ON CANONICAL SUBGROUPS OF
HILBERT-BLUMENTHAL ABELIAN VARIETIES

SHIN HATTORI

ABSTRACT. Let p be a rational prime. Let F' be a totally real
number field which is unramified over p. In this paper, we develop
a theory of canonical subgroups for Hilbert-Blumenthal abelian
varieties with Op-actions, in which they are related with Hodge-
Tate maps if the S-Hodge height is less than (p — 1)/p™ for every
embedding 3 : F — Q,.
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Let p be a rational prime. Let K be a complete discrete valuation
field of mixed characteristic (0, p) with residue field k and K an alge-
braic closure of K. Let A be an abelian scheme of relative dimension
g over the integer ring Ok of K. Let n be a positive integer. If A has
ordinary reduction, then the unit component A[p"]" of the p™-torsion
subgroup scheme A[p"] is finite and flat of rank p"¥ over Ok and its
reduction A[p"]° x Spec(Of/pOk) is equal to the kernel of the n-th
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iterated Frobenius map of A x Spec(Ok /pOk). The theory of canoni-
cal subgroups asserts that, if A is sufficiently close to having ordinary
reduction, then a similar subgroup scheme C, of A exists even for the
case of non-ordinary reduction and that C, has distinguished properties
compared to other subgroup schemes of A[p"]. The subgroup scheme C,
is called the canonical subgroup of A of level n. We can make explicit
how close A should be to abelian varieties with ordinary reduction in
order to have the canonical subgroup, in terms of the Hodge height
Hdg(A). It is an element of QN|0, 1] such that Hdg(A) = 0 if and only
if A has ordinary reduction.

This theory is a powerful tool to study overconvergent p-adic modular
forms and the Hecke operator U, at p acting on them. For example, the
theory tells us that, for any non-canonical subgroup D of A, the abelian
scheme A/D is closer to having ordinary reduction than A. From this
we can show that U, is a compact operator and thus has a rich spectral
theory. Furthermore, it is shown that we can control the cokernel
of the Hodge-Tate map of the Cartier dual C) which relates C)/(K)
with the module we, of invariant differentials. This property leads
to the construction of sheaves of overconvergent Siegel and Hilbert
modular forms and their eigenvarieties, which is due to Andreatta-
lIovita-Pilloni [AIP, AIP2|. The sheaves of overconvergent modular
forms of Andreatta-lIovita-Pilloni are defined on the loci in modular
varieties classifying abelian varieties A with additional structures where
A has the canonical subgroup of some level.

On the other hand, it has been actively studied how overconvergent
modular forms are analytically continued over modular varieties (for
example, [BuC, BuT, Kasl, Kas2, KST, Pil, Sas, Tia]). Especially,
Buzzard-Calegari [BuC] proved that, for the case of 1-analytic weights
where weights are sufficiently close to classical ones, any overconver-
gent elliptic eigenform of finite slope (namely, eigenform with non-zero
U,-eigenvalue) can be analytically continued to the locus on a modular
curve where elliptic curves have Hodge heights no more than 1/(p+1),
while any non-zero overconvergent elliptic eigenform of infinite slope
(namely, eigenform killed by U,,) cannot. This clear distinction between
extension of overconvergent eigenforms of finite and infinite slopes en-
abled them to prove a properness of the Coleman-Mazur eigencurve for
some cases.

In order to carry out a similar study of extension properties for over-
convergent Hilbert modular forms, what we need is a theory of canoni-
cal subgroups for Hilbert-Blumenthal abelian varieties (HBAV’s) satis-
fying the following two requirements: First, we need to relate canonical
subgroups with Hodge-Tate maps, in order to make them yield sheaves
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of overconvergent Hilbert modular forms. Second, we need to have a
sufficiently large existence locus for canonical subgroups, in order to in-
vestigate extension properties of overconvergent Hilbert modular forms
far away from the ordinary locus.

Let F be a totally real number field which is unramified over p, Op
its ring of integers and f, its residue degree at a prime ideal p dividing
p. We denote by F, the completion of F' at p. Let Br be the set
of embeddings I — K and B, the subset consisting of embeddings
factoring through F,. For any HBAV A over Ok with Og-action, the
Hodge height Hdg(A) is decomposed as the truncated sum

Hdg(A) = min{ » _ Hdg,(A), 1}

BEBR

of more precise invariants Hdgg(A), the -Hodge heights, for each em-
bedding 3 : F — K. Goren-Kassaei [GK] established the theory of
canonical subgroups of any level, using the geometry of Hilbert modu-
lar varieties over a field of characteristic p. In their theory, the existence
locus of canonical subgroups is described in terms of Hdg(A) and much
larger than what we can obtain by using Hdg(A) or

Hdg,(A) = min{ ) _ Hdgy(A),1}.

BEBy

However, the relation of their canonical subgroups with Hodge-Tate
maps had been known only for the locus of Hdg,(A) < 1/2 for all p | p
with p # 2 by comparing with canonical subgroups of Fargues [Far],
and thus sheaves of overconvergent Hilbert modular forms of p-adic
weights [ATP2] had been defined only on this small locus. This causes
a constraint on the study of analytic continuation of overconvergent
Hilbert modular forms: for example, it is only for p > max{2f, — 1 |
p | p} that overconvergent Hilbert modular forms of p-adic weights are
defined on the locus where Hdggz(A) = 1/(p + 1) holds for all 3, and a
similar study of extension properties to [BuC] would be possible only
for a sufficiently large p so far.

In this paper, we present a theory of canonical subgroups controlled
by S-Hodge heights and satisfying the above two requirements, which
is used in the author’s work on a properness of the Hilbert eigenvariety
at integral weights [Hat4]. To state the main theorem, we fix some
notation. Let v, be the additive valuation on K normalized as v,(p) =
1. For any non-negative real number 7, we put

my ={z € Ok | vy(z) > i}, O; =O0x/m7, % =Spec(Ok;).
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For any extension L/K of valuation fields, we consider the valuation on
L extending v, and define mfi, Op,; and .77; = Spec(Op ;) similarly.
Let L be an algebraic closure of L. For any finite flat group scheme
G over O, with Cartier dual GV, we denote the Hodge-Tate map for
G by HTg : G(Of) — wgv ®p, Of (see §2 for the definition) and
define the i-th Hodge-Tate map HTg,; : G(Or) — wgv ®0, Of; as the
composite of HT¢ and the natural reduction map. We denote the i-th
lower ramification subgroup of G by G;. By definition, it is the scheme-
theoretic closure in G of Ker(G(Or) — G(Or;)). Let o be the p-th
power Frobenius map ¢ on the residue field of K| which naturally acts
on By and B,. Then the main theorem of this paper is the following.

Theorem 1.1 (Theorem 8.1). Let L/K be a finite extension in K. Let
¢ be a non-zero fractional ideal of F'. Let A be a HBAV over O, with
Op-action and c-polarization. Put wg = Hdgg(A) and w = max{wg |
B € Br}. Suppose that

Wg + PWy-108 < p?"

holds for all B € Bp.

If the residue field k is perfect, then there exists a finite flat closed
Op-subgroup scheme C,(A) of Alp"] over Oy, such that the Op /p"Op-
module C,(A)(Og) is free of rank one and C,(A) X FL1_pn—14 15 equal
to the kernel of the n-th iterated Frobenius map of A X S 1_pn-14.
We call C,(A) the canonical subgroup of A of level n. Put b = n —
wpt—=1)/(p—1). Ifw < (p—1)/p", then C, = C,(A) also satisfies
the following (among others).

e C,(Ox) coincides with Ker(HT apn) ;) for any rational number i

satisfying
w .
n—14+——<1<b.
p—1
e C, = Alp"|; for any rational number i satisfying
1 << 1 w
—<i< - .
p'(p—1) prtp—1) p-1

o For any i € v,(Oy) satisfying i < b, the natural map
wa ®o, Or; = we, @o, Ori

s an isomorphism.
e The cokernel of the map

HTey ®1:C)(Of) @ O — we, ®o, O

is killed by m="/®"Y.
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Moreover, for the case where k is imperfect, the same statements hold
ifw<(p—1)/p".

Weights for overconvergent Hilbert modular forms are p-adic contin-
uous characters of (Or ® Z,)*, and we say that a weight is n-analytic
if its restriction to 1 + p"(Or ® Z,) is analytic (see [AIP2, §2]). Us-
ing Theorem 1.1, we can enlarge the domain of definition of sheaves of
overconvergent Hilbert modular forms of n-analytic weights to the locus
where Hdgg(A) < (p—1)/p" holds for all # [Hat4], which in particular
enables us, for the 1-analytic case, to study extension of overconvergent
Hilbert modular forms to the locus of Hdgg(A) = 1/(p + 1) for all 3
even if p is small.

Our approach to construct canonical subgroups is (reducing to the
case where k is perfect and) using the Breuil-Kisin classification of finite
flat group schemes over Ok [Bre, Kis, Kim, Lau, Liu2]. For a HBAV A
over Ok, the group scheme A[p"] is decomposed as A[p"] = B, , Alp"],
where the direct sum is taken over the set of prime ideals p of Op
dividing p. Each A[p"] is a truncated Barsotti-Tate group with an
action of Z,s for f = f, and the O, ®Z,r-module w4 is free of rank
one. Moreover, A[p"] is also endowed with a structure of alternating
self-duality coming from the polarization of A. We refer to such a
group scheme as a Z,s-alternating self-dual truncated Barsotti-Tate
Zys-group or a Z,;-ADBT,,.

For the p-torsion case, Tian [Tia] constructed the canonical subgroup
of a Z,-ADBT of level one, following the idea of the author [Hat2]
for the Siegel case. We can also construct the canonical subgroup of
level n for a Z,;-ADBT,, by a standard induction as in [Far, GK], and
obtain the canonical subgroup C,(A) of A as the direct sum of canon-
ical subgroups of A[p”]’s. The main contribution of this paper is to
show that canonical subgroups obtained in this way are related with
Hodge-Tate maps and equal to lower ramification subgroups. The coin-
cidence with lower ramification subgroups produces a larger existence
locus of a family of canonical subgroups in the Hilbert modular variety
via [Hat3, Lemma 5.6], and thus those of sheaves of overconvergent
Hilbert modular forms, than the other approaches in the literature. To
show this coincidence, the author’s description of lower ramification
subgroups via the Breuil-Kisin classification [Hat3, Theorem 1.1 and
Corollary 3.3] is crucially used. Note that the use of lower ramification
subgroups in the theory of canonical subgroups had already appeared
in the classical case of elliptic curves [Kat, Theorem 3.10.7].

As a byproduct of our construction of canonical subgroups, we also
study the variation of $-Hodge heights by the U,-correspondence for
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Z,r-ADBT,,’s of B-Hodge heights p/(p + 1) for the case of f < 2
(Proposition 6.1), which is one of the key ingredients for generalizing
Buzzard-Calegari’s extension property mentioned above to overconver-
gent Hilbert modular forms [Hat4].

This paper is organized as follows. In §2, we recall the Breuil-Kisin
classification of finite flat group schemes and its relation with invariants
on the side of differentials such as the degree, the Hodge height and
Hodge-Tate maps. These invariants and the Breuil-Kisin module asso-
ciated to a finite flat group scheme with Z,s-action are decomposed by
the action of Z,, which are studied in §3. In §4, we prove various prop-
erties of Tian’s canonical subgroup of level one using the Breuil-Kisin
classification. In §5, we generalize Goren-Kassaei’s theory of variation
of f-Hodge heights and (-degrees of HBAV’s by isogenies [GK, §5] to
the case of Z,-ADBT,’s. Using these results, canonical subgroups
of Z,-ADBT,’s and HBAV’s are constructed and studied in §7 and
§8, respectively. §6 is devoted to studying the U,-correspondence for
Z,r-ADBT,,’s of -Hodge heights p/(p + 1).

Acknowledgments. The author would like to thank the anonymous
referee for helpful comments, which improved the presentation of the
article.

2. BREUIL-KISIN MODULES

Let K be as in §1 and suppose that the residue field k is perfect
until §5. Let e be the absolute ramification index of K and W = W (k)
the Witt ring of k. Put W,, = W/p"W. We denote by o both the
p-th power Frobenius map on k and its natural lift on W. Let w be a
uniformizer of K. Let v, be the additive valuation on K normalized as
v,(p) = 1. For any non-negative real number ¢ and any extension L/K
of valuation fields, we put m?, Ok.i, 74, mfi, Op,; and .7 ; as in §1.
For any element = € O 1, we define the truncated valuation v,(z) by

0p(2) = min{e,(#), 1)
with any lift & € Oy, of x. Let us fix an algebraic closure K of K and
extend v, naturally to K. Put G = Gal(K/K). We fix a system
()0 of p-power roots of 7 in K such that my = 7 and T, = my for
any n. Put Ky =, >0 K(m,) and G, = Gal(K/K).

Let E(u) € W[u] be the monic Eisenstein polynomial for 7 and set
co=p 'E0) € W*. Put & = W[[u]] and &,, = &/p"S. The ring
S, = k[[u]] is a complete discrete valuation ring with additive valuation
v, normalized as v,(u) = 1. We also denote by ¢ the o-semilinear
continuous ring homomorphism ¢ : & — & defined by u — u?.
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An G-module M is said to be a Breuil-Kisin module (of E-height
< 1) if M is a finitely generated G-module equipped with a ¢-semilinear
map gy @ I — I such that the cokernel of the linearization

1@()0931(,0*93?:6@%@%%%

is killed by E(u). We refer to gy as the Frobenius map of the Breuil-
Kisin module 9t and often write as ¢ abusively. A morphism of Breuil-
Kisin modules is defined as an G-linear map compatible with Frobenius
maps. Let

Mod}g"1
be the category of Breuil-Kisin modules 9t such that the underlying
G-module 9 is free of finite rank over &;. We denote by

Mod}goo
the category of Breuil-Kisin modules 90t such that the underlying G-

module 9 is finitely generated, p-power torsion and u-torsion free.
The category Mod}goo admits a natural notion of duality, which is

denoted by 9t — MY [Liul, Proposition 3.1.7]. Here we give its ex-

plicit definition for the full subcategory Mod}’é’l. For any object 9t of

Mod}gl, let eq, ..., e, be its basis. Write as

om(er, ... en) = (e1,...,ep)A
with some A € M, (&;). Consider its dual Y = Home, (9, &) with

the dual basis ef,...,e/. We give MY a structure of a Breuil-Kisin
module by

E
QOQmV(e\l/, s 7€X) = (e\lla s 76X) ( <U)> tA_17

Co
which is independent of the choice of a basis.
Consider the inverse limit ring
R = Lm(ofﬂ — Ok ¢ ),
n>0

where every transition map is the p-th power Frobenius map. The
absolute Galois group G acts on R via the natural action on each
entry. We define an element 7 of R by

= (7o, 1, .. .).

The ring R is a complete valuation ring of characteristic p with alge-
braically closed fraction field, and we normalize the additive valuation
vp on R by vg(m) = 1/e. We define m7’ and R; = R/m7' as before,
using vi. We consider the Witt ring W (R) as an &-algebra by the con-
tinuous W-linear map defined by u — [r]. Then we have the following
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classification of finite flat group schemes over Ok [Bre, Kis, Kim, Lau,
Liu2].

Theorem 2.1. (1) There exists an exact anti-equivalence
G — M(G)

from the category of finite flat group schemes over Ok killed
by some p-power to the category Mod}gw. If G is a truncated
Barsotti-Tate group of level n over Ok, then the &-module
M*(G) is free over &,,.

(2) Letn be a positive integer satisfying p"G = 0. Then there exists
a natural isomorphism of G -modules

G(Ok) — Home o (M(G), W(R)).

Moreover, we have 1gz (G(Ok)) = lgg(MM*(G)).

(3) Let GV be the Cartier dual of G. Then there exists a natural iso-
morphism 9IM*(GY) — IM*(G)Y which, combined with the natural
isomorphism of (2), identifies the pairing of Cartier duality

(= =)g:G(0k) x G"(Ok) = iy (O)
with the natural perfect pairing
Homg ,(M*(G), W, (R)) x Homg ,(M*(G)", W,(R)) — W,(R).

(4) For any non-negative rational number i < 1, there exists an
ideal I,,; of Wy,(R) such that the isomorphism of (2) induces an
1somorphism

Gi(Og) ~ Homeg ,(M*(G), I,;).
Moreover, we have I, ; = m7'.

Proof. The assertions (1) and (2) are contained in [Kim, Corollary 4.3]:
the assertion on truncated Barsotti-Tate groups of level n over O
follows from the fact that they are p"-torsion parts of p-divisible groups
[I1l, Théoreme 4.4 (e)], and the equality on the length follows from the
natural isomorphism of (2). The assertion (3) follows from a similar
assertion on p-divisible groups [Kim, §5.1] and a dévissage argument
as in [Hatl, Proposition 4.4]. The assertion (4) is [Hat3, Theorem 1.1
and Corollary 3.3]. O

Next we recall, for any extension L/K of complete valuation fields,
the definitions of invariants associated to a finite flat group scheme G
over Oy, which is killed by p" with some positive integer n. For any
finitely presented torsion Op-module M, write as M ~ @, Or/(a)
with some a;, € Op and put deg(M) = >, v,(a;). Since G is finitely
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presented over Op, the module wg of invariant differentials of G is a
finitely presented Op-module. We put

deg(G) = deg(wg)

and ref_er to it as the degree of G.
Let L be an algebraic closure of L. Note that any element = € G(Oj)
defines a homomorphism

r:G" X, Spec(Of) = Gy, X0, Spec(Or)
by Cartier duality. We define the Hodge-Tate map by

HTg : G(O;) — wgv ®o, Of, = +— x*?

and, for any positive rational number ¢, the i-th Hodge-Tate map by
the composite

HTg, : G(Or) HE}Q wgv o, O = wgv R, Oi,i
of HT¢ and the reduction map. We also denote them by HT and HT;.
Suppose that G is a truncated Barsotti-Tate group of level n, height
h and dimension d over Q. Consider the p-torsion part G[p]. Note
that the Lie algebra Lie(GV[p] x -#71) is a free Op -module of rank
h — d. The Verschiebung of GY[p| x .77 induces a map on the Lie
algebra

Lie(Vgvipx.o;,) : Lie(GV[p] x #1.1)® — Lie(GY[p] x S11).

The truncated valuation for v, of the determinant of a representing
matrix of this map is independent of the choice of a basis of the Lie
algebra, which we call the Hodge height of G and denote by

Hdg(G).

Finally, for any truncated Barsotti-Tate group G of level one over Ok
and any element 7 of e7'Z>¢, the quotient IMM*(G); = M*(G) /u"M*(G)
has a natural structure of a p-module induced by ¢gr. We put

Fil'n*(G); = Im(1 ® ¢ : *M*(G); — IM*(G),).

It also has a natural structure of a p-module induced by @gy. By the
isomorphisms of k-algebras &;/(u®) — O defined by v +— 7 and
R; — Ok ; defined by the zeroth projection pry for i < 1, we identify
both sides. For any x € &;/(u), we define the truncated valuation
vy () by v, () = min{v,(Z), e} with any lift # € &; of z. Then these
invariants of G on the side of differentials can be read off from the
associated Breuil-Kisin module, as follows.
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Proposition 2.2. (1) For any finite flat group scheme G over Ok
killed by p, there exists a natural isomorphism

M (G)/ (1 ® pae(g)) (™M (G)) — wg
and we have

deg(G) = e vu(det(om(g)))-

(2) Suppose that G is a truncated Barsotti-Tate group of level one.
Then we have a natural isomorphism

Lie(GY x .71) — Fil'9N*(G),.
The Ok 1-module Fil'I*(G); is a direct summand of 9M*(G),

of rank h — d. Moreover, we have the equality of truncated
valuations

Hdg(G) = 6_1Uu(det(90Fﬂlwz*(g)1))-

(8) Suppose that G is a truncated Barsotti-Tate group of level one.
For any positive rational number i < 1, the i-th Hodge-Tate
map HTg; coincides with the composite

G(Og) — Homg ,(9M*(G), R) — Home (Fil'ON*(G)1, R;)
~ Hom@K(Lie(gv X ), O[{,z‘) ~ wgv ®ox Ok

Proof. The first isomorphism is shown in [Tia, Proposition 3.2] and
the others are in [Hat2, §2.3]. Note that though [Hat2] assumes p > 2,
the same proof remains valid also for p = 2 by using [Kim] instead of
[Kis]. O

3. Z,;-GROUPS

Let f be a positive integer. We assume that the residue field k of
K is perfect and contains the finite field F,;. Let By be the set of
embeddings of F,; into k. We denote the unramified extension of Q,
of degree f by Q,s and its ring of integers by Z,r. Any 8 € By has the
canonical lifts Z,; — Ok and Q,; — K, which we also denote by £.
Then any W ® Z,r-module M is decomposed as

M= My
BEB;

according with the decomposition W ® Z,r ~ [] ses, W-

Let L/K be any extension of complete valuation fields and L an
algebraic closure of L. A group scheme G over O, is said to be a Z,-
group if it is equipped with an action of the ring Z,s. Then we have
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the decompositions

wg = @ wgp, Lie(G X SL,) = @ Lie(G X SLn)s.

ﬁEEf 6EBf

When G is finite and flat over Op, we define the S-degree of G by

degy(G) = deg(wg,)-

We have deg(G) = > seB; degs(G). Moreover, for any exact sequence
of finite flat Z,,-groups over Oy,

0 g g g" 0,

the equality degs(G) = degs(G’) + degg(G”) holds.

Let n be a positive integer. A Z,s-group G over O, is said to be
a truncated Barsotti-Tate Z,s-group of level n if G is a truncated
Barsotti-Tate group of level n, height 2f and dimension f such that
wg is a free O, ® Z,r-module of rank one. Note that for such G, we

have degs(G) = n.

Definition 3.1. We say that a truncated Barsotti-Tate Z,s-group G of
level n is Z,r-alternating self-dual if it is equipped with an isomorphism
of Z,s-groups i : G ~ G" over Oy, such that the perfect pairing defined
via Cartier duality

G(01) x G(07) 5 G(07) x 6¥(07) "5 pn(0;)

satisfies (z,i(ax))g = 1 for any € G(Of) and a € Z,s. In this case,
we also say that the isomorphism ¢ is Z,s-alternating. We abbreviate
Zys-alternating self-dual truncated Barsotti-Tate Z,s-group of level n
as

Z,¢-ADBT,,.

Note that the above map 7 is skew-symmetric: namely, we have the
commutative diagram

G——>gv

cn.| |-

g\/V = gV‘

For p # 2, an isomorphism of Z,s-groups i : G ~ G is Z,-alternating
if and only if it is skew-symmetric.
For a Z,r-ADBT,, G over Op, the Or,,, ® Z,s-modules

wg, Lie(Gx S1n), wgv, Lie(GY X S1n)
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are all free of rank one. Moreover, the action of the Verschiebung on
Lie(Vgvipx7,,) can be written as the direct sum of o-semilinear maps

Lie(Vg\/[p]XyL’l)g : Lle(gv[p] X yL,l)o'_loB — Lle(gv[p] X yL,l)B‘

Note that both sides are free Of, ;-modules of rank one, and by choosing
their bases, this map is identified with the multiplication by an element

ag € Op,1. We define the 3-Hodge height Hdgs(G) of G as the truncated
valuation of ag, namely

Hdgﬁ(g) = Up(aﬁ)a
which is independent of the choice of bases. From the diagram in the
proof of [Far, Proposition 2| and [Con, Lemma 2.3.7], we obtain the
equality
Hdgs(G) = Hdg,(G").

A Breuil-Kisin module 90 is called a Z,r-Breuil-Kisin module if 90 is
equipped with an &-linear action of the ring Z,; commuting with ygy.
A morphism of Z,;-Breuil-Kisin modules is that of Breuil-Kisin mod-
ules compatible with Z,s-action. The Z,s-Breuil-Kisin modules whose
underlying G-modules are free of finite rank over &; (resp. finitely
generated, p-power torsion and u-torsion free) form a category, which
we denote by

Zps-Mod, g (resp. Zys-Mod,€ ).

Note that 0T — MY defines a notion of duality also for these categories.
The anti-equivalence 9t*(—) of the Breuil-Kisin classification induces
an anti-equivalence from the category of finite flat Z,s-groups over Og
killed by some p-power to pr—Mod}goo.

To give an object 9t of pr—Mod}gl (resp. pr-Mod}’goo) is the same
as to give a free G1-module M of finite rank (resp. a finitely generated
S-module M which is p-power torsion and u-torsion free) equipped
with a decomposition into G-submodules

m = P My
BEB;

and a p-semilinear map
Ym,B - 9)20_105 — Dn/g,

which we often write as g, for each 3 € By such that the cokernel of
the linearization 1 ® ¢z : @*M,-1,5 — Mg is killed by E(u). Since
1® e @ "M — M is injective, the map 1 ® ¢g is also injective.
Hence we see that if 91 # 0, then Mz # 0 for any B € By. Since
E(u)M C (1® ¢)(¢"M), we have B(u)Ms C (1® 03)(¢ My 105).



ON CANONICAL SUBGROUPS OF HBAV’S 13

Let 9 be any object of pr—l\/[od}gl. The last inclusion implies that
the free &1-modules Mg have the same rank for any g € By, which is
equal to

f'ranke, (9N) = dim]pr (Homg, ,(9M, R)).

Moreover, Proposition 2.2 (1) implies that, if G is the finite flat group
scheme over Ok corresponding to 91, then we have

(3.1) degz(G) = e 'gg, (Coker(1 ® @g : @ M,-105 — M3)).
Lemma 3.2. Let G be a finite flat Z,s-group over Og. Then we have
degy(G) + degy(GY) = lgs (M (G)s).

Proof. Let ‘H be the scheme-theoretic closure in G of G(Og)[p]. It is
a finite flat closed Z,-subgroup of G killed by p. Since both sides are
additive with respect to exact sequences of finite flat Z,,-groups over
Ok, by an induction we may assume that G is killed by p.

Put 9 = M*(G). Let Ap be the representing matrix of the map
omp : My-105 — Mz with some bases. From the definition of the
dual, we see that the representing matrix of the map @y 3 with the
dual bases is ¢, ' F (u)tAgl. Then the equality (3.1) implies

degs(G) + degs(G¥) = v, (det(Ag) det(cy B(u)'43"))
= rankg, (M5).
This concludes the proof. 0
For any 9 € pr—Mod}gD1 and 7 € e7'Z N0, 1], we put
M, = Ms/u M.

Then the map g induces an &;-semilinear map M,-1,5, — Mg,
which we denote also by ¢z. We define

Fil'M,; = Im(1 ® 5 1 0" My-105: — Mp).

4. TIAN’S CONSTRUCTION

We continue to use the notation in §3. Let G be a pr—ADBTl over
Of of p-Hodge height wg. Put 9t = 9" (G) and My = M /u9M. Then
each M is a free G;-module of rank two. By Proposition 2.2 (1) and
(2), we have an exact sequence of p-modules over Ok 1 ® Z,r

0 — Fil'dy —— M — M, /Fil'o; —— 0,
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where the Ok 1 ® Z,s-modules Fil'9; and M, / Fil'9, are free of rank
one. In particular, this splits as a sequence of Ok ® Z,r-modules.
Hence we also have a split exact sequence of O 1-modules

0 — Fil'9,, Mg, M1 /Fil' Mg, — 0,

where the modules on the left-hand side and the right-hand side are
free of rank one. As in the proof of [Hat2, Theorem 3.1], we can choose
a basis {eg, e} of My satisfying eg € (1 ® p)(p*My-1,5) such that
the image of eg in Mg is a basis of Fﬂlﬂﬁg,l and the image of 6’5 in
My /Fil'Mg, gives its basis. Then we can write as

ag,1 ag2
(41) @(60—105, 6;7106) = (eﬁv 6%) (Ueflﬁg uegﬁ,él)

with some invertible matrix

ag1 Qg2
(%3 %4) € GLy(6,).

For any Z,r-group G over Ok killed by p, a finite flat closed Z,;-
subgroup H of G over Ok is said to be cyclic if the IF,s-vector space
H(Of) is of rank one. Note that, for such H, the free &;-module
IM*(H)p is of rank one for any 5 € By. If G is a Z,-ADBT,, then
the proof of [GK, Lemma 2.1.1] shows that the F,s-subspace H(Og)
is automatically isotropic with respect to the Z,s-alternating perfect
pairing on G(Of). Moreover, since finite flat closed subgroup schemes
of G over Ok are determined by their generic fibers, this implies that
the Z,s-alternating isomorphism i : G ~ GV induces an isomorphism
H o (G/H).

Now the existence theorem of the canonical subgroup of level one for
a Zyr-ADBT; over O is as follows.

Theorem 4.1. Let G be a Z,s-ADBT; over Ok with 3-Hodge height
wg. Put w =max{ws | B € Bs}. Suppose that the inequality

wg +pwo._1oﬁ <p

holds for all B € By. Then there exists a finite flat closed cyclic Z,y-
subgroup C of G over Ok satisfying

degs(G/C) = wg

for all B € By. Moreover, the group scheme C is the unique finite flat
closed cyclic Z,s-subgroup of G over Ok satisfying

degs(C) + pdeg,-1,5(C) > 1
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for all 8 € By. We refer to C as the canonical subgroup of G. It has
the following properties:

(1) Let G’ be a Z,r-ADBT, over O satisfying the same condition
on the $-Hodge heights as above and C' the canonical subgroup
of G'. Then any isomorphism of Z,s-groups j : G — G over
Ok induces an isomorphism C ~ C'.

(2) C is compatible with finite base extension of complete discrete
valuation rings.

(3) C is compatible with Cartier duality. Namely, (G/C)Y is the
canonical subgroup of GV.

(4) The kernel of the Frobenius map of G X S coincides with
C x fl_w.

(5) Ifw < p/(p + 1), then C = g(l_w)/(p_l).

(6) If w < (p—1)/p, then C(Og) coincides with Ker(HTg ;) for any
rational number i satisfying w/(p —1) <i <1 —w.

(7) If w < (p—1)/p, then C = G; for any rational number i satis-
fying 1/(p(p— 1)) <i < (1 —w)/(p—1).

Proof. Note that, since we have w < 1 by assumption, Proposition 2.2
(2) implies
wg = e v, (agy).

The existence and the uniqueness in the theorem are due to Tian
[Tia, Theorem 3.10]: the Z,s-subgroup C is defined as the finite flat
closed Z,r-subgroup of G over O corresponding to the quotient N =
M /L via the Breuil-Kisin classification, where £ = @ﬂeﬁf L5 is the

unique Z,s-Breuil-Kisin submodule of 901 satisfying
L51-w, = Fil'M31 4,

for all 8 € By. In particular, the &;-module £3 is generated by
0g = ep +u " yse)

with some yg € &;. The assertions (1) and (2) follow from the unique-
ness.

Let us prove the assertion (3). Note that, since Hdgs(G) = Hdgz(G"),
the Z,-ADBT; GY over Ok also has the canonical subgroup C’. By
Lemma 3.2, we have

degs((G/C)7) =1 —degy(G/C) =1 — wg
and the uniqueness assertion of the theorem and the assumption on wg
imply C' = (G/C)".
The assertion (4) is also due to Tian [Tia, Remark 3.11]. Here we give
a short proof for the convenience of the reader. Since 1 —w <1 — wg,
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the construction of £ implies

(4.2) L1 = Fil'ON, .

Then Proposition 2.2 (1) shows that the natural map
wg /e @ Or1-w — wWg @ Ok 1w

is zero. By [Far, Proposition 1], the closed subgroup scheme (G/C)¥ x
S _w of GY X% _,, is Killed by the Frobenius. Comparing the rank, the
former coincides with the kernel of the Frobenius of the latter. Since
GY x S_, 1s a truncated Barsotti-Tate group of level one, we see by
duality and [IlI, Remark 1.3 (b)] that C x .#1_,, also coincides with the
kernel of the Frobenius of G X . _,,.

Next we consider the assertion (5). It can be shown similarly to
[Hat2, Theorem 3.1 (c)]. For any G;-algebra A, we define an abelian
group H(M)(A) by

H(m)(A) = HomGLsD(m? A)a
where we consider A as a p-module with the p-th power Frobenius
map. If we take the basis {es, €j3}gen, of M as above, it is identified
with the set of f-tuples of elements (24, 2%) € A? satisfying

P / _ ! ag,1 4,2
(4-3) (xcrloﬂ’ (xa—loﬁ)p) - (xﬁ’xﬁ) (ueaﬁ,g Ueaﬁ,4) .

We define the subgroup H(9M);(R) of H(M)(R) by
H(M):(R) = Ker(H(OM)(R) — H(ON)(R,)).
We also have the subgroup H(M)(R) of H(M)(R). Note that we have

an exact sequence
0 ——=HO)(R) — HON)(R) —H(L)(R) —=0
which can be identified with the exact sequence of abelian groups
0 —C(0Og) —= G(0g) —= (G/C)(Og) —0.
Since degs(G/C) = wg, the basis dg of L5 satisfies
#8(05-108) = Agds With vr(Ag) = ws.

Thus any element of H(£)(R) can be identified with an f-tuple (25)sep,
in R satisfying

(44) Zﬁfloﬁ = )\52’5
for all 8 € By.
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Lemma 4.2. For any element (25)pes, 7 0 of H(L)(R), we have

vr(2s) <
In particular, H(L);(R) =0 for any i > w/(p — 1).

?1 for any 8 € By.

Proof. From the equation (4.4), we see that (z5)sep, # 0 if and only if
zg # 0 for all § € By. This equation also implies

PUR(Zo-108) = Vr(25) + wg
for any 8 € By and thus

f-1

w
v (0’ 10,3) f_lzpf - lwo'loIB < _17
p —o p

which concludes the proof. O

We claim that H(D)(R) = H(OM)a—w)/p-1)(R). Indeed, take any
element (g, 7})sen, of the left-hand side. Take the element yz € &,
such that

(55 = 65 + ue(lfwﬁ)ygeg
is a basis of the &;-module £5. Then (24, })ser, € H(I)(R) if and
only if x5+u€(1_wﬂ)y5x/’3 =0 for all § € By. The equation (4.3) implies

6(1_“}5)% + uea,BA)

(T-105)" = Tg(—apou
and thus
pUR(iffrlog) > UR(x/ﬁ) +1—wg.

Hence we have

1—w
/
VR(Zy-1, "1 — wyie —
(Fo-tap) o )2
for any 8 € By and we obtain (24, 23)ger, € H(9M) - w)/p 1)( ).
Conversely, let (13, 25)sen, be an element of H (M) 1 —w)/p-1)(R). By
the equation (4.3), we have
-1
ey _ ap1 g2
15) (o) = (T (o) (120 227)

for any 8 € By. Recall that the matrix on the right-hand side is an
element of GLy(&;). Hence we obtain

p(l —w)

>
vr(zg) = |
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and the element zg = x5 + ue(l_wﬁ)ygx’ﬁ satisfies
p(l —w)
VR\Z > —=
r(2g) = P

for all 8 € By. By the assumption w < p/(p + 1), we have
w_ _p(l-w)
p—1  p-1
and Lemma 4.2 implies z3 = 0 for any 8 € B;. Therefore we obtain
(25, 73)peB;, € H(M)(R), from which the claim follows. Now Theorem
2.1 (4) shows the assertion (5).

Let us show the assertion (6). This is shown similarly to [Hat2,
Theorem 3.1 (2)]. Since ¢ < 1 — w, Proposition 2.2 (3) and (4.2) show
that the kernel of the map HTg; is equal to the kernel of the natural
map

9(Og) =~ H(M)(R) — H(L)(R) — H(L)(R).
Since i > w/(p — 1), Lemma 4.2 implies H(£);(R) = 0 and the right
arrow in the above map is injective. Thus Ker(HTg;) coincides with
the inverse image of
H(M)(R) = Ker(H(M)(R) — H(L)(R))
by the isomorphism G(Og) ~ H(M)(R), which is C(Og). The asser-
tion (7) follows from the lemma below. O

Lemma 4.3. Let G be a Z,r-ADBT; over Ok with $-Hodge height wg.
Put w = max{wg | B € By} and

1 w y 1

in = -

= T
ptp—1) p-1 pip—1)
Suppose w < (p — 1)/p"™ for some positive integer n. Let C be the
canonical subgroup of G, which exists by Theorem 4.1. Then we have

C=G, =0,

forany 1 <m <n.

Proof. This can be shown in the same way as [Hat3, Lemma 5.2]. We
follow the notation in the proof of Theorem 4.1. By Theorem 2.1 (4)
and Theorem 4.1 (5), it is enough to show

Home (MM, m7") € H(N)(R).

We identify an element z of the left-hand side with a solution (z, ¥;) sem,
of the equation (4.3) in R satisfying vg(zp), vr(xj) > 4, for all 8 € B;.
From the equality (4.5), we have vg(zg) > pil, > w/(p — 1). Since we



ON CANONICAL SUBGROUPS OF HBAV’S 19

have 1 —wg > 1 —w > w/(p— 1), the element z5 = x5 + u~"9)yza/,
satisfies

vr(z) > w/(p —1).
Thus Lemma 4.2 implies zg = 0 for any § € By and z € H(M)(R). O

The description of the Hodge-Tate map via the Breuil-Kisin classi-
fication also yields a torsion property of the Hodge-Tate cokernel, as
follows.

Lemma 4.4. Let G be a Z,r-ADBT; over Ok with $-Hodge height wg.
Put w = max{wg | B € B;}. Supposew < (p—1)/p. Then the cokernel
of the linearization of the Hodge-Tate map

HT®1:G(0r) ® O — wgv R, O

>uw/(p-1)

is killed by m7z

Proof. For this, we first show the following lemma.

Lemma 4.5. Let M be a finitely generated Og-module. Let N be an
O -submodule of M. Suppose that there exist positive rational numbers
r > s satisfying m?M CN+ m?M. Then we have m?(sM C N.

Proof. Put Q = m=~*(M/N). Since the assumption implies m>""°Q =

@, Nakayama’s lemma shows () = 0 and m?{sM C N. U
Put M = wgv ®o, O and
N=Im(HT®1:G(0f) ® Og — wgv ®o, Of).
We claim that
mf—{w/(pfl)Coker(HTl,w ®1:G(0) ® O = wgv ®o, O 1) =0.
This is equivalent to the inclusion
mPTIM CN A+ m M,

The assumption w < (p — 1)/p implies w/(p — 1) < 1 — w and thus
Lemma 4.4 follows from the claim and Lemma 4.5.

Now let us prove the claim. Consider the basis dg of £5 as in the proof
of Theorem 4.1. Using this, we identify each element of H(£)(R) with
an f-tuple (25)pep, in R satisfying the equation (4.4). By Proposition
2.2 (3) and (4.2), the cokernel of the claim is identified with the cokernel
of the natural map

H(L)(R) ® R — Homs, (£, Ri_w) = £ @ Ry_y,

(25>B€1B%f ®1— Z 5}3/ & z3.
5€Bf
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Note that the abelian group H(£)(R) has a natural action of the ring
IF,; defined by

Oé(Zﬁ)ﬁgB;f = (ﬁ(o&)Zg)gGBf for any o« € pr.
Take a generator ap of the extension F,/F, and a non-zero element
(28)pem,; of H(L)(R). Then the subset {aé(zg),gegf}l:m ,,,,, f-1 forms a
basis of the IF,-vector space H(L)(R). Hence the image of the natural
map above is generated by the entries of the f-tuple

(0 ® 1)per, (B(h)z8)51 = (65 @ 1)ger, diag(zs)ser, (B(ap))s..

Since the matrix (3(a}))s, is invertible in M (R), the cokernel is iso-
morphic as an R-module to

P Ri-uf(z5).

BeBy

Thus the claim follows from Lemma 4.2. O

Corollary 4.6. Let L be a complete discrete valuation field of mized
characteristic (0,p) and G a Z,s-ADBT, over O, with 3-Hodge height
wg. Put w =max{wg | B € Bs}. If w < p/(p+1), then there ezists a
finite flat closed cyclic Z,r-subgroup C of G over Of, satisfying

deg(G/C) = wpg
for all 3 € By, which is characterized by the inequality
degs(C) + pdeg,-1,4(C) > 1

for all B € By. The Z,s-subgroup C has the properties (1)-(7) in The-
orem 4.1. We also refer to C as the canonical subgroup of G.

Proof. From [Gro, Théoreme (19.8.6)] we see that Oy is a finite totally
ramified extension of a Cohen ring, and as in the proof of [Hat2, The-
orem 3.1] we can choose an extension of complete discrete valuation
fields L'/L with relative ramification index one such that the residue
field of L’ is perfect. Put C = G(1_w)/(p—1)- Since the map Op — Op
is flat and lower ramification subgroups are compatible with base ex-
tension of complete discrete valuation fields, Theorem 4.1 applied to
G ®p, O implies the corollary. O

5. GOREN-KASSAEI’'S THEORY

Here we analyze the variation of S-Hodge heights by taking quotients
with cyclic Z,s-subgroups. For the case of abelian varieties, it was
obtained by Goren-Kassaei [GK, Lemma 5.3.4 and Lemma 5.3.6]. We
are still assuming that the residue field £ 2 F, s of K is perfect.
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Lemma 5.1. Let G be a Z,;-ADBT; over Ok with 3-Hodge height
wg. Let H be a finite flat closed cyclic Z,s-subgroup of G over Og. Put
vg = degy(G/H).
(1) If we have
Vg + PUs-10p < p for all B € By,
then wg = vg and G has a canonical subgroup, which is equal to
H.
(2) If we have
Vg + PUs-10g > p for all B € By,
then wg = p(1 —v,-105) and G has a canonical subgroup, which
1s not equal to H. We refer to any H satisfying this inequality

as an anti-canonical subgroup of G.
(3) If both of the inequalities in (1) and (2) are not satisfied, then

Wg + pwy-108 > p for some 3 € By.
Proof. Let P and Q be the Breuil-Kisin modules corresponding to G /H
and H, respectively. We have an exact sequence of G;-modules

0 PBs My Qs 0

for any 5 € B;. Note that G;-modules Bg and Qg are free of rank
one. Let {fs, f5} be a basis of the free &;-module 95 such that fj is

a basis of P and the image of fj is a basis of Q5. We can write as
/ _ / ap bﬁ
gpﬁ(fU’lolg?fa—loﬁ)_(fBMfB) <0 Cﬁ)
with some ag, bg, cs € &1 such that vg(ag) = vg and vgr(cs) = degz(H) =
1 — vg. Thus we obtain
Fillm@l = (aﬁfﬁ, bgfg + Cﬁfé).
Since it is a direct summand of Mz ; of rank one over Ok 1, we have

vr(ag) =0 (vg=0),
"UR(b/j) =0 (0 <vg < 1),
vr(cs) =0 (vs=1)

1 . <f5> (UB =0
Fil Mg = { (bofs+csfy) (vs>0

and

)

~— —

Moreover, in 9M,.51 we have

90005(-’%) - aUOﬂfUOﬁv
(5:1) b 1) = (Ptigos + b Beos!
Poos(bpfs + csfs) = (bgaoop + Cgboos) foop T CaCaop frop-
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Now let us consider the assertion (1). The assumption implies vyo5 <
1 for any 8 € B;. Hence w,op is equal to the truncated valuation of the
coefficient of f,.5 of the right-hand side of the equality (5.1) in both
cases.
o If vg =0, then wyop = Vr(Aros) = Vsos-
o If 0 < vz < 1, then vg(bg) = 0 and

wa’oﬁ = min{'UR(bZacro,B + C§b005)7 1}

The assumption also yields vy05 < p(1 — vg) and thus we have
Woop = VUgof-
Thus G satisfies the assumption of Theorem 4.1 and has the canonical
subgroup C. Since degz(H) = 1 — vg, the uniqueness of the theorem
implies H = C.
Next we treat the assertion (2). The assumption implies v,05 > 0
for any 8 € By.

o If 0 < vyop < 1, then vg(byop) = 0 and
Woop = MIn{vR(V5ag0s + Goos), 1}-

By assumption we have v,o5 > p(1 — vg) and thus we obtain
Woop = P(1 — vg).

o Ifv,.5 = 1, then vg(cy05) = 0. This implies that w,.ps is equal to
the truncated valuation of the coefficient of f; 5 of the equality
(5.1), namely

Woop = Inin{vR<CgcaoB)7 ]-} = p(l - Uﬂ).

From this we see that G has the canonical subgroup C. If C = H, then
we have

vg = degg(G/M) = wg = p(l — vo-10p)
for any 8 € By, which contradicts the assumption.

The assertion (3) can be shown as in [GK, Corollary 5.3.7]: Take
B" € By such that v + pv,-105 < p. Let ¢ > 1 be the minimal integer
satisfying vyiop +puyi-105 > p. The minimality shows that § = 0" 1o’
satisfies
(5.2) Vg + PUs-108 <P, Vsop + PU3 > P.

We claim that

wg > vg, Weop > p(l —vg).
Indeed, if vz = 0 then the first inequality is trivial. If 0 < vg < 1, then
(5.1) implies

_ [ vnlag) (V=108 = 0),
w =
A min{ve(bl 1 za5 + ) 1 5b5), 1} (Vg-105 > 0).



ON CANONICAL SUBGROUPS OF HBAV’S 23

From this and (5.2), we obtain wg > vg. If vg = 1, then (5.1) gives
o 1 (Ua—loﬁ == O),
we = min{vr(c, 1 4c5), 1} = min{p(l — v5-105), 1}  (vo-105 > 0)

and the inequality wz > vg follows from (5.2).
Let us consider the second inequality. If v,0,5 = 0, then (
vg = 1 and the inequality is trivial. If 0 < v,.3 < 1, then

(
w _ UR(aooﬁ) ('UB = 0),
oof min{vr (030005 + chboop), 1} (v5 > 0)

.2) implies
1) implies

and from (5.2) we obtain w,.s > p(1 — vg) for both cases. If v,o5 = 1,
then we have vg > (p—1)/p > 0 and

wo-oﬁ = Hlin{l”%(cgco.oﬁ)? ]_} — p(l — vﬂ)
This concludes the proof of the claim. Now we have

Woos + pws = p(1 — vg) + pus = p
and the assertion (3) follows. O

Lemma 5.2. Let n be a positive integer, L/K any extension of com-
plete discrete valuation fields and L an algebraic closure of L. Let G be
a Zys-ADBT,, 1 over Op, with Z,s-alternating isomorphism i : G ~ Ggv.
Let H be a finite flat closed cyclic Z,s-subgroup of G[p] over Op. Then
p "H/H is a Z,-ADBT,, over Or, with its Z,s-alternating isomor-
phism of self-duality induced by i.

Proof. Note that p~"H /H is a truncated Barsotti-Tate group of level
n over Op. Indeed, by taking a base change we may assume that the
residue field of L is perfect, and in this case it follows from the fact
that G is the p"™!-torsion part of a p-divisible group [Ill, Théoréme 4.4
(e)]. Put H' = (G[p]/H)". Since H(Oy) is isotropic, the map i induces
an isomorphism H ~ H’. On the other hand, Cartier duality gives a
natural isomorphism j : p™"H'/H' ~ (p~"H/H)" satistying

<i‘7](g)>p’"7-[/7{ = <Il§', y>g
for any x € p™"H(Ojf) and y € p~"H'(Of), which can be shown as
in [Hat2, §4, Proof of Theorem 1.1(b)]. Thus these maps induce a
Z,s-alternating isomorphism
pH/H S p T H & (p M H)Y.
It remains to prove that the Op, ® Z,r-module wy,-ny /3 is free of
rank one. Consider the decomposition

wpfnq.[/% = @ wpan/Hﬁ.
ﬁer
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Since we know that the left-hand side is free of rank f as an Op,-
module, each w,-ny /3y is a free O ,-module of rank fz with some
non-negative integer fg. For n = 1, we have exact sequences

Xp
0 W8 Wp-13,3 —> wWgpp],p —> 0,

0 —— wp-19/1,8 — Wp-19,8 W, B 0

and thus 1gy, (wWy-19/2,8) = 180, (Wg[p,8)- Since the Of, 1-module wgjy) s
is free of rank one, we obtain fz = 1 and the lemma follows. O

Corollary 5.3. Let G be a Z,r-ADBTy over Ok with 3-Hodge height
wg. Suppose that the inequality

Wg + PWe-1,8 < P

holds for all B € By. Theorem 4.1 ensures that the canonical subgroup

C of Glp] exists.
(1) For any finite flat closed cyclic Z,s-subgroup H # C of G[p| over
Ok, we have

Hdgs(p'"H/M) = p~ 'woos for any B € By.
Moreover, p~'H /H has the canonical subgroup G[p]/H.
(2) Suppose that the inequality
Wg + PWs-108 < 1

holds for all § € By. Consider the Z,;-ADBTy p~'C/C over
Ogk. Then we have

Hdgs(p~'C/C) = pwy—105 for any B € By.
Moreover, G[p]/C is an anti-canonical subgroup 0fp‘1C/C,

Proof. For the assertion (1), Lemma 5.1 (3) implies that H is an anti-
canonical subgroup and

degs(G[pl/H) + pdeg,-1,5(G[pl/H) > p,
Hdgs(G[pl) = p(1 — deg,-1,5(G[p]/H)) = pdeg,-1,5(H).
Hence we have
degg((p™"H/H)/(Glpl/H)) + pdeg,-1o5((p" H/H)/(GIp]/H)) < 1.

Lemma 5.1 (1) shows that p~!'H /H has the canonical subgroup G[p]/H
and

Hdgs(p™ H/H) = degy(H) = p~'Hdg,ep(G).
Let us consider the assertion (2). Since degg(G[p]/C) = wg, we have

degs((p~'C/C)/(GIp]/C)) = degs(C) = 1 — ws.



ON CANONICAL SUBGROUPS OF HBAV’S 25

The assumption implies

degs((p™'C/C)/(Glp]/C)) + pdeg,1,5((p™'C/C)/(GIP)/C)) > p
and Lemma 5.1 (2) yields the assertion. O

6. THE CASE OF Hdgy(G) = p/(p+1)

In this subsection, we investigate the behavior of the U,-correspondence
at the locus where all the 5-Hodge heights are p/(p + 1), under the
assumption of f < 2. The results of this section is one of the key in-
gredients of [Hat4], while it will not be used in the sequel. Let K be
as in §1 and we assume £ D F ;.

Proposition 6.1. Suppose f < 2. Let G be a Z,-ADBTy over Ok
with Hdgs(G) = ws. Suppose wg = p/(p+1) for all B € By. Then, for
any finite flat closed cyclic Z,s-subgroup H of G[p] over Ok, we have

1
Hd HIH) = ——
gﬂ(p / ) P+l

deg,(Glpl/H) = .

and p~'*H/H has the canonical subgroup G[p|/H.

Proof. By a base change argument as before, we may assume that the
residue field & is perfect. Put 9t = 9*(G[p]) and P = M*(G[p]/H).
We take a basis {eg, €3} of the &;-module My as in §4 and consider the
equation (4.1). Take x4,y € &; such that the element fs = zges+ygse]
is a basis of the free &;-module PBs of rank one. Then there exists an
f-tuple (Ag)ger, in &, satisfying

xP_
(61) (oo Y (5 ) = ()
u aﬂz?’ u a574 y0'7105 yB

for all 8 € By. Note that vg(ag:) = p/(p+ 1). Since the matrix

ag1 Qg2
ags Qg4

is an element of GLy(S;), we have vg(ag2) = vr(ags) = 0.

We claim that the inequalities 0 < wg < 1 for all 8 € By imply
VR(Ys-105) > 0. Indeed, if vg(y,-105) = 0, then vr(Ag) = vg(xg) = 0
and vg(yg) > 1. This is a contradiction if f = 1. Using (6.1) for
oo [ yields vr(Asop) < Weop and thus vr(Yses) > 1 — weop. This is a
contradiction if f = 2 and the claim follows.

Since zges+ypel generates the direct summand P of the &y-module

Mg, the claim implies vr(xg) = 0. Replacing fz by xglfg, we may
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assume xg = 1 for all 8 € B;. Then (ys)scs, satisfies the equation

CLB?l —l_ aﬁ72y§7105 = AB’
(62) e p =\
u(ags + agayy-1,5) = AsYs-
Next we claim that every solution (yg)ses, of this equation satisfies
vr(Ag) = p/(p+ 1) for any § € B;. For f = 1, we see that y = yz
satisfies the equation

YU = utag pa.4y” + ag 5051 — uSag 5085 = 0.

An inspection of its Newton polygon shows vg(y) = 1/(p + 1). Then
the second equation of (6.2) implies vg(Ag) = p/(p + 1).
Let us consider the case f = 2. Take any 8 € B;. Put

A B — ao‘oﬂ,l ao‘oﬁ,Z a’fil ag’g
C D Udpop3 Ulgopa) \UPCah s uPal, )

Note that

vr(A) >p, wr(B)=—— wvg(C)=1+ vr(D) = 1.

p+1

A B 1 ) ( 1 )
2 :/\Uo /\p
(0 D) (yi’log P78\ Yo108

and thus y = y,-1,4 satisfies the equation

We have

gt — B'Dy?’ + B~ Ay — B~'C =0,

where the coefficients are all integral. An inspection of its Newton
polygon shows vg(y,-105) = 1/(p + 1). Then the second equation of
(6.2) yields vg(A;-105) = p/(p+1). Since 5 € By is arbitrary, we obtain

1 p
UR(Z//B) = ma UR()‘ﬂ) = m

for any 8 € By.
Now the claim shows

degy((p™"H/H)/(Glp]/H)) = degg(H) =1 —vr(Xg) = 1/(p + 1),
degy(Glp]/H) = degs(p™"H/H) = 1/(p+1) =p/(p+1)
for any € By. Then Lemma 5.1 (1) implies that
Hdgs(p™ ' H/H) = 1/(p+1)
and that G[p]/H is the canonical subgroup of p~*H /H. O
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Remark 6.2. A naive generalization of Proposition 6.1 has a coun-
terexample for f = 3, if p # 2. Suppose k = k and p+ 1 | e. Re-
placing the uniformizer 7 by a scalar multiple, we may assume that
co = p LE(0) satisfies ¢o = 1 mod p. Let r be a positive integer. Fix
[' € B3 and consider the following elements of Ms(S).

Ao — uptt 1 A _ ut -1
TONGEW @' Ew) T\ ) 6 E(u)
. sy 1
Agrog = [ 4"
7 TN\ G E(u) optuE(w)
We define the Z,s-Breuil-Kisin module m=ap BeEs 95?5 by
My = &g ® 68, Pp(Et0p: 6y105) = (65, €5) Ap.
Take s € &~ for each 8 € B3 satistying
©(Gy-105) = coE(u) " det(Ag)ag for all B € B,
Then the map

A RV R 0 1
(€5, €3) — (eg, (elﬂ)v)aﬂ (_1 O>

gives a skew-symmetric isomorphism M — MY, Since M corresponds
to a Barsotti-Tate group I' over Ok, we see that 951/ p293l corresponds
to a Z,s-ADBT, G = I'[p?] over Ok. Let H be any cyclic Z,s-subgroup
of G[p] over Og. We write the images of é3, €5 in 95?/1995?5 as eg, € and
a basis of MM*(G/H)s as vges + yses.

Suppose vg(yg) > 0 for all § € B;. Then we may assume x5 = 1,
and we see that y = y,2,5 is a root of the equation

gt — B'Dy?’ + B Ay — B~'C =0,
where we put

e(p3+p%+p) 2 e(p>+p%+p) 2
A=u »tt + ue(P +p)’ B = 2u% — 4~ »tI + u@(p +p)’

e(3+p2+2p+1) 2
A VE e A e(p“+p+1)+r
C=u 1 +u ( ) ,
e(p? 1
D = o et 4+ D+ g e +p L)+

An inspection of its Newton polygon and derivation shows that this
equation has exactly p? roots satisfying vg(y) = 1/(p+1) and one root
satisfying vg(y) = 1 + e 'r.

The latter case does not occur, since it contradicts the second equa-
tion of (6.2). In the former case, put y = u¥®*Vy. Then 5 satis-
fies a monic polynomial of degree p® + 1 whose reduction modulo u is
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X (X7 —271xP*~1 4 971), Hensel’s lemma and the assumption on k
imply y € &;. Thus G[p| has exactly p* cyclic Z,s-subgroups over O
such that, for any 5 € B3, we have vg(ys) > 0.

By the assumption k = k, there exist exactly p® —1 characters Gx —
IF;3. Hence, among these p? cyclic Z,s-subgroups, two define the same
character on the generic fiber. This means that G acts on G[p|(Ox)
via this character. In particular, any IFs-subspace of G[p|(Of) is Gk-
stable. Taking the scheme-theoretic closure, we see that G[p| has one
cyclic Z,s-subgroup H over Oy satisfying vr(y,-105,) = 0 for some
Bo € Bs.

For this #, the equation (6.1) gives vgr(Ag,) = vr(zs,) = 0 and
vr(yg,) > 1. This in turn gives vg(Ayo8,) < p/(p+ 1) and vg(Yoos,) >
1/(p+1). Since Zyop,€008, + YoosyCoop, SeNerates a direct summand,
we have vg(Zy08,) = 0 and this implies vg(Ayog,) = p/(p+1). Thus we

Ol)taill
aofo Bo p 1

and G[p]/H is not the canonical subgroup of p~'H /H.

7. CANONICAL SUBGROUPS OF HIGHER LEVELS

Let K be as in §1, with residue field £ 2 F,; which may be im-
perfect. In this section, we derive from Theorem 4.1 the existence of
the canonical subgroup of level n for a Z,;-ADBT),, by following an
argument of Fargues-Tian [Far, §7] as in [Hat2, §4]. A similar result
was also obtained by Goren-Kassaei [GK, Proposition 5.4.5] except the
compatibility with Hodge-Tate maps and lower ramification subgroups.
This compatibility shown here will be used in [Hat4] to enlarge the lo-
cus where the sheaf of overconvergent Hilbert modular forms is defined
from that of [AIP2].

Theorem 7.1. Let G be a Z,;-ADBT,, over Ok with 3-Hodge height
wg. Put w=max{ws | B € By}. Suppose that we have
Ws + PWo-10g < P° "

for all p € By.
If k 1s perfect, then there exists a finite flat closed Z,s-subgroup C,
of G of rank p™' over Ok satisfying

n—1
degﬁ(g/c’n) = Zplwa—loﬁ-
=0

We refer to C,, as the canonical subgroup of level n of G. It has the
following properties:
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(1) Let G' be a Z,r-ADBT,, over Ok satisfying the same condition
on the 5-Hodge heights as above and C;, the canonical subgroup
of leveln of G'. Then any isomorphism of Z,s-groups j : G — G’
over Ok induces an isomorphism C,, ~ C, .

(2) C, is compatible with finite base extension of complete discrete
valuation rings.

(3) C, is compatible with Cartier duality. Namely, (G/C,)" is the
canonical subgroup of level n of GV.

(4) The kernel of the n-th iterated Frobenius map of G X #1_pn-1,,
coincides with Cp, X S _pn—1y.

(5) The Zys [p" Ly -module Co(Of) is free of rank one.

(6) The scheme-theoretic closure of C,(Og)[p'] in C, is the canon-
ical subgroup C; of level i of G[p®] for any 0 <i<n —1.

(7) If w < (p —1)/p", then C,,(Og) coincides with Ker(HTg;) for
any rational number i satisfying

m—1
no1t Y i< L)
p—1 p—1

(8) If w < (p—1)/p™, then C, = G; for any rational number i
satisfying

S P ! =
"opp—1) - " prlp—-1) p-1

Moreover, for the case where k is imperfect, the same statements hold
ifw<(p—1)/p"

Proof. The last assertion on the case where k is imperfect follows from
the assertion (8) in the case of a perfect residue field and a similar base
change argument as in the proof of Corollary 4.6. Thus we may assume
that k is perfect.

We proceed by induction on n. The case n = 1 is Theorem 4.1.
Suppose that n > 2 and the assertions hold for n — 1. Let G be
a Zyr-ADBT,, satisfying the assumption. Then we have the canoni-
cal subgroup C; of the Z,;-ADBT; G[p] and Lemma 5.2 implies that
p'~"Cy1/Cy is also a Z,-ADBT,,_;. By Corollary 5.3 (2), we have

Hdgﬁ (plfncl/cl) = PWs-108

and by the induction hypothesis, p!"C; /C; has the canonical subgroup
of level n — 1, which we write as C,/C, with some Z,s-subgroup C,, of
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G. Then we have
degs(G/Cp) = degy(G/p'™"Ch) + degg((p'™"C1/C1)/(Ca/Ch))

n—2 n—1
= degg(G[p/C1) + D P (pwo-1-105) = > p'wy-iop.

1=0 1=0
The assertions (1) and (2) follow from the construction and the induc-
tion hypothesis. The assertions (3) and (4) can be shown exactly in
the same way as [Hat2, Theorem 1.1 (b) and (1)], using the assertion
(1).

Let us show the assertion (5). By an induction, we can show C,,_; C
C,. By the induction hypothesis, it suffices to show C,,(Oz)NG[p](Ox) =
C1(Ok) for any n > 2. From the assertion (6) for p'="C,/C;, we see
that (C,/C1)(Og)[p| is the generic fiber of the canonical subgroup of
p~1C1/C;. On the other hand, Corollary 5.3 (2) implies that G[p]/C; is
not the canonical subgroup of p~'C; /C;. Then we have (C,/C1)(Og) N
(G[p]/C1)(Og) = 0 and thus C,(Og)NG[p](Og) C Ci1(Of), from which
the assertion (5) follows. The assertion (6) follows from C,,—; C C,, and
the assertion (5).

Next we show the assertion (7). Let ¢ be as in the assertion. Put
€ = n — 1. Since we have

w/(p—1)<1l—e<1-—w,
by using Theorem 4.1 (6) we can show #Ker(HT;) < p™/ as in the proof
of [Far, Proposition 13]. On the other hand, since deg(Cy’) = wg, the
Ok-module wey ® Of is killed by m?". Take any element x € C,(Og)

and denote its image in (G/C;)(Og) by Z. By the induction hypothesis,
we have HT;(Z) = 0 for any j satisfying

n—2+pw/(p—1)<j<n—-1-wp"—p)/lp-1).
Thus we obtain

m " HT(Z) =0, m TYHT(x) = 0

and HTy_,4;(z) = 0, which yields C,(Og) C Ker(HT;). Then the
assertion (7) follows from #C,(Og) = p*/.

Finally, we show the assertion (8) following the proof of [Hat3, The-
orem 1.2]. Using Lemma 4.3 and Theorem 4.1 (4), the same argument
as in the proof of [Hat3, Lemma 5.4] shows G, C C,. For the reverse
inclusion, we need the following variant of [Hat3, Proposition 5.5].

Lemma 7.2. The image of the map G;, (Of) a Glp" Y, (Of) con-
tains G[p" i, ,(Og).
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Proof. Note that the map in the lemma is well-defined by [Hat3, Lemma
5.3]. Put M = 9" (G[p]). Consider the basis {dg, €j} of the &;-module
M as in the proof of Theorem 4.1. Write as

Ag
o es) = Onni) (5 10).
We have vg(Ag) = wg and vg(vg) = 1 —wg. Then, in the same way as
in the proof of [Hat3, Proposition 5.5], we reduce ourselves to showing

that for any &g, 5 € m?"’l, there exist (g, ws € m?" satisfying

Ag p
(€85 18) + (o108, Wo-105) = (G35 wp) (Oﬁ 1,5)
for all B € B;y. We can show by recursion that the equation on (s’s has
a solution satisfying vg((s) > pi, for all § € B;. Fixing such (3’s, we
obtain the system of equations on ws’s

nglog — vpwp — ppCps +np = 0.

Take any a € R satisfying vg(a) = i, and put wg = aag. Then (ap)sep,
is a solution of the system of equations

p Vﬁa——'uﬁcﬁ-l-n—ﬁ:(),

a _ j—
otef T o1 ap ap

where all the coefficients are contained in R. This system defines a
finite R-algebra which is free of rank p/. Since Frac(R) is algebraically
closed and R is normal, we can find a solution (as)ses, in R and the
lemma follows. O

By the induction hypothesis, we have G[p"~1]; |, = C,_1. By Lemma
4.3, we also have G[p|;, = C;. Then Lemma 7.2 implies £G; (Og) >
#Cn(Og). Now the assertion (8) follows from the inclusions G;, C Gy C

C,. This concludes the proof of Theorem 7.1. O

Corollary 7.3. Let n be a positive integer. Let G be a Z,r-ADBT,,
over Ok with $-Hodge height ws satisfying

Wa + PWy—10p < pg_”

for all B € By.

Suppose that the residue field k of K is perfect. Let C,_1 and Cy
be the canonical subgroups of level n — 1 and level one of G[p"~] and
Glp|, respectively. Let H # Cy be a finite flat closed cyclic Z,s-subgroup
of Glp] over Okg. Then the Z,-ADBT, p~"H/H has the canonical
subgroup p~'Cn_1/H. Moreover, the natural map C, — p~*Cp_1/H is
an isomorphism over K.
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For the case where k is imperfect, the same statements hold if

max{w; | B € By} < (p—1)/p".

Proof. By a base change, we may assume that k is perfect. By Corollary
5.3 (1), the Z,;-ADBT; p~"H /M has the canonical subgroup of level i
for any positive integer i < n, which we denote by C;. Moreover, we
have C; = G[p]/H. By the construction of the canonical subgroup in
Theorem 7.1, the quotient C, /C; is equal to the canonical subgroup of
level n — 1 of the Z,;-ADBT,,_; p~"C,/C;. We have the map

p'"C/Cy = PGP/ M)/ (Glpl /M) = (Gl H)/(Glpl/H) = Gl
where the last arrow is an isomorphism. By Theorem 7.1 (1), we ob-
tain C, = p~'C,_1/H. Moreover, Theorem 7.1 (6) implies C,(Og) N
H(Ok) = 0 and the map C, — p~*C,_1/H is an injection over K. Since
both sides have the same rank over O, the last assertion follows. [

Finally, we show the following generalization of [AIP, Proposition
3.2.1] to our setting.

Proposition 7.4. Let G be a Z,;-ADBT,, over O with 3-Hodge height
wg. Put w = max{ws | B € Bs}. Suppose w < (p —1)/p™. Let C,, be
the canonical subgroup of G of level n, which exists by Theorem 7.1.
(1) For any i € e 'Zsq satisfying i < n —w(p™ —1)/(p — 1), the
natural map

wg ®ox Ori — we, ®ox Ok

18 an isomorphism.
(2) The cokernel of the linearization of the Hodge-Tate map
HTey ® 1 CX(O[() ® O = we, o, O

is killed by m="/®~Y,

Proof. By a base change argument as before, we may assume that the
residue field & is perfect. Put b =n —w(p™ — 1)/(p — 1). For the first
assertion, consider the exact sequence

00— wWg /Cn Wg we 0

n

and the decompositions

wg/c, = @ wg/C,.py WG = @ wg,5-

,BE]Bf ,BEIBf
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Note that wg 3 ~ Ok . Theorem 7.1 implies

-1
degs(G/Cn) pr_zoﬁ< (;)_1 )<n—i.
Thus the image of the natural map wg/c, 3 — Wg,3 is contained in

m7wg s for any B € B; and the first assertion follows.
For the second assertion, consider the commutative diagram

v HTgv
G'(Ok) wg o, O wg o, Ok
- | |
HTgvy)
GV pl(Og) — wgp) @0y O == wgp) @0y Ok 1,

where the horizontal composites are the first Hodge-Tate maps and
the left vertical arrow is surjective. Since the right vertical arrow is
an isomorphism, the map HTgv; factors through GY[p|(Og) and we
obtain a natural isomorphism of Og-modules

Coker(HTgv; ® 1) ~ Coker(HTgvpy 1 ® 1).
By Lemma 4.4, they are killed by m>w/ ®=1 and thus

m " (wg ®o, O) € Im(HTgv @ 1) + plwg ®o, O).

Since w < 1, Lemma 4.5 implies that the Og-module Coker(HTgv ®1)
is killed by m>w/(p b,
On the other hand, we have a commutative diagram

HTgv
G'(Og) — wg ®o, Og — wg @0y O,

|y |

Ch(Og) —"we, @0, O — we, @0y Ok p,

where the left vertical arrow is surjective. By a base change argument
using Theorem 7.1 (2), the first assertion implies that the right vertical
arrow is an isomorphism. Thus we have a surjection of Og-modules

Coker(HTgv ® 1) = Coker(HTgv, ® 1) ~ Coker(HT¢y , ® 1)

and Coker(HT¢y, ® 1) is also killed by m>w/ ®=1 " This is equivalent
to the inclusion

m= "D (e, @0, Og) C Im(HTey © 1) + m 2 (we, ®o, O).

Since w < (p—1)/p™, we have b > w/(p—1) and the proposition follows
from Lemma 4.5. U
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8. CANONICAL SUBGROUPS FOR HILBERT-BLUMENTHAL ABELIAN
VARIETIES

Let p be a rational prime. Let F' be a totally real number field of
degree g which is unramified over p. We denote its ring of integers
by Of and its different by Dp. For any prime ideal p | p of Op, let
f» be the residue degree of p. Fix a complete discrete valuation field
K of mixed characteristic (0,p) with residue field k& such that F' @ K
splits completely. We denote by Br the set of embeddings FF — K
and by B, the subset consisting of embeddings which factor through
the completion F,. Then we can identify B, with By . The set Bp is

decomposed as
Br = [ [B,.

plp
Let N > 4 be an integer with p f N and ¢ a non-zero fractional
ideal of F. Let S be a scheme over Q. A Hilbert-Blumenthal abelian
variety over S, which we abbreviate as HBAV | is a quadruple (A4, ¢, A, 1)
such that

e A is an abelian scheme over S of relative dimension g.

e 1 : Op — Endg(A) is a ring homomorphism.

e ) is a c-polarization. Namely, A : A ®p, ¢ ~ A" is an iso-
morphism of abelian schemes to the dual abelian scheme AY
compatible with Op-action such that the map

Homo, (4, A”) ~ Homo, (4, A®o, ¢), [+ Ao f

induces an isomorphism of Op-modules with notion of posi-
tivity (Pa,PL) =~ (¢,c"). Here P4 denotes the Op-module of
symmetric Op-homomorphisms from A to AY, P} is the subset
of Op-linear polarizations, ¢t is the subset of totally positive el-
ements of ¢ and any element v € ¢ is identified with the element
(x =z ®7) of Homp, (A, A ®o, ¢).
e ¢ : D' @ uy — Ais an Op-linear closed immersion of group
schemes, which we call a I'go(N)-structure.
Note that for such data, the Og ® Op-module Lie(A) is locally free of
rank one [DP, Corollaire 2.9].
Let (A, ¢, A\, ¢) be a HBAV over S with c¢-polarization A and Igo(N)-
structure ©. Let a be an ideal of Op. The c¢-polarization A defines a
perfect pairing

(—,—) : Ala] x Ala] @0, ca = Gy,

satisfying (x,ax ® v) = 1 for any x € Ala](T") with any scheme T" over
S, a € Op and v € ca. Let H be a finite locally free closed subgroup



ON CANONICAL SUBGROUPS OF HBAV’S 35

scheme of A over S which is stable under the Og-action such that H
is isomorphic, etale locally on S, to the constant group scheme Op/a.
Then H is isotropic with respect to this pairing. Therefore, if we have
Im(¢) NH = 0 in addition, then we can define on A/H a natural
structure of a HBAV (A/H, 7, A, 1) with ca-polarization A [KL, §1.9].

Let L/K be an extension of complete valuation fields, L an algebraic
closure of L and (A, ¢, \,¢) a HBAV over Q. In this case, we say that
a finite flat closed Op-subgroup scheme H of A over Oy is a-cyclic if
the Op-module H(O;) is isomorphic to Op/a. Since the generic fiber
of H is isotropic and any finite flat closed subgroup scheme of A over
Oy, is uniquely determined by its generic fiber, we see that H is also
isotropic. Thus, if (a, N) = 1, then we can define a structure of a
HBAV on A/#H similarly.

For any HBAV (A, ¢, \, %) over S, the group scheme A[p"| is decom-

posed as
Alp"] = P Alp"), = P Alp"]

plp plp

according with the decomposition

Or®Z, =[] O,

plp

If S = Spec(Op,) with some extension L/K of complete valuation fields,
then each A[p"] is a truncated Barsotti-Tate group of level n, height 2,
and dimension f,. Moreover, for any prime ideal p | p, the Of,-module
¢ ®o, O, and the Op/p"Op-module ¢/p"c are free of rank one. This
implies that, for any element x of ¢ which generates the Op-module
¢/p"c, the element p"x and the above pairing define isomorphisms

in AlP"] = AP")Y, ngp  Alp"] — APV

such that i, is Op,-alternating. Hence each A[p"] is an Op,-ADBT,
over Op. Moreover, i, is Op-alternating, namely (z,i,(azx))apn = 1
for any x € A[p"](Of) and a € O. For any § € B,, we put

Hdg,(A) = Hdgg(Alp]).

On the other hand, for any finite flat group scheme H over O, with
an Op-action, we have the decompositions

H:@Hp, Wy = @W’H,B
plp BEBR

as above such that H, is a finite flat closed subgroup scheme of H over
Op and wy g = wy, g for any B € B,. Since the i-th Hodge-Tate map
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HT; : H(Op) — wyv ®o, Of; is Op-linear, it is also decomposed as
the direct sum of the maps

HT, = @ HTy, s, HTw,;: Hy(O1) = wiy @0, O
plp

Now we can show the main theorem of this paper.

Theorem 8.1. Let L/K be a finite extension in K. Let ¢ be a non-zero
fractional ideal of F'. Let A be a HBAV over Or with c-polarization.
Put wg = Hdgg(A) and w = max{wg | B € Br}. Suppose that

Wg + PWe-108 < pg_”

holds for all 5 € Bp.

Suppose that k is perfect. For any prime ideal p | p, let C,, be the
canonical subgroup of the Op,-ADBT,, Alp™] of level n, which exists by
Theorem 7.1. The finite flat closed subgroup scheme

Cu(4) = P Cu

plp
of Alp"] over Oy is stable under the Op-action. We call C,(A) the

canonical subgroup of A of level n. It satisfies

degy(A")/Cu(A)) = 3 P10

for any B € Br and the O /p"Op-module C,(A)(Og) is free of rank
one. The canonical subgroup C, = C,(A) also satisfies the following.

(1) Let A’ be a HBAV over Oy, satisfying the same condition on the
B-Hodge heights as above. Then any isomorphism of HBAV’s
j:A— A over Op induces an isomorphism Cp(A) ~ C,(A").

(2) C,, is compatible with finite base extension of complete discrete
valuation rings.

(3) C,, is isotropic with respect to the Op-alternating isomorphism
in @ Alp"] ~ A[p™]Y defined by the c-polarization of A and any
element x € ¢ generating the Op-module ¢/p"c.

(4) The kernel of the n-th iterated Frobenius map of A[p"]X.SL 1—pn—1y
coincides with Cy, X S, 1_pn—14.

(5) The scheme-theoretic closure of C,,(Og)[p'] in C, is the canon-
ical subgroup C; of level i of Alp®] for any 1 <i <n — 1.

Putb=n—wp"—1)/(p—1). Ifw < (p—1)/p", then C, = C,(A)

also has the following properties:
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(6) Co(Og) coincides with Ker(HT apmy;) for any rational number i

satisfying
w .
n—14+——<i<b.
p—1
(7) C,, = A[p™]; for any rational number i satisfying
1 << 1 w
—— <i< - :
p(p—1) prip—=1) p-1

(8) For any i € v,(OL) satisfying i < b, the natural map
wa ®o, Or; = we, ®o,, O,

18 an isomorphism.
(9) The cokernel of the map

HTey ® 1:C)(Ok) ® O — we, ®o, Ok

is killed by m>"/ V.

(10) For any prime ideal p | p and any finite flat closed p-cyclic Op-
subgroup scheme H # Cy,, of Alp| over Or, the HBAV A/H has
the canonical subgroup C,(A/H) of level n, which is equal to

(€D Coa) ® (7' Corp/H).

qlp,a7p

Moreover, the natural map A — A/H induces a map C,(A) —
Cn(A/H) which is an isomorphism over L.

For the case where k is imperfect, the same statements hold if w <
(p—1)/p"

Proof. The assertion on degg follows from that of Theorem 7.1, since
we have

degB(A[p”]/Cn(A)) = degﬂ(A[p”]p/Cw)
for p | p satisfying 5 € B,. The assertion on the freeness follows
from Theorem 7.1 (5). The assertions (1), (2) and (5) also follow from
Theorem 7.1.

Let us show the assertion (3). Theorem 7.1 (3) implies that (A[p"]/C,)"
can be identified with the canonical subgroup of A[p"]¥. By Theorem
7.1 (1), the isomorphism 4,, induces an isomorphism C,, ~ (A[p"]/C,)".
This shows the assertion (3). Put

w, = max{wg | f € By}

Since we have 1 — p"'w < 1 — p" lw,, the assertion (4) follows from
Theorem 7.1 (4).
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Suppose w < (p — 1)/p". Then we have

_ Lo =) w =)
p—1 p—1 p—1 p—1
for any p | p. Since the map HT gppn)p is the direct sum of the maps

Wy

n—1+

HT apnyp : A" (Og) = wapmv ®o, Og b,

Theorem 7.1 (7) implies the assertion (6). Since the formation of lower
ramification subgroups commutes with product, the assertion (7) fol-
lows from Theorem 7.1 (8). Similarly, the assertions (8) and (9) follow
from Proposition 7.4. Since we have the decomposition

(AR = (P Ala) @ H/H,

q|p,a#p

Corollary 7.3 shows the assertion (10). The last assertion on the case
where £ is imperfect follows from Theorem 7.1 and Proposition 7.4.
This concludes the proof. O
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