especially to prove modu-
larity of Galois representations for number fields unramified over p
[BeK13, CHT08, DFG04, FMa95, Fuj06+, Ram93, Tay03, Tay06,
Tay08, TW95, Wes04, Wil95].

(ii) Studying the reduction modulo p of GK0-stable Zp-lattices in crys-
talline GK0-representations, and of Galois representations attached
to modular forms of level prime to p [BMz02, Dim05], including a
generalization of Serre’s conjecture [Ser87] on modularity of mod p
GQ-representations to totally real number fields unramified over p
[Gee11].

(iii) Proving a rareness of global objects satisfying strong local con-
straints everywhere [Jos99], including a vanishing of Hodge num-
bers for algebraic varieties over Q with everywhere good reduction
[Abr89b, Fon93], which will be explained in this volume.

Integral p-adic Hodge theory itself has also been highly developed and
used for applications where original theories stated above are not available—
under ramification of the base field K or with larger range of Hodge-Tate
weights.

First we remark that the theory of Honda systems was generalized to the
case where the base field is ramified by Fontaine himself [Fon77] to obtain a
classification of p-divisible groups over OK for the case of e < p−1, and also
their classification up to isogeny for any e. For finite flat group schemes over
OK , a classification via Honda systems was obtained by Conrad [Con99] for
the case of e < p − 1 and applied to the proof of a case of the Shimura-
Taniyama conjecture which was not treated by Taylor-Wiles [CDT99].



18 SHIN HATTORI

Note that Theorem 2.9 does not hold for r = p − 1, a counterexample
with p = 2 being given by the isomorphism of GK0-modules µ2 → Z/2Z.
By considering a category of filtered GK0-modules, Abrashkin constructed
a modified version of the functor T ∗

crys which is fully faithful [Abr89a] and
deduced the above vanishing of Hodge numbers for weight p− 1 [Abr89b].

The assumption r ≤ p−1 is crucial for the Fontaine-Laffaille theory, since
the map p−iφ on FiliAcrys is well-defined only for i ≤ p− 1. This was one of
the difficulties for studying subquotients of crystalline representations with
larger range of Hodge-Tate weights. Integral theories without any restriction
on Hodge-Tate weights have been developed in two ways: theories of Wach
modules and Kisin modules.

3.2. Wach modules. Consider the infinite extension K(ζp∞) =
∪
nK(ζpn)

ofK obtained by adjoining all the p-power roots of unity. It is a Galois exten-
sion over K which is arithmetically profinite with Galois group ΓK , and thus
the theory of fields of norms of Fontaine-Wintenberger [Win83] can be ap-
plied. This theory shows that the Galois group GK(ζp∞ ) = Gal(K̄/K(ζp∞))
is isomorphic to the absolute Galois group of the field of Laurent power se-
ries l((π)) over the residue field l of K(ζp∞). Thus the category of GK(ζp∞ )-
modules is equivalent to that of Gl((π))-modules.

Fontaine [Fon90] showed that the latter is also equivalent to a category of
φ-modules over the p-adic completion OE of the ring of Laurent power series
W (l)[[π]][1/π]. Here, for any ring B endowed with a ring endomorphism
φ : B → B, a φ-module over B is a B-module M with a φ-semilinear
map φM :M →M which we often denote abusively by φ. We can define a
natural Frobenius map φ on the ringOE , and we consider φ-modules overOE
with respect to this map. The ring OE has a natural ΓK-action, and he also
showed that the category of GK-modules which are finite over Zp (resp. Qp)
is equivalent to a category of such φ-modules over OE (resp. E = Frac(OE))
with a compatible ΓK-action, which are called (φ,ΓK)-modules.

For the case of K = K0, we can study crystalline GK0-representations
and their subquotients with this construction: The theory of Wach mod-
ules [Berg04, Col99, Wac96, Wac97] tells us that for any crystalline GK0-
representation V with non-negative Hodge-Tate weights, there exists a nice
(φ,ΓK0)-stable W [[π]][1/p]-lattice N(V ) in its associated (φ,ΓK0)-module
D(V ) over E such that V 7→ N(V ) gives an equivalence of categories. More-
over, there also exists an equivalence between the category of GK0-stable
Zp-lattices in V and a category of (φ,ΓK0)-stable W [[π]]-lattices in N(V ).

Wach modules are typically used for a study of the reduction modulo p
of crystalline GK0-representations with larger range of Hodge-Tate weights
[Berg12, BLZ04, CD11, Dou10]. Another interesting feature of Wach mod-
ules is a relation to Iwasawa theory [Ben00, BB08, Berg03, LLZ10, LLZ11,
LeZ12, LoZ13].
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The theory of Wach modules generalizes to a case where K is absolutely
ramified [KR09] by using the Lubin-Tate extension for K instead of the cy-
clotomic extension K0(ζp∞), to give a classification of GK-stable OF -lattices
in a class of crystalline GK-representations with coefficients in a finite ex-
tension F of Qp which is called F -analytic. Such a Lubin-Tate version of
(φ,ΓK0)-modules has also been investigated in an attempt to generalize the
p-adic Langlands correspondence for GL2(Qp) to p-adic local fields other
than Qp [Berg13+, FX13].

3.3. Breuil modules. On the other hand, for any integer r satisfying
0 ≤ r ≤ p − 1, let us think of generalizing the Fontaine-Laffaille theory
to semi-stable representations, by näıvely adding a monodromy operator

N to Fontaine-Laffaille modules M ∈ MF
fd,[0,r]
W . Then dividing the usual

relation Nφ = pφN by pi+1 yields Nφi+1 = φiN for any i, which forces
us to impose the Griffiths transversality N(M i+1) ⊆ M i on M , and thus
N(Di+1) ⊆ Di on the filtered (φ,N)-module D = M ⊗W K0. However,
admissible filtered (φ,N)-modules over K do not satisfy it in general. This
difficulty was resolved by Breuil [Bre97], who proved that the category of
filtered (φ,N)-modules over K is equivalent to a category of filtered (φ,N)-
modules over a ring SK0 satisfying the Griffiths transversality. Here the ring
SK0 is defined as follows: Let πK be a uniformizer of K and E(u) ∈ W [u]
the minimal polynomial of πK over W . Then we put

S =W [u][
E(u)n

n!
| n ∈ Z≥0]

∧, SK0 = S ⊗W K0,

where ∧ means the p-adic completion. The ring S has a natural divided
power filtration FiliS for i ≥ 0, a σ-semilinear Frobenius endomorphism φ
sending u to up, a derivation N satisfying N(u) = −1, and a φ-semilinear
map φi : FiliS → S for 0 ≤ i ≤ p − 1, which define a similar structure
on SK0 . For any filtered (φ,N)-module D over K, the equivalence is given
by D 7→ D = D ⊗K0 SK0 with the induced φ, N and a filtration defined
using the isomorphism D/E(u)D ≃ DK . Note that the ring S/pnS had also
appeared in a work of Kato [Kat94].

Using this construction, Breuil generalized the Fontaine-Laffaille theory to
the case of semi-stable representations with Hodge-Tate weights in [0, r]. Let
D be a filtered (φ,N)-module over K satisfying D0

K = DK and Dr+1
K = 0.

His idea is to consider S-lattices in D = D⊗K0 SK0 and their subquotients,
instead of W -lattices in D itself. In other words, we consider a category of
filtered S-modules M with a Frobenius structure and a derivation, which
are called Breuil modules. It turned out that we have to keep only the last
filtration FilrM in the definition of filtered S-modules, to make a variant of
Proposition 2.5 hold. Then Theorem 2.9 and Theorem 2.11 were generalized
to this semi-stable variant by Breuil [Bre98a, Bre99] (when e = 1, r < p−1)
and Caruso [Car06] (when er < p−1). Theorem 2.14 and Theorem 2.16 were
also generalized under these assumptions [Bre98a, Bre98b, Car06, Car08],
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which yield the aforementioned conjecture of Serre on tame characters ap-
pearing in torsion etale cohomology, even for the case of semi-stable re-
duction. Note that this control on tame characters was applied to show
the non-existence or a rareness of global objects having good properties ev-
erywhere [Oze11, Oze13b, OT14]. Moreover, a classification of finite flat
group schemes and p-divisible groups over OK via Breuil modules was also
obtained by Breuil himself [Bre00] for p ≥ 3.

Breuil modules have also been applied to modularity theorems [Sav04,
Sav05], including the complete proof of the Shimura-Taniyama conjecture
[BCDT01], to a study of the reduction modulo p of semi-stable represen-
tations [CS09, CS10] and to that of generalized Serre conjectures [EGH13,
Gee11, GLS12].

3.4. Breuil-Kisin classification of finite flat group schemes. Another
breakthrough on integral p-adic Hodge theory was also brought by Breuil.
In search of a classification of finite flat group schemes over OK which is
valid for p = 2, he proposed the idea of a classification via φ-modules over
W [[u]] and prove such a classification for the case where group schemes are
killed by p ≥ 3 [Bre98+, Bre02].

One of the advantages of this theory is that we can control the GK-
module G(K̄) associated with a finite flat group scheme G over OK very
easily. In fact, choose a system of p-power roots (πn)n≥0 of πK satisfying
π0 = πK , π

p
n+1 = πn and put K∞ =

∪
nK(πn). This is an arithmetically

profinite non-Galois extension over K and thus, via the theory of fields of
norms [Win83], the category of GK∞-modules is equivalent to a category of
φ-modules over OE =W [[u]][1/u]∧. Let G be a finite flat group scheme over
OK which is killed by p ≥ 3, and let M be the φ-module over OE/pOE =
k((u)) associated with the GK∞-module G(K̄)|GK∞ . Then Breuil proved
that G is classified by a φ-stable k[[u]]-lattice M inM such that the cokernel
of the map 1⊗φ : k[[u]]⊗φ,k[[u]] M→M is killed by E(u), and thus we can

recover G(K̄)|GK∞ from M. We do not lose information by the restriction to

GK∞ , since he also proved that the restriction functor G(K̄) 7→ G(K̄)|GK∞
from the category of GK-modules attached to finite flat group schemes over
OK killed by some p-power to that of GK∞-modules is fully faithful.

Kisin established such a classification valid for any finite flat group schemes
killed by some p-power and any p-divisible groups over OK for p ≥ 3
[Kis06, Kis09a], and combining it with his modified Taylor-Wiles patching
argument, he generalized modularity theorems to the case where the base
number field is highly ramified over p [Kis09a]. The φ-module M is often
referred to as the Breuil-Kisin module associated with G.

Breuil-Kisin’s classification has been generalized in various ways. Firstly,
the classification theory of finite flat group schemes and p-divisible groups
over OK was completed, after a work of Kisin [Kis09b] treating the case
where p = 2 and group schemes are unipotent, independently by Kim
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[Kim12], Lau [Lau10+] and Liu [Liu13]. We also have a similar classifi-
cation of finite flat group schemes and p-divisible groups over regular rings
[Kim13+, Lau10, VZ10], whereas the theory of displays [Zin02] provides a
classification theory of formal p-divisible groups applicable for more general
base rings, via much more complicated semilinear algebraic data.

The Breuil-Kisin classification of finite flat group schemes turned out
to be useful also for studying the Hecke operators at places dividing p on
the space of p-adic modular forms, via an analysis of canonical subgroups
[Hat13, Hat14a, Kas13, Tia11+].

3.5. Kisin modules and (φ, Ĝ)-modules. Secondly, for any r ≥ 0, Kisin
studied φ-modules M overW [[u]] such that the cokernel of the map 1⊗φM :
W [[u]]⊗φ,W [[u]]M→M is killed by E(u)r, which are often called Kisin mod-
ules, and also those endowed with an endomorphism N on (M/uM)⊗W K0,
which are called (φ,N)-modules over W [[u]]. He proved that the category
of admissible filtered (φ,N)-modules D satisfying D0

K = DK can be con-
sidered as a full subcategory of the isogeny category of (φ,N)-modules over
W [[u]]. This new classification of semi-stable GK-representations was used
to prove the existence of potentially semi-stable deformation rings [Kis08],
which led to proving many cases of the Breuil-Mézard conjecture and the
Fontaine-Mazur conjecture [Kis09c] and to a construction of the p-adic local
Langlands correspondence for GL2(Qp) [Kis10].

Kisin’s theory also enables us to have a control on GK∞-stable Zp-lattices
in semi-stable GK-representations. Moreover, for r ≤ p−1, by tensoring the
ring S over W [[u]] along the map φ with Kisin modules, we obtain Breuil
modules without derivation, and to recover not only the GK∞-action but
the GK-action amounts to giving it a derivation. Using these features, Liu
generalized Theorem 2.11 to semi-stable representations with Hodge-Tate
weights in [0, p − 2] which is valid for any K, in terms of Breuil modules
[Liu08] (the unipotent case with Hodge-Tate weights in [0, p− 1] was shown
by [Gao14+]). Kisin’s theory was generalized to the case where the residue
field k is imperfect [BT08], using a framework of p-adic Hodge theory for
imperfect residue fields [Bri06].

On the other hand, since K∞/K is not Galois, it is not so easy to study
the action of the whole Galois group GK on semi-stable GK-representations
via Kisin’s theory, unless the range of Hodge-Tate weights is small. Liu
overcame this difficulty, by considering the Galois closure K∞(ζp∞)/K of

K∞, its Galois group Ĝ = Gal(K∞(ζp∞)/K) and a category of φ-modules

M overW [[u]] with a Ĝ-action on a scalar extension M⊗W [[u]],φR̂, which are

called (φ, Ĝ)-modules [Liu07, Liu10]. He proved an anti-equivalence between

a category of (φ, Ĝ)-modules and the category of GK-stable Zp-lattices in
semi-stable GK-representations generalizing Theorem 2.11, without any re-
striction on Hodge-Tate weights nor on the base field K. It was also applied
to a study of generalized Serre conjectures [GLS14]. For the case of K = K0,
the GK0-stable Zp-lattices in crystalline GK0-representations are classified
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both by Wach modules and (φ, Ĝ)-modules, and the attached Wach module

to such a lattice can be recovered from the attached (φ, Ĝ)-module [Liu13+].
More generally, we can develop a variant of the theory of (φ,ΓK0)-modules

using Ĝ instead of ΓK0 [Car13, Oze13a, Tav11].
Using these developments on integral p-adic Hodge theory, Theorem 2.19

was also generalized for subquotients of semi-stable representations, which
have a worse ramification bound [BMs02, Hat09, Car13, CL11], and it
was applied to a vanishing of Hodge numbers of algebraic varieties over Q
with everywhere good reduction except semi-stable reduction at 3 [Abr13].
Abrashkin recently found a new method to prove such a ramification bound
of GK-representations, by using a non-canonical isomorphism between two
complete discrete valuation fields of equal characteristic [Abr12+, Abr14+].

3.6. Ramification theory. The classical ramification theory as reviewed
in §2.4 has been typically applied to:

(i) Definitions and calculations of invariants of global objects via lo-
cal terms concerning ramification, such as the global Artin con-
ductor and the Grothendieck-Ogg-Shafarevich formula to compute
Euler-Poincaré characteristics of l-adic sheaves over algebraic curves
[Gro77].

(ii) Proving the non-existence or a rareness of global objects satis-
fying strong local constraints everywhere, such as Abelian vari-
eties [Abr87, BrK01, BrK04, BrK14, Fon85, Schf03, Schf05, Schf12,
Ver13], algebraic varieties [Abr89b, Abr13, Fon93] and Galois rep-
resentations [Bru99, Bru05, Jos99, Moo00, Moo03, MT03, Tat94],
generalizing the Hermite-Minkowski theorem.

(iii) The theory of fields of norms of Fontaine-Wintenberger, to give an
isomorphism between the absolute Galois group of an arithmetically
profinite extension of a complete discrete valuation field of mixed
characteristic with perfect residue field and that of a complete dis-
crete valuation field of equal characteristic [Win83].

(iv) The theory of close local fields, including a comparison of abso-
lute Galois groups of complete discrete valuation fields of mixed
and equal characteristics with the same perfect residue field mod-
ulo ramification subgroups [Del84], especially to deduce the local
Langlands correspondence of reductive groups for the equal charac-
teristic case from the mixed characteristic case [ABPS13+, Gan13+]
by combining with [Kaz86].

(v) A local version of the Grothendieck conjecture, which states that
any local field can be recovered from its absolute Galois group and
ramification subgroups [Abr00, Abr10, Moc97].

In the classical ramification theory as in [Ser68], it is crucial that the
residue field k is perfect and thus for any finite extension L/K, the OK-
algebra OL is generated by a single element. In general, for any finite Galois
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extension L/K, we can define the i-th lower numbering ramification sub-
group

Gal(L/K)i = Ker(Gal(L/K)→ Aut(OL/mi+1
L )).

For the case where k is perfect, we can prove, by using the monogenicity
of OL, that the j-th upper numbering ramification subgroup Gal(L/K)j =
Gal(L/K)ψL/K(j) is compatible with quotients, where ψL/K is the Herbrand

function. This enables us to take the projective limit to define the ramifi-

cation subgroup GjK of GK . However, when k is imperfect, the lower num-
bering ramification subgroups are not necessarily compatible with quotients
even after renumbering.

After various attempts to define appropriate ramification subgroups of
GK when k is imperfect, including especially a work of Kato for Abelian
extensions [Kat89], different definitions were proposed independently by
Abbes-Saito [AS02, AS03] (geometric definition via connected components
of analytic varieties), Borger [Bor04] (reducing to the case of perfect k via
the universal residual perfection), Kedlaya [Ked07a] (differential definition
via (φ,∇)-modules over the Robba ring) and Zhukov [Abr02, Zhu03] (for
higher dimensional local fields, via induction from lower dimensional ones).

Each definition has its own advantages and applications. Abbes-Saito’s
definition was used to define characteristic cycles of etale sheaves on higher
dimensional algebraic varieties to compute their Euler-Poincaré character-
istics [Sai09, Sai14+]. One of the advantages of their definition is that it
also gives a ramification theory of finite flat algebras over OK . With this
framework, Theorem 2.18 can be shown easily from the fact that multiplica-
tive groups are minimal in the category of finite flat group schemes over
OK [Hat06]. This advantage was also used to prove the overconvergence
of canonical subgroups of Abelian varieties [AM04, Hat13, Hat14a, Tia10,
Tia12] and a generalization of the theory of close local fields to the case of
imperfect k [Hat14b].

Kedlaya’s definition is more flexible about base extensions than Abbes-
Saito’s. One of its consequences is that we can show the integrality of the
Swan conductor generalizing the classical Hasse-Arf theorem much more
easily [Ked07a], via a reduction to the case of perfect k by adding p-basis
to k and “rotate” in the enlarged space to make ramification concentrate
on the uniformizer direction. This differential version of ramification theory
was used to prove a conjecture of Shiho [Shi02, Conjecture 3.1.8] on semi-
stable reduction of overconvergent F -isocrystals on smooth varieties over a
perfect field of characteristic p [Ked07b, Ked08, Ked09, Ked11]. In Zhukov’s
definition, ramification subgroups are multi-indexed, and it is suitable for
a detailed study of the structure of GK . It was used for a proof of a two
dimensional analogue of the Grothendieck conjecture [Abr03] and a gener-
alization of the theory of fields of norms to higher dimensional local fields
[Abr07]. Note that the theory of higher fields of norms was also obtained in
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different ways for more general settings [And06, Schl06] and generalized to
the theory of perfectoid spaces [Schz12].

Among these different definitions, the comparison between Abbes-Saito’s
and Kedlaya’s has been well studied. Note that a differential interpretation
of the classical ramification theory had been investigated, for example, by
[Cre00, Ked05, Mat02, Tsu98]. For the case of imperfect k, after works of
Matsuda [Mat04] and Chiarellotto-Pulita [CP09], Xiao proved that these
two definitions (and also Borger’s for the equal characteristic case) yield the
same Artin and Swan conductors for almost all the cases [Xia10, Xia12],
from which the integrality of the conductors for Abbes-Saito’s definition
follows.

4. Sketch of proofs

In this section, we sketch the proofs of Theorem 2.9 and Theorem 2.19,
following [FL82] and [Fon93]. The key ideas for the proofs are twofold:
First, by a dévissage argument, we reduce a large part of the proofs to a

study of simple objects in the category MF
f,[0,p−1]

k̄
, which we can classify

completely. Second, passing from the period ring Acrys/pAcrys to OK̄/pOK̄
by using the first projection pr1 : R → OK̄/pOK̄ , we reduce a study of the
GK0-module T ∗

crys(M) to a study of equations over W and their solutions in
OK̄ . The latter enables us especially to prove the aforementioned estimate of
ramification. Note that, as we remarked before (Remark 2.7), the original
arguments in [FL82] used the subring SFL instead of Acrys, while almost
verbatim arguments are valid also for our period ring Acrys which is more
standard these days. To mediate these two period rings and also to make
the notation simpler, in this article we will mainly work on the ring

A = Im(SFL/pSFL → Acrys/pAcrys).

4.1. Cutting off higher divided powers. Put RDP = Acrys/pAcrys. We

consider this ring as an object of MF
[0,p−1]
k as before. Note that a divided

power structure on this ring is induced from that of Acrys: we put the l-th

divided power γl(x) of x ∈ Fil1RDP = Fil1Acrys/pFil
1Acrys by

γl(x) = γl(x̂) mod pAcrys =
x̂l

l!
mod pAcrys

with any lift x̂ of x in Fil1Acrys. The ring RDP is also the divided power
envelope of the surjection pr0 : R→ OK̄/pOK̄ by [BO78, Remarks 3.20 (8)].

Recall that we have defined the element β = (−p, (−p)1/p, . . .) of the ring
R before. The surjection pr1 : R → OK̄/pOK̄ induces a σ−1-semilinear

isomorphism of rings R/βpR→ OK̄/pOK̄ sending β to (−p)1/p. Since βp =
p!γp(β) = 0 in the ring RDP, we can consider the ring RDP as an (OK̄/pOK̄)-
algebra by the map OK̄/pOK̄ ≃ R/βpR → RDP. For any divided power
ideal I of a ring and x ∈ I, we put δ(x) = (p − 1)!γp(x) and write δl(x) =
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(δ ◦ · · · ◦ δ)(x) for the l-times iteration of δ. Then we can describe the
structure of the ring RDP as follows:

Lemma 4.1. The ring homomorphism

(OK̄/pOK̄)[Y1, Y2, . . . , ]/(Y
p
1 , Y

p
2 , . . .)→ RDP

sending Yl to δl(β) is a σ-semilinear bijection, by which we identify both
sides.

Proof. Put ξ = p + [β] ∈ W (R) as before. It is enough to show a similar
W (R)-linear map

W (R)[Y1, Y2, . . .]/(ξ
p−pY1, Y p

1 −pY2, . . .)→W (R)DP =W (R)[
ξn

n!
| n ∈ Z≥0]

defined by Yl 7→ δl(ξ) is an isomorphism. From the definition, we see that
the map is surjective, and isomorphic after inverting p. Thus it is enough
to show that the ring on the left-hand side is p-torsion free. Put

Bl =W (R)[Y1, . . . , Yl]/(ξ
p − pY1, . . . , Y p

l−1 − pYl).

For any ring B without p-torsion and any element x ∈ B, if the image of x
is a regular element of B/pB, then B/xB is p-torsion free. Since the image
of ξp is a regular element of R, we see inductively that Bl[Yl+1]/(Y

p
l −pYl+1)

is p-torsion free. Taking the inductive limit yields the claim. □

Using this identification, we can explicitly describe additional structures
of RDP such as GK0-action, filtration and Frobenius maps (see [FL82, 5.9],

where they consider the subring SFL = W (R)[ ξ
p

p ] of Acrys with similar ex-

plicit description modulo p). The action of g ∈ GK0 is written as

g(
∑
l1,...,ln

al1,...,lnY
l1
1 · · ·Y

ln
n ) =

∑
l1,...,ln

g(al1,...,ln)Y
l1
1 · · ·Y

ln
n ,

where al1,...,ln ∈ OK̄/pOK̄ . Indeed, from the definition of the divided power

structure on RDP, we have δ(x) = δ(x̂) mod p for any x ∈ Fil1RDP, where x̂
is any lift of x in Fil1Acrys. Putting g(β) = βεa with ε = (1, ζp, ζp2 , . . .) and
a ∈ Zp, we have

g(δ(β)) = δ(g(ξ)) mod p = δ(ξ + [β]([ε]a − 1)) mod p

= δ(ξ) +

p−1∑
l=1

p−1

(
p

l

)
ξl([β]([ε]a − 1))p−l + [β]pδ([ε]a − 1) mod p

= δ(β) + βp
p−1∑
l=1

p−1

(
p

l

)
(εa − 1)p−l + βpδ(εa − 1) = δ(β),

since βp = 0 in RDP. Thus we obtain g(Y1) = Y1 and g(Yl) = Yl for any l.
Moreover, the ideal FiliRDP of RDP is written as

FiliRDP = ((−p)i/p, Yl | l ≥ 1) (i ≤ p− 1), FilpRDP = (Yl | l ≥ 1).
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Recall that we consider RDP as an object of MF
[0,p−1]
k by putting (RDP)i =

FiliRDP for 0 ≤ i ≤ p− 1 and (RDP)p = 0. For any i ∈ {0, . . . , p− 1}, write
any element x in the i-th filtration as

x = x0 +
∑
l≥1

xlYl + (higher terms)

with x0 ∈ (−p)i/p(OK̄/pOK̄) and xl ∈ OK̄/pOK̄ . Let x̂0 be any lift of x0 in
OK̄ . From the equality (1) in §2.2, we obtain

φi(x) =


x̂p0

(−p)i (1 + Y1)
i (i ≤ p− 2),

x̂p0
(−p)i (1 + Y1)

i + xp1 (i = p− 1, p ≥ 3),
x̂p0

(−p)i (1 + Y1)
i +

∑
l≥1 x

p
l (i = p− 1, p = 2).

Remark 4.2. In particular, we have φ1((−p)1/p) = 1+Y1 in the ring RDP.
This implies that, contrary to what is stated in [Wac97, 2.1.3.4], there exists

no non-trivial ideal I of RDP stable under φp−1 such that φ1((−p)1/p) ≡
1 mod I. Indeed, this forces Y1 ∈ I and thus I contains φp−1(Y1) = 1.

Now we put

A = (OK̄/pOK̄)[Y1]/(Y
p
1 ) ⊆ R

DP

and give it the induced structure as an object of MF
[0,p−1]
k from RDP.

Namely, we put the i-th filtration Ai of A as

Ai = ((−p)i/p, Y1) (i ≤ p− 1), Ap = 0

and the i-th Frobenius map of A as

φi(x0 + x1Y1 +

p−1∑
l=2

xlY
l
1 ) =


x̂p0

(−p)i (1 + Y1)
i (i ≤ p− 2),

x̂p0
(−p)i (1 + Y1)

i + xp1 (i = p− 1).

Then we have φi(FiliRDP) ⊆ A for any i ≤ p − 1. Consider the quotient

RDP/A as an object of MF
[0,p−1]
k with the induced structure from RDP. It

satisfies (RDP/A)p−1 = RDP/A and φp−1 = 0 on RDP/A. Then the following
lemma enables us to replace RDP by the simpler ring A to study T ∗

crys(M)
for the case of pM = 0.

Lemma 4.3. For any object M ∈ MF
f,[0,p−1]
k , we have

HomMFk
(M,RDP/A) = Ext1MFk

(M,RDP/A) = 0.

In particular, we have

T ∗
crys(M) = HomMFk

(M,A), Ext1MFk
(M,RDP) = Ext1MFk

(M,A).

This follows from the lemma below:
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Lemma 4.4. Let r ∈ {0, . . . , p − 1} be an integer and M an object of

MF
f,[0,r]
k . Let N be an object of MFk such that N r = N and that for any

x ∈ N , the iteration (φrN ◦· · ·◦φrN )(x) of any sufficiently large times is zero.

Then we have HomMFk
(M,N) = Ext1MFk

(M,N) = 0.

Proof. Fix a k-basis e1, . . . , eh of M with en ∈M in \M in+1 and write as

φinM (en) =

h∑
m=1

cm,nem

with P = (cm,n) ∈ GLh(k). Let f :M → N be a morphism of MFk and put
f(en) = xn ∈ N in = N r = N . Then the equality φiN ◦ f = f ◦ φiM implies

(x1, . . . , xh) = Φ(x1, . . . , xh)P
−1

with Φ = (φi1N , . . . , φ
ih
N ). By assumption, the l-th iteration Φl(x1, . . . , xh) is

zero for any sufficiently large l and thus we obtain f = 0 by recursion.
Next consider an extension in MFk

0 // N // E // M // 0.

Choose a lift ên of en to Ein . We have

φinE (ên) =

h∑
m=1

cm,nêm + bn

with some bn ∈ N . Then the extension splits if and only if there exists
an ∈ N in satisfying

φinE (ên + an) =

h∑
m=1

cm,n(êm + am),

which is equivalent to

bn + φinN (an) =

h∑
m=1

cm,nam.

Thus we obtain

(a1, . . . , ah) = (b1, . . . , bh)P
−1 +Φ(a1, . . . , ah)P

−1.

By recursion, we see that the equation has the unique solution

(a1, . . . , ah) =
∞∑
l=0

Φl(b1, . . . , bh)(P
−1)σ

l
(P−1)σ

l−1 · · ·P−1,

since the right-hand side is a finite sum. □

Let F be any algebraic extension of K0 in K̄. We put

AF = (OF /pOF )[Y1]/(Y p
1 ) ⊆ A = AK̄
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and give this subring the induced structure as an object of MF
[0,p−1]
k from

A. For M ∈ MF
f,[0,p−1]
k , we define

T ∗
crys,F (M) = HomMFk

(M,AF ).

This is a subset of T ∗
crys(M) on which the absolute Galois group GF acts

trivially.

For r ∈ {0, . . . , p− 2} and M ∈ MF
f,[0,r]
k , the module T ∗

crys,F (M) can also
be obtained by using a far simpler ring than AF . Put

bF = {x ∈ OF | vp(x) >
r

p− 1
}.

We consider the quotient OF /bF as an object of MF
[0,r]
k by putting

(OF /bF )i = {x ∈ OF | vp(x) ≥
i

p
}/bF , φi(x) =

x̂p

(−p)i
mod bF

for any 0 ≤ i ≤ r and (OF /bF )r+1 = 0. Here x̂ denotes any lift of x in OF .

Lemma 4.5. For any r ∈ {0, . . . , p− 2} and any M ∈ MF
f,[0,r]
k , the surjec-

tion AF → OF /bF defined by Y1 7→ 0 induces an isomorphism

T ∗
crys,F (M)→ HomMFk

(M,OF /bF ).
Proof. Since r < p − 1, the map φrAF

kills Y1. Moreover, for any x̂ ∈ OF
satisfying vp(x̂) = r/(p − 1) + ε with some ε > 0, we have vp(x̂

p/(−p)r) ≥
r/(p−1)+pε. Thus the ideal I = bFAF +(Y1) of AF , which is contained in
the r-th filtration ArF , is stable under φrAF

and, for any x ∈ I, the iteration

(φrAF
◦ · · · ◦φrAF

)(x) of any sufficiently large times is zero. Thus, by consid-
ering I as an object of MFk with the induced structure from AF , Lemma 4.4
yields HomMFk

(M, I) = Ext1MFk
(M, I) = 0. Since I = Ker(AF → OF /bF ),

the long exact sequence of Hom and Ext implies the lemma. □
For r = 0, the ideal bK̄ is equal to the maximal ideal mK̄ and we obtain

the following corollary.

Corollary 4.6. For any M ∈ MF
f,[0,0]
k , the GK0-module T ∗

crys(M) is unram-
ified.

4.2. Classification of simple objects. Let h be a positive integer and i a
map Z/hZ→ Z. We write in = i(n) for any n ∈ Z/hZ. We suppose that i is
of period h. This means that h is the minimum among the positive integers
h′ satisfying in+h′ = in for any n.

For such h and i, we define an object M(h; i) of the category MFf
k̄
by

M(h; i) =
⊕

n∈Z/hZ

k̄en

with a basis {en}n∈Z/hZ and

M(h; i)l =
⊕
in≥l

k̄en, φin(en) = en−1.
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In particular, en ∈ M(h; i)in \M(h; i)in+1. When h = 1 and i(0) = j ∈ Z,
we write M(h; i) as M(1; j).

We define an Fph-action on this object by

[a] ∈ EndMFk̄
(M(h; i)), [a](en) = ap

−n
en

for any a ∈ Fph . Then we can show the following proposition.

Proposition 4.7. (i) ([FL82], Proposition 4.4) An objectM ∈ MFf
k̄
is

simple if and only if M is isomorphic to M(h; i) for some h ∈ Z>0

and i : Z/hZ→ Z of period h.
(ii) ([FL82], Lemme 4.9) Let (h, i) be a pair of a positive integer h and

a map i : Z/hZ → Z of period h. Let (h′, i′) be a similar pair.
Then HomMFk̄

(M(h; i),M(h′; i′)) = 0 unless h = h′ and i = i′ up
to a shift. In the latter case the two objects are isomorphic, and
EndMFk̄

(M(h; i)) ≃ Fph via a 7→ [a].

(iii) ([FL82], Lemme 6.3, 6.4) Ext1MFk̄
(M,M(1; p−1)) = 0 for any M ∈

MF
f,[0,p−1]

k̄
.

The assertions (i) and (ii) follow from a semilinear algebraic argument
whose key point is that any σh-semilinear automorphism of a finite dimen-
sional k̄-vector space has a non-zero fixed vector. The last assertion is shown
by dévissage, after explicitly constructing a split of any extension of M(h; i)
by M(1; p− 1) for i : Z/hZ→ {0, . . . , p− 1} as in the proof of Lemma 4.4.

Proposition 4.7 (iii) implies that an object M of MF
f,[0,p−1]

k̄
is in the full

subcategory MF
f,[0,p−1]′

k̄
if and only if every Jordan-Hölder factor of M is

not isomorphic to M(1; p− 1). This leads to the following corollary.

Corollary 4.8 ([FL82], Théorème 6.1 (i)). Let

0 // M ′ // M // M ′′ // 0

be an exact sequence of MF
f,[0,p−1]
W,tor . Then M is an object of MF

f,[0,p−1]′

W,tor if

and only if so are M ′ and M ′′.

Proof. For this, it is enough to show that if M ∈ MF
f,[0,p−1]′

W,tor then M ⊗W
W (k̄) ∈ MF

f,[0,p−1]′

W (k̄),tor
. Suppose that there exists a non-zero quotient M ⊗W

W (k̄) → N satisfying N = Np−1. Then we can find a finite extension
k′/k in k̄ such that this quotient is a base extension of a quotient M ⊗W
W (k′)→ N ′ in MF

f,[0,p−1]
W (k′),tor satisfying N

′ = (N ′)p−1. Since k′/k is finite, the

latter quotient can be viewed as a quotient in MF
f,[0,p−1]
W,tor . In this category

M ⊗W W (k′) is the direct sum of finite copies of M . The image N0 of a

copy of M in N ′ is non-zero, and satisfies N0 = Np−1
0 by Proposition 2.5,

which is the contradiction. □
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Next we study the Galois representations associated with the simple ob-

jects of MF
f,[0,p−1]

k̄
, which is one of the key ingredients of [FL82].

Proposition 4.9 ([FL82], Théorème 5.1). Let h be a positive integer and
i : Z/hZ→ {0, 1, . . . , p− 1} a map of period h.

(i) Ext1MFk̄
(M(h; i), RDP) = 0.

(ii) Via the Fph-action on M(h; i), the module T ∗
crys(M(h; i)) is an Fph-

vector space of dimension one.
(iii) The IK0-action on T ∗

crys(M(h; i)) is given by the character

θ
i0+pi1+···ph−1ih−1

h : IK0 → F×
ph
,

where θh is the fundamental character of level h.

Proof. By Lemma 4.3, we may replace RDP with A to compute Hom and
Ext1 groups. First consider any extension

0 // A // E // M(h; i) // 0

in MFk̄. Let {en}n∈Z/hZ be the basis of M(h; i) as before, and take a lift ên
of en in Ein . We have φin(ên) = ên−1 − dn−1 with some dn−1 ∈ A. Then
the extension splits if and only if there exists un ∈ Ain such that

φin(ên + un) = (ên−1 + un−1)

for any n ∈ Z/hZ, which is equivalent to

φin(un)− un−1 = dn−1.

Since this equation is linear, to prove that it has a solution, we may assume
that dn = 0 except a single index n = n0. By permuting the indices, we may
assume n0 = 0. On the other hand, a k̄-linear map M(h; i)→ A defined by
en 7→ un ∈ Ain gives a morphism of MFk̄ if and only if

φin(un)− un−1 = 0

for any n ∈ Z/hZ. Hence we reduced ourselves to showing that the equation

(2)

 un ∈ Ain ,
φin(un)− un−1 = 0 (n ̸= 1),
φin(u1)− u0 = d

has a solution for any d ∈ A in the case of the assertion (i), and has exactly
ph solutions for d = 0 in the case of the assertion (ii).

Put

un = an + bnY1 +

p−1∑
l=2

cn,lY
l
1 , d = d0 + d1Y1 +

p−1∑
l=2

dlY
l
1

with some an ∈ (−p)
in
p (OK̄/pOK̄) and bn, cn,l, dl ∈ OK̄/pOK̄ . We also put

ε(n) = 0 for n ̸= p− 1 and ε(p− 1) = 1. Then the equation (2) is equivalent
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to  an ∈ (−p)
in
p (OK̄/pOK̄), bn, cn,l ∈ OK̄/pOK̄ ,

âpn
(−p)in (1 + Y1)

in + ε(in)b
p
n − un−1 =

{
0 (n ̸= 1)
d (n = 1).

From this we see that cn,l’s are uniquely determined by an’s, and the solu-
tions of the equation (2) correspond bijectively with the solutions of

(3)


an ∈ (−p)

in
p (OK̄/pOK̄), bn ∈ OK̄/pOK̄ ,

âpn
(−p)in + ε(in)b

p
n − an−1 =

{
0 (n ̸= 1)
d0 (n = 1),

in
âpn

(−p)in − bn−1 =

{
0 (n ̸= 1)
d1 (n = 1).

First let us assume M(h; i) ̸= M(1; p − 1), and suppose d = 0. Then we
can show ε(in)b

p
n = 0 for any n, by a valuation calculation [FL82, 5.11 (iii)].

Thus bn’s are also uniquely determined by an’s in this case. For an’s, we can
show that any solution (an) of the equation (3) uniquely lifts to a solution
in OK̄ of the equation of degree p

Xp
n

(−p)in
−Xn−1 = 0 for any n

over W [FL82, Lemme 5.12].
Let Ktr

0 be the maximal tamely ramified extension of K0 in K̄. For any
ρ ∈ Z(p), we write ρ = a/b with a ∈ Z and b ∈ Z>0 satisfying p ∤ b.
Using [Bou56, §7, n◦4, Proposition 5], we fix once and for all (−p)ρ ∈ Ktr

0

such that ((−p)ρ)b = (−p)a and (−p)ρ(−p)ρ′ = (−p)ρ+ρ′ for any such ρ, ρ′.
Then, from the above equation, we see that the module T ∗

crys(M(h; i)) =

HomMFk̄
(M(h; i), RDP) is equal to

{(en 7→ λp
−n

(−p)ρn(1 + Y1)
in+1) | λ ∈ Fph}

with ρn = in+1+pin+2+···+ph−1in
ph−1

, which settles the assertions (ii) and (iii) for

this case. The assertion (i) can be shown by constructing a solution of the
equation (3) similarly from a solution in OK̄ of an equation over W [FL82,
5.11 (i), (ii)].

The case of M(1; p − 1) needs an extra care [FL82, 5.14]. We also have
an equation over W to lift solutions, while its degree is p2 and lifts are not
unique. Nevertheless, we can show for the case of d = 0 that the solutions of
the lifted equation have exactly p distinct reductions modulo p, which yields
the proposition for this case. □

Now the assertions of Theorem 2.9 except the fullness follow formally.
Indeed, Lemma 2.8 reduces assertions on the module structure of T ∗

crys(M)

to the case of k = k̄. Moreover, for any object N ∈ MFk and any extension

0 // Acrys,∞ // E // N // 0
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in MFW , the exact sequence

0 // Acrys/pAcrys
// Acrys,∞

×p // Acrys,∞ // 0

and the snake lemma yield the extension

0 // Acrys/pAcrys
// E[p] // N // 0

in MFk with E[p] = Ker(p : E → E), and the induced map

Ext1MFW
(N,Acrys,∞)→ Ext1MFk

(N,Acrys/pAcrys)

is an injection. Using this, the exactness of T ∗
crys in Theorem 2.9 (i) fol-

lows by showing Ext1MFW (k̄)
(M,Acrys,∞) = 0 for any M ∈ MF

f,[0,p−1]

W (k̄),tor
by

dévissage from Proposition 4.9 (i). By combining this exactness of T ∗
crys

with Proposition 4.9 (ii), we obtain

lgZp
(T ∗

crys(M)) = lgW (M)

for any M ∈ MF
f,[0,p−1]
W,tor . Applying this to M [pl] = Ker(pl : M → M) for

any l shows Theorem 2.9 (ii). For any morphism f : M → N of MF
f,[0,p−1]
W,tor

satisfying T ∗
crys(f) = 0, applying the above length equality to Im(f) shows

f = 0 and settles the faithfulness of T ∗
crys in Theorem 2.9 (i). Thus Theorem

2.9 (iv) follows from Corollary 4.8 modulo the fullness of T ∗
crys (Theorem 2.9

(iii)).

4.3. The fullness of T ∗
crys. Now we prove Theorem 2.9 (iii). First we may

assume k = k̄ by a Galois descent argument using the faithfulness of T ∗
crys

[FL82, 6.2]. By Proposition 4.7 and Proposition 4.9, the natural map

HomMFW (k̄)
(M,N)→ HomZp[IK0

](T
∗
crys(N), T ∗

crys(M))

is an isomorphism ifM and N are simple. In order for a dévissage argument
to imply the theorem, we need to show that the natural map

Ext1MFW (k̄)
(M,N)→ Ext1Zp[IK0

](T
∗
crys(N), T ∗

crys(M))

is an injection for any objects M,N ∈ MF
f,[0,p−1]′

W (k̄),tor
. To prove this injectivity

and the fullness of T ∗
crys simultaneously, by dévissage and an induction on

the length we may assume that M and N are simple. By Theorem 2.9
(ii), we only have to consider the extensions killed by p. For this case,
since T ∗

crys(M) and T ∗
crys(N) are tamely ramified by Proposition 4.9 (iii),

Maschke’s theorem implies that an extension of T ∗
crys(N) by T ∗

crys(M) splits
if and only if the extension is also tamely ramified. Thus we are reduced to
showing the following lemma.

Lemma 4.10 ([FL82], 6.11). Suppose k = k̄. Let M be an object of

MF
f,[0,p−1]′

k̄
. Then M is semi-simple if and only if T ∗

crys(M) is tamely rami-
fied.
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To prove the lemma, we need to describe the fixed part T ∗
crys(M)GF for

any algebraic extension F/K0, which is also one of the key steps for the
proof of Theorem 2.19. This is essentially done again by uniquely lifting
each element of T ∗

crys(M) to a solution in OK̄ of an equation over W and

using (OK̄)GF = OF , as follows.

Proposition 4.11 ([FL82], Proposition 6.7). Suppose k = k̄. Let M be an

object of MF
f,[0,p−1]′

k̄
and F/K0 an algebraic extension in K̄. Then GF acts

trivially on T ∗
crys(M) if and only if T ∗

crys(M) = T ∗
crys,F (M).

Proof. We proceed by induction on the length of the Fontaine-Laffaille mod-
ule M . When M is simple, this follows from the explicit description of
T ∗
crys(M) given in the proof of Proposition 4.9. Suppose that we have an

exact sequence in MF
f,[0,p−1]′

k̄

0 // N // M // M(h; i) // 0

and that GF acts trivially on T ∗
crys(M). Then GF also acts trivially on

T ∗
crys(N) and thus T ∗

crys(N) = T ∗
crys,F (N) by the induction hypothesis. Take

the basis (en)n∈Z/hZ of M(h; i) as before and a lift ên ∈M in of en. Then

φin(ên) = ên−1 + dn−1

with some dn−1 ∈ N . Let f : M → A be an element of T ∗
crys(M). Since

f |N ∈ T ∗
crys(N) = T ∗

crys,F (N), we can write as

f(dn) = αn + βnY1 +

p−1∑
l=2

γn,lY
l
1

with some αn, βn, γn,l ∈ OF /pOF . Put

f(ên) = an + bnY1 +

p−1∑
l=2

cn,lY
l
1 ∈ Ain

with an ∈ (−p)
in
p (OK̄/pOK̄) and bn, cn,l ∈ OK̄/pOK̄ . From φin(f(ên)) =

f(φin(ên)), we obtain

cn−1,l =

(
in
l

)
âpn

(−p)in
− γn−1,l

and thus cn,l’s are uniquely determined by an’s in a way that if an ∈ OF /pOF
for any n, then cn,l’s are also in OF /pOF . Moreover, we see that to give
f ∈ T ∗

crys(M) with f(dn) being as above is the same as to give a solution
(an, bn)n∈Z/hZ of the equation

an ∈ (−p)
in
p (OK̄/pOK̄), bn ∈ OK̄/pOK̄ ,

âpn
(−p)in + ε(in)b

p
n − an−1 = αn−1,

in
âpn

(−p)in − bn−1 = βn−1.



34 SHIN HATTORI

Let α̂n and β̂n be any lifts of αn and βn in OF , respectively. Then we
can show [FL82, Lemme 6.8] that any solution (an, bn)n∈Z/hZ of the above
equation uniquely lifts to a solution (xn, yn)n∈Z/hZ in OK̄ of the equation
over OF {

Xp
n

(−p)in + ε(in)Y
p
n −Xn−1 = α̂n−1,

in
Xp

n

(−p)in − Yn−1 = β̂n−1.

Since (g(an), g(bn)) = (an, bn) for any g ∈ GF by assumption, the uniqueness
of the lifting implies (g(xn), g(yn)) = (xn, yn) for any g ∈ GF . Thus xn, yn ∈
(OK̄)GF = OF and an, bn ∈ OF /pOF for any n. Hence we obtain f(ên) ∈ AF
and f ∈ T ∗

crys,F (M). □

For any ρ ∈ Z(p) ∩ [0, 1[, there exist uniquely h ∈ Z>0 and i : Z/hZ →
{0, . . . , p− 1} of period h satisfying

ρ =
i1 + pi2 + · · ·+ ph−2ih−1 + ph−1i0

ph − 1
.

Note that any such (h, i) except (1, p− 1) can be obtained in this way, since
ρ < 1. Put

ω̄ρ = (−p)ρ(1 + Y1)
i1 ∈ Ai0

Ktr
0
,

where (−p)ρ is chosen as before. Then we have φi0(ω̄ρ) = ω̄pρ−i0 ∈ A
ih−1

Ktr
0

with

pρ− i0 =
i0 + pi1 + · · ·+ ph−2ih−2 + ph−1ih−1

ph − 1
∈ Z(p) ∩ [0, 1[.

Repeating this, we see that the k̄-subspace generated by

ω̄ρ, φ
i0(ω̄ρ), φ

ih−1(φi0(ω̄ρ)), . . .

defines an object of MF
f,[0,p−1]

k̄
which is isomorphic to M(h; i).

Put

Ass = Spank̄{ω̄ρ | ρ ∈ Z(p) ∩ [0, 1[} ⊆ AKtr
0

and we give this subspace the induced structure from AKtr
0

as an object of

MFk̄. Then we see that Ass is isomorphic to the direct sum of representatives

of all isomorphism classes of simple objects of MF
f,[0,p−1]′

k̄
. Moreover, we can

show by induction on the length that M ∈ MF
f,[0,p−1]′

k̄
is semi-simple if and

only if the natural injection

HomMFk̄
(M,Ass)→ T ∗

crys(M)

is bijective.
Thus we are reduced to comparing AKtr

0
and Ass. Consider the quotient

AKtr
0
/Ass ≃

p−1⊕
l=1

(OKtr
0
/pOKtr

0
)Y l

1 .
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Then we have AKtr
0
/Ass = (AKtr

0
/Ass)

p−1. Moreover, a simple calculation as

in [FL82, 6.10] shows that φp−1 = 0 on this quotient. By Lemma 4.4, we
obtain HomMFk̄

(M,AKtr
0
/Ass) = 0 and thus

HomMFk̄
(M,Ass) = HomMFk̄

(M,AKtr
0
).

The equality shows thatM is semi-simple if and only if HomMFk̄
(M,AKtr

0
) =

T ∗
crys(M), which is the same as saying that T ∗

crys(M) is tamely ramified by
Proposition 4.11. This concludes the proofs of Lemma 4.10 and Theorem
2.9 (iii).

4.4. Ramification bound. To prove Theorem 2.19, we need a lemma of
Fontaine (which was improved later by Yoshida) relating ramification to a
ramified variant of formal smoothness, as follows. For any algebraic exten-
sion E/K in K̄ and any non-negative real number m, put

amE/K = {x ∈ OE | vK(x) ≥ m}.

For any finite Galois extension L/K, consider the property

(Pm)L/K


For any algebraic extension E/K, if there exists
an OK-algebra homomorphism OL → OE/amE/K ,

then there exists a K-algebra injection L→ E.

Note that we do not require the map L → E to be a lift of the given map
OL → OE/amE/K . The property (Pm)L/K is related to uL/K by the following

lemma.

Lemma 4.12 ([Fon85], Proposition 1.5, [Yos10], Proposition 3.3).

uL/K = inf{m ∈ R≥0 | (Pm)L/K holds}.

For this, Krasner’s lemma implies that (Pm)L/K holds for any m > uL/K .
Conversely, by explicitly constructing counterexamples for (Pm)L/K , we can

show that if (Pm)L/K holds, then m > uL/K − e−1
L/K , where eL/K is the rela-

tive ramification index of the extension L/K [Fon85]. Furthermore, we can
kill the error term by using arbitrarily large tamely ramified base extensions
[Yos10].

Now let r < p− 1, M ∈ MF
f,[0,r]
k and L/K0 be as in Theorem 2.19. Since

the theorem concerns only about the IK0-action on T ∗
crys(M), by Lemma 2.8

we may assume k = k̄. Since r < p− 1, Lemma 4.5 gives the identification

T ∗
crys(M) = HomMFk̄

(M,OK̄/bK̄), T ∗
crys,F (M) = HomMFk̄

(M,OF /bF )

for any algebraic extension F/K0 in K̄. By Lemma 4.12, it is enough to
check the property (Pm)L/K0

for any m > 1 + r/(p− 1).

Let E/K0 be an algebraic extension in K̄, m a real number satisfying
m > 1 + r/(p − 1) and η : OL → OE/amE/K0

a W -algebra homomorphism.
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Let P (X) be the minimal polynomial over W of a uniformizer πL of L. We
write as

P (X) = XeL/K0 +

eL/K0
−1∑

s=0

pcsX
s

with some cs ∈ W such that c0 ∈ W×. Let x̂ be a lift of η(πL) in OE .
Since P (η(πL)) = 0 in the ring OE/amE/K0

, we have P (x̂) + δ = 0 with some

δ ∈ OE satisfying vp(δ) ≥ m > 1 + r/(p− 1). From the Newton polygon of

the polynomial P (X) + δ, we obtain vp(x̂) = e−1
L/K0

= vp(πL). Hence we see

that η induces an injection

η̄ : OL/bL → OE/bE
and that η̄ respects filtrations. We claim that η̄ also respects φi’s. Indeed,
note that the i-th filtration (OL/bL)i is spanned over k̄ by

{πjL | j ∈ Z, j ≥
eL/K0

p
i}.

For such j, put pj = eL/K0
i+ l. Then

φi(πjL) =
πpjL
(−p)i

mod bL = πlL(

eL/K0
−1∑

s=0

csπ
s
L)
i mod bL,

φi(η̄(πjL)) =
x̂pj

(−p)i
mod bE = x̂l(

eL/K0
−1∑

s=0

csx̂
s +

δ

p
)i mod bE .

Since δ
p ∈ bE , we obtain η̄(φi(πjL)) = φi(η̄(πjL)), which proves the claim.

Thus the map η̄ defines an injection of the category MFk̄ and induces an
injection

T ∗
crys,L(M)→ T ∗

crys,E(M).

Now Proposition 4.11 shows T ∗
crys(M) = T ∗

crys,L(M). Thus we also have

T ∗
crys(M) = T ∗

crys,E(M) and GE acts trivially on T ∗
crys(M). From the defini-

tion of L, we obtain GE ⊆ GL and L ⊆ E, namely the property (Pm)L/K0

holds for any m > 1 + r/(p− 1). This concludes the proof of Theorem 2.19
for r < p− 1.

For the case of r = p− 1 and M ∈ MF
f,[0,p−1]′

k , it is enough to check the
property (Pm)L/K0

for any m > 2. Consider a W -algebra homomorphism
η : OL → OE/amE/K0

. We see in the same way as above that the induced

injection η̄ : OL/pOL → OE/pOE and Y1 7→ Y1 define an injection AL → AE
which is compatible with filtrations and Frobenius structures. Thus we have
an injection T ∗

crys,L(M) → T ∗
crys,E(M) also in this case, which yields the

property (Pm)L/K0
and the desired ramification bound.

Remark 4.13. As we mentioned before, [FL82] uses the subring SFL =

W (R)[ ξ
p

p ] instead of Acrys to construct a GK0-representation associated with
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M ∈ MF
f,[0,p−1]
W,tor . We can show that these two constructions are naturally

isomorphic: we claim that for any M ∈ MF
f,[0,p−1]
W,tor , the natural map

HomMFW
(M,SFL,∞)→ HomMFW

(M,Acrys,∞) = T ∗
crys(M)

is bijective and

Ext1MFW
(M,SFL,∞)→ Ext1MFW

(M,Acrys,∞)

is injective. Indeed, by dévissage we may assume pM = 0. By [FL82,
Lemme 5.7], we have a natural identification (OK̄/pOK̄)[Y1] ≃ SFL/pSFL
defined by Y1 7→ δ(ξ) mod p. Since φp−1(Y p

1 ) = 0 in this ring [FL82, 5.9],
Lemma 4.4 implies that the natural map SFL/pSFL → A induces a bijection

HomMFk
(M,SFL/pSFL) ≃ HomMFk

(M,A) = T ∗
crys(M)

and an injection

Ext1MFk
(M,SFL/pSFL)→ Ext1MFk

(M,A) = Ext1MFk
(M,Acrys/pAcrys).

The former one settles the assertion on Hom. Moreover, as in the proof of
Theorem 2.9 (i), we have a natural injection

Ext1MFW
(M,SFL,∞)→ Ext1MFk

(M,SFL/pSFL)

and the assertion on Ext1 follows from the commutative diagram

Ext1MFW
(M,SFL,∞) �

� //

��

Ext1MFk
(M,SFL/pSFL)

� _

��
Ext1MFW

(M,Acrys,∞) �
� // Ext1MFk

(M,Acrys/pAcrys).
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Sci. École Norm. Sup. (4) 39 (2006), no. 4, 599–647.
[ABPS13+] A.-M. Aubert, P. Baum, R. Plymen and M. Solleveld: The local Langlands

correspondence for inner forms of SLn, arXiv:1305.2638v3 (2013).
[Ben00] D. Benois: On Iwasawa theory of crystalline representations, Duke Math. J.

104 (2000), no. 2, 211–267.
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