
CANONICAL SUBGROUPS VIA BREUIL-KISIN MODULES

FOR p = 2

SHIN HATTORI

Abstract. Let p be a rational prime and K/Qp be an extension of
complete discrete valuation fields. Let G be a truncated Barsotti-Tate
group of level n, height h and dimension d over OK with 0 < d < h.
In this paper, we prove the existence of higher canonical subgroups
for G with standard properties if the Hodge height of G is less than
1/(pn−2(p+ 1)), including the case of p = 2.

1. Introduction

Let p be a rational prime and K/Qp be an extension of complete discrete
valuation fields. Let k be its residue field, π be its uniformizer, e be its
absolute ramification index, K̄ be its algebraic closure and vp be its valuation
extended to K̄ and normalized as vp(p) = 1. We let C denote the completion
of K̄. For any valuation field F (of height one) with valuation vF and

valuation ring OF , put m
⩾i
F = {x ∈ F | vF (x) ≥ i} and OF,i = OF /m

⩾i
F

for any positive real number i. We also put ÕK = OK,1, ÕK̄ = OK̄,1 and
Si = Spec(OK,i).

One of the key ingredients of the theory of p-adic Siegel modular forms is
the existence theorem of canonical subgroups. Let X be the formal comple-
tion of the Siegel modular variety of genus g and level prime to p over the
Witt ringW (k) along the special fiber, X be its Raynaud generic fiber, Xord

be its ordinary locus considered as an admissible open subset of X and A be
the universal abelian scheme over X. Consider the unit component A[pn]0 of
the pn-torsion of A and its Raynaud generic fiber (A[pn]0)rig. The restriction
(A[pn]0)rig|Xord is etale locally isomorphic to the constant group (Z/pnZ)g
and it is a lift of the kernel of the n-th iterated Frobenius of the special
fiber of A. Then the theorem asserts that this subgroup can be extended
to a subgroup Cn with the same properties over a larger admissible open
subset of X containing Xord. In [9], the author proved the existence of such
a subgroup over the locus of the Hodge height less than p/(p + 1) if n = 1
and 1/(2pn−1) if n ≥ 2, for p ≥ 3. The aim of this paper is to generalize the
result to the case of p = 2.

To state the main theorem, we introduce some notation. For any finite flat
(commutative) group scheme G (resp. Barsotti-Tate group Γ) over OK , we

Date: November 5, 2013.
Supported by Grant-in-Aid for Young Scientists B-23740025.

1



2 SHIN HATTORI

let ωG (resp. ωΓ) denote its module of invariant differentials. Put deg(G) =∑
i vp(ai) by writing ωG ≃ ⊕iOK/(ai). For any positive rational number i,

the Hodge-Tate map for a finite flat group scheme G over OK killed by pn

is defined to be the natural homomorphism

HTi : G(OK̄) ≃ Hom(G∨ × Spec(OK̄), µpn × Spec(OK̄))→ ωG∨ ⊗OK̄,i

defined by g 7→ g∗(dT/T ), where ∨ means the Cartier dual and µpn =
Spec(OK [T ]/(T pn − 1)) is the group scheme of pn-th roots of unity. We
normalize the upper and the lower ramification subgroups of G to be adapted
to the valuation vp. Namely, writing the affine algebra of G as

OK [T1, . . . , Tr]/(f1, . . . , fs)

and an r-tuple (x1, . . . , xr) ∈ Or
K̄

as x, we put

Gj(OK̄) = G(OK̄) ∩ {x ∈ Or
K̄ | vp(fl(x)) ≥ j for any l}0,

Gi(OK̄) = Ker(G(OK̄)→ G(OK̄,i)),

where (−)0 in the first equality means the geometric connected component
as an affinoid variety over K containing the zero section (see [1, Section

2]). We also put Gj+(OK̄) = ∪j′>jGj
′
(OK̄) for any non-negative rational

number j. The scheme-theoretic closure of Gj(OK̄) in G is denoted by Gj
and define Gj+ and Gi similarly. Finally, for any truncated Barsotti-Tate
group G ([11]) of level n, height h and dimension d over OK with d < h, we
define the Hodge height Hdg(G) to be the truncated valuation vp(det(V )) ∈
[0, 1] of the determinant of the natural action of the Verschiebung V of

the group scheme G[p]∨ × Spec(ÕK) on the free ÕK-module of finite rank

Lie(G[p]∨ × Spec(ÕK)). Then our main theorem is the following, which is
proved in [9] except the case of p = 2 (note that for p ≥ 3, it is also proved
by Fargues ([5]) under a slightly stronger assumption on w).

Theorem 1.1. Let p be a rational prime and K/Qp be an extension of
complete discrete valuation fields. Let G be a truncated Barsotti-Tate group
of level n, height h and dimension d over OK with 0 < d < h and Hodge
height w = Hdg(G).

(1) If w < 1/(pn−2(p+1)), then there exists a finite flat closed subgroup
scheme Cn of G of order pnd over OK , which we call the level n canon-
ical subgroup of G, such that Cn×S1−pn−1w coincides with the kernel
of the n-th iterated Frobenius homomorphism Fn of G ×S1−pn−1w.
Moreover, the group scheme Cn has the following properties:
(a) deg(G/Cn) = w(pn − 1)/(p− 1).
(b) Put C′n to be the level n canonical subgroup of G∨. Then we have

the equality of subgroup schemes C′n = (G/Cn)∨, or equivalently
Cn(OK̄) = C′n(OK̄)⊥, where ⊥ means the orthogonal subgroup
with respect to the Cartier pairing.

(c) If n = 1, then C1 = G(1−w)/(p−1) = Gpw/(p−1)+.
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(2) If w < (p − 1)/(pn − 1), then the subgroup scheme Cn also satisfies
the following:
(d) the group Cn(OK̄) is isomorphic to (Z/pnZ)d.
(e) The scheme-theoretic closure of Cn(OK̄)[pi] in Cn coincides with

the subgroup scheme Ci of G[pi] for 1 ≤ i ≤ n− 1.
(3) If w < (p − 1)/pn, then the subgroup Cn(OK̄) coincides with the

kernel of the Hodge-Tate map HTn−w(pn−1)/(p−1).

(4) If w < 1/(2pn−1), then the subgroup scheme Cn coincides with the
upper ramification subgroup scheme Gj+ for any j satisfying

pw(pn − 1)/(p− 1)2 ≤ j < p(1− w)/(p− 1).

We also show the uniqueness of the canonical subgroup Cn for w <
p(p − 1)/(pn+1 − 1) (Proposition 3.8). From Theorem 1.1, we can show
the following corollary just as in the proof of [9, Corollary 1.2].

Corollary 1.2. Let K/Qp be an extension of complete discrete valuation
fields. Let X be an admissible formal scheme over Spf(OK) which is quasi-
compact and G be a truncated Barsotti-Tate group of level n over X of con-
stant height h and dimension d with 0 < d < h. We let X and G denote the
Raynaud generic fibers of the formal schemes X and G, respectively. For a
finite extension L/K and x ∈ X(L), we put Gx = G ×X,x Spf(OL), where
we let x also denote the map Spf(OL) → X obtained from x by taking the
scheme-theoretic closure and the normalization. For a non-negative rational
number r, let X(r) be the admissible open subset of X defined by

X(r)(K̄) = {x ∈ X(K̄) | Hdg(Gx) < r}.

Put r1 = p/(p+ 1) and rn = 1/(2pn−1) for n ≥ 2.
Then there exists an admissible open subgroup Cn of G|X(rn) such that,

etale locally on X(rn), the rigid-analytic group Cn is isomorphic to the con-
stant group (Z/pnZ)d and, for any finite extension L/K and x ∈ X(L), the
fiber (Cn)x coincides with the generic fiber of the level n canonical subgroup
of Gx.

The basic strategy of the proof of the main theorem is the same as in [9]:
we construct the level one canonical subgroup by lifting the conjugate Hodge
filtration of a reduction of G to the subobject of the associated Breuil-Kisin
module of G. Since the canonical subgroup is required to be a lift of the
Frobenius kernel of a reduction of G, it should be connected. Thus we may
use a classification of connected finite flat group schemes allowing the case
of p = 2 which is due to Kisin ([15]), though all the arguments are valid
without the connectedness assumption if we use the theorem of Kim ([12])
instead.

The main obstacle to generalize the results of [9] to the case of p = 2
is the use in [9] of the following two results, which are proved only for
p ≥ 3 in [8]: One is the ramification correspondence theorem ([8, Theorem
1.1]), which was used to show that the canonical subgroup coincides with
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ramification subgroups and that its construction can be reduced to the case
of perfect residue field. The other is a congruence of the defining equations
of finite flat group schemes of equal and mixed characteristics associated to
the same Kisin module ([8, Corollary 4.6]), which was used to show that the
canonical subgroup coincides with a lift of a Frobenius kernel and that it
has uniqueness properties. While the author recently proved the ramification
correspondence theorem also for p = 2 ([10]), the latter is still available only
for p ≥ 3 and we need to bypass this.

The idea we adopt here for this purpose is to begin the construction of
the canonical subgroup of a truncated Barsotti-Tate group G of level one
lifting the conjugate Hodge filtration, with a dual situation. The resulting
subgroup is called the conjugate Hodge subgroup, and we define the canoni-
cal subgroup of G as the orthogonal subgroup with respect to Cartier duality
of the conjugate Hodge subgroup of the Cartier dual (G0)∨ of the unit com-
ponent G0. By this passage to the dual, we can show the coincidence with
a lift of a Frobenius kernel and the uniqueness of the canonical subgroup
using [5, Proposition 1] which is valid for any p. By this uniqueness, we can
show the compatibility of the canonical subgroup with any finite base ex-
tension, which in turn enables us to show the coincidence with ramification
subgroups easily, without any use of ramification correspondence theorems.

2. Classification of unipotent finite flat group schemes

In this section, we assume that the residue field k of K is perfect. For p ≥
3, we have a classification theory of Barsotti-Tate groups and finite flat group
schemes over OK due to Breuil ([3], [4]) and Kisin ([13], [14]) in terms of so-
called Breuil-Kisin modules. Kisin ([15]) also extended this classification to
the case of p = 2 and where groups are connected, using Zink’s classification
of formal Barsotti-Tate groups ([21], [22]). In this section, we briefly recall
this result of Kisin. Since we adopt a contravariant notation contrary to his,
what we describe here is a classification of unipotent Barsotti-Tate groups
and unipotent finite flat group schemes.

Let W = W (k) be the Witt ring of k and φ be its natural Frobenius
endomorphism which lifts the p-th power map of k. Natural φ-semilinear
Frobenius endomorphisms of various W -algebras are denoted also by φ. Let
E(u) ∈ W [u] be the Eisenstein polynomial of π over W . Let us fix once
and for all a system {πn}n≥0 of p-power roots of π in K̄ with π0 = π
and πpn+1 = πn. Put K∞ = ∪n≥0K(πn), S = W [[u]] and S1 = k[[u]].
We write the φ-semilinear continuous ring endomorphisms of the latter two
rings defined by u 7→ up also as φ. Then a Kisin module is an S-module
M endowed with a φ-semilinear map φM : M → M. We write φM also as
φ if no confusion may occur. We follow the notation of [8, Subsection 2.1]

and [9, Subsection 2.1]. In particular, we have categories Mod1,φ/S , Mod1,φ/S1
,

Mod1,φ/S∞
of Kisin modules of E-height ≤ 1 and a category Mod1,φ/B for any

k[[u]]-algebra B.
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Let M be an object of the category Mod1,φ/S∞
and put φ∗M = S⊗φ,S M.

Then the map 1 ⊗ φ : φ∗M → M is injective and we have a unique map
ψM : M → φ∗M satisfying (1 ⊗ φ) ◦ ψM = E(u). We say M is V -nilpotent
if the composite

φn−1∗(ψM) ◦ φn−2∗(ψM) ◦ · · · ◦ ψM : M→ φn∗M

factors through the submodule (p, u)φn∗M for any sufficiently large n. Simi-

larly, we say an object M of the category Mod1,φ/S is topologically V -nilpotent

if the same condition holds. The full subcategories of V -nilpotent (resp.

topologically V -nilpotent) objects are denoted by Mod1,φ,V/S1
and Mod1,φ,V/S∞

(resp. Mod1,φ,V/S ). Note that these notions are called connected and formal

in [15], respectively.
Let S be the p-adic completion of the divided power envelope of W [u]

with respect to the ideal (E(u)). The ring S has a natural filtration Fil1S
induced by the divided power structure, a φ-semilinear Frobenius endomor-
phism denoted also by φ and a φ-semilinear map φ1 : Fil1S → S, since the
inclusion φ(Fil1S) ⊆ pS holds for any p. Then a Breuil module is an S-
moduleM endowed with an S-submodule Fil1M containing (Fil1S)M and
a φ-semilinear map φ1,M : Fil1M→M satisfying some compatibility con-
ditions. The map φ1,M is also denoted by φ1 if there is no risk of confusion.

We also have categories of Breuil modules Mod1,φ/S , Mod1,φ/S1
and Mod1,φ/S∞

(for the definitions, see [8, Subsection 2.1]. Though there these are defined
only for p ≥ 3, the definitions are valid also for the case of p = 2). For any
objectM of these categories, we define a φ-semilinear map φM :M→M
by φM(x) = φ1(E(u))−1φ1(E(u)x), which we abusively write as φ.

LetM be an object of the category Mod1,φ/S and put φ∗M = S ⊗φ,SM.

Then the map 1 ⊗ φ : φ∗M → M is injective and we have a unique map
ψM :M→ φ∗M satisfying (1⊗φ)◦ψM = p. Then we sayM is topologically
V -nilpotent if the composite

φn−1∗(ψM) ◦ φn−2∗(ψM) ◦ · · · ◦ ψM :M→ φn∗M

factors through the submodule (p,Fil1S)φn∗M for any sufficiently large n.
This notion is called S-window overOK in [15] and [21]. The full subcategory

of topologically V -nilpotent objects is denoted by Mod1,φ,V/S . For any Kisin

module M, define a Breuil moduleMS(M) = S ⊗φ,S M by putting

Fil1MS(M) = Ker(S ⊗φ,S M
1⊗φ→ S/Fil1S ⊗S M),

φ1 : Fil
1MS(M)

1⊗φ→ Fil1S ⊗S M
φ1⊗1→ MS(M).

This gives exact functors Mod1,φ/S∞
→ Mod1,φ/S∞

and Mod1,φ/S → Mod1,φ/S , which

are both denoted byMS(−), and the latter induces a functor Mod1,φ,V/S →
Mod1,φ,V/S ([15, Proposition 1.2.5]).
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We can associate Galois representations to Kisin and Breuil modules.
Consider the ring R = lim←−(ÕK̄ ← ÕK̄ ← · · · ), where the transition maps

are p-th power maps. An element r ∈ R is written as r = (rn)n≥0 with

rn ∈ ÕK̄ , and define r(0) ∈ OC by r(0) = limn→∞ r̂p
n

n , where r̂n is a lift of rn
in OK̄ . Then the ring R is a complete valuation ring of characteristic p with

its valuation defined by vR(r) = vp(r
(0)) whose fraction field is algebraically

closed, and we put m⩾i
R = {r ∈ R | vR(r) ≥ i} and Ri = R/m⩾i

R . We
have a natural ring surjection W (R)→ OC which lifts the zeroth projection

pr0 : R→ ÕK̄ . The ring Acrys is the p-adic completion of the divided power
envelope of W (R) with respect to the kernel of this surjection. Thus we
have the induced surjection Acrys → OC. Put π = (π, π1, π2, . . .) ∈ R and
consider the rings W (R) and Acrys as S-algebras by the map u 7→ [π]. In
particular, we consider the ring k[[u]] as a subring of R by the map u 7→ π
and let vR also denote the induced valuation on the former ring, which
satisfies vR(u) = 1/e.

For any objects M of the category Mod1,φ/S andM of Mod1,φ/S , we associate

to them GK∞-modules

T ∗
S(M) = HomS,φ(M,W (R)),

T ∗
crys(M) = HomS,Fil1,φ(M, Acrys)

([6, Proposition B1.8.3] and [15, Subsection 1.2.6]). If the S-module M is
free of rank h, then the Zp-module T ∗

S(M) is also free of rank h ([13, Corol-
lary 2.1.4]). We also have a natural injection of GK∞-modules T ∗

S(M) →
T ∗
crys(MS(M)) defined by f 7→ 1 ⊗ (φ ◦ f) and this is a bijection if M is

topologically V -nilpotent ([15, Proposition 1.2.7]). Similarly, for any object

M of the category Mod1,φ/S∞
, we have the associated GK∞-module

T ∗
S(M) = HomS,φ(M,W (R)⊗Qp/Zp).

Put Sn = Spec(OK,n), Sn = S/pnS and En = Spec(Sn). Let us consider
the big crystalline site CRYS(Sn/En) with the fppf topology and its topos
(Sn/En)CRYS. For any Barsotti-Tate group Γ over OK , we have the con-
travariant Dieudonné crystal D∗(Γ×Sn) = Ext1Sn/En

(Γ×Sn,OSn/En
) (for

the notation, see [2]). We put

D∗(Γ)(S → OK) = lim←−
n

D∗(Γ×Sn)(Sn → OK,n).

This module is considered as an object Mod(Γ) of the category Mod1,φ/S with

the natural φ-semilinear Frobenius map induced by the Frobenius of Γ×S1

and the filtration defined as the inverse image of the natural inclusion

ωΓ ⊆ lim←−
n

D∗(Γ×Sn)(OK,n → OK,n).

The Acrys-module

D∗(Γ)(Acrys → OC) = lim←−
n

D∗(Γ×Sn)(Acrys/p
nAcrys → OC,n)
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also has a φ-semilinear Frobenius map and a filtration defined in the same
way. Similarly, for any finite flat group scheme G over OK , the S-module

D∗(G)(S → OK) = lim←−
n

D∗(G ×Sn)(Sn → OK,n)

is endowed with a natural φ-semilinear Frobenius map which is induced by
the Frobenius of the group scheme G ×S1 and is also denoted by φ, and a
filtration defined by the submodule

Fil1D∗(G)(S → OK) = lim←−
n

Ext1Sn/En
(G ×Sn,JSn/En

)(Sn → OK,n),

where JSn/En
is the canonical divided power ideal sheaf of the structure

sheaf OSn/En
.

We say a Barsotti-Tate group or a finite locally free group scheme is unipo-
tent if its Cartier dual is connected. We let (BT/OK)u (resp. (p-Gr/OK)u)
denote the category of unipotent Barsotti-Tate groups (resp. the category
of unipotent finite flat group schemes killed by some p-power) over OK . If a
Barsotti-Tate group Γ over OK is unipotent, then the object Mod(Γ) is topo-
logically V -nilpotent ([15, Lemma 1.1.3]). Moreover, we have the following
classification theorem of unipotent Barsotti-Tate groups and unipotent finite
flat group schemes, whose second assertion follows from the first assertion
by an argument of taking a resolution ([15, Subsection 1.3]).

Theorem 2.1. (1) ([15], Theorem 1.2.8) There exists an anti-equivalence
of exact categories

G(−) : Mod1,φ,V/S → (BT/OK)u

with a natural isomorphism Mod(G(M))→MS(M). Moreover, we
also have a natural isomorphism of GK∞-modules

εM : Tp(G(M))→ T ∗
crys(MS(M)).

(2) ([15], Theorem 1.3.9) There exists an anti-equivalence of exact cat-
egories

G(−) : Mod1,φ,V/S∞
→ (p-Gr/OK)u

with a natural isomorphism of GK∞-modules

εM : G(M)(OK̄)→ T ∗
S(M).

On the other hand, for any k[[u]]-algebra B, we have an exact anti-

equivalenceH(−) from the category Mod1,φ/B to a category of finite locally free

group schemes over B whose Verschiebung is the zero map ([7, Théorème
7.4]. See also [8, Subsection 3.2]). Moreover, for B = k[[u]] and M ∈
Mod1,φ,V/S1

, the anti-equivalences G(−) and H(−) are related by the natural

isomorphism

εM : G(M)(OK̄)→ T ∗
S(M) = H(M)(R)
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of Theorem 2.1 (2). We define the lower ramification subgroups of the group
scheme H(M) to be adapted to the valuation vR. Namely, we define

H(M)i(R) = Ker(H(M)(R)→ H(M)(Ri))

for any positive rational number i. We also define deg(H(M)) by writing
ωH(M) ≃ ⊕ik[[u]]/(ai) and putting deg(H(M)) =

∑
i vR(ai).

Let M be an object of the category Mod1,φ,V/S . If we identify an element

g ∈ Tp(G(M)) with a homomorphism of Barsotti-Tate groups from Qp/Zp

to G(M) over OC, then by the natural isomorphism Mod(G(M))→MS(M)
the element εM(g) is identified with the induced map

D∗(g) : D∗(G(M))(Acrys → OC)→ D∗(Qp/Zp)(Acrys → OC) = Acrys.

A similar argument as in the proof of [14, Proposition 1.1.11] shows that for
any exact sequence

0→ N→ N′ →M→ 0

of Kisin modules such that N and N′ are objects of the category of Mod1,φ/S

and M is of Mod1,φ/S∞
, the functor MS(−) induces an exact sequence of

Breuil modules

0→MS(N)→MS(N
′)→MS(M)→ 0.

This and [2, Lemme 4.2.5 (ii)] imply that, for any object M of the category

Mod1,φ,V/S∞
, there exists a natural isomorphism of S-modules

D∗(G(M))(S → OK)→MS(M)

which is compatible with Fil1 and φ.
Let us consider the k-algebra isomorphism k[[u]]/(ue) → ÕK defined by

u 7→ π. Using this isomorphism, we identify the k-algebras of both sides.
Then we can show the following lemma just as in the proof of [9, Lemma
2.4].

Lemma 2.2. (1) Let G be a unipotent truncated Barsotti-Tate group of

level one over OK and M be the corresponding object of Mod1,φ,V/S1
via

the anti-equivalence G(−). Then there exist natural isomorphisms of

ÕK-modules

Fil1MS(M)/(Fil1S)MS(M)→ ωG , MS(M)/Fil1MS(M)→ Lie(G∨).

(2) Let G be a unipotent finite flat group scheme over OK killed by p

and M be the corresponding object of the category Mod1,φ,V/S1
via the

anti-equivalence G(−). Then there exists a natural isomorphism of

ÕK-modules Fil1MS(M)/(Fil1S)MS(M)→ ωG.

(3) Let M be an object of the category Mod1,φ,V/S1
. Then we have the

equalities

deg(G(M)) = deg(H(M)) = vR(det(φM)).
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Let G be a unipotent truncated Barsotti-Tate group of level one, height
h and dimension d over OK with 0 < d < h and Hodge height Hdg(G) = w.

Let M be the object of the category Mod1,φ,V/S1
corresponding to G via the

anti-equivalence G(−). Put M1 = M/ueM and

Fil1M1 = Im(1⊗ φ : ÕK ⊗φ,ÕK
M1 →M1).

Then the modules M1 and Fil1M1 are naturally considered as objects of
the category Mod1,φ

/ÕK
. By Lemma 2.2 (1), we can show that there exists a

natural isomorphism of ÕK-modules Lie(G∨)→ Fil1M1 as in [9, Subsection

2.3]. Thus the ÕK-module Fil1M1 is free of rank h−d. Moreover, we obtain

an exact sequence of φ-modules over ÕK

0→ Fil1M1 →M1 →M1/Fil
1M1 → 0

which splits as a sequence of ÕK-modules and the equality of truncated
valuation vp(det(φFil1M1

)) = w. We can also prove the following lemma as
in the proof of [9, Lemma 2.5].

Lemma 2.3. Let G be a unipotent truncated Barsotti-Tate group of level

one over OK and M be the object of Mod1,φ,V/S1
which corresponds to G via

the anti-equivalence G(−). Then the composite

G(OK̄)
εM→ H(M)(R)→ HomÕK

(Fil1M1, R/m
⩾i
R )→ ωG∨ ⊗OK̄,i

coincides with the Hodge-Tate map HTi for any i ≤ 1.

Remark 2.4. A similar classification for finite flat group schemes over OK

via Breuil-Kisin modules allowing the case of p = 2 and with non-trivial etale
part is obtained independently by Kim ([12]), Lau ([16]) and Liu ([18]). By
using [12, Corollary 4.3], we can generalize Lemma 2.2 and Lemma 2.3 to
this case.

3. Canonical subgroups

In this section, we prove Theorem 1.1. The proof is a modification of the
argument in [9], where we had to exclude the case of p = 2. We begin with
a consideration on a dual situation, as below. By this passage to the dual,
we can replace the use of the congruence of the defining equations of G(M)
and H(M) ([8, Corollary 4.6]) in [9] to show the coincidence with a lift of
a Frobenius kernel and the uniqueness of the level one canonical subgroup,
by that of [5, Proposition 1] which is valid for any p. This uniqueness in
turn replaces the use of the ramification correspondence theorem ([8, The-
orem 1.1]) to show that the canonical subgroup coincides with ramification
subgroups.

Suppose that the residue field k of K is perfect. Let G be a unipotent
truncated Barsotti-Tate group of level one, height h and dimension d over
OK with 0 < d < h and Hodge height Hdg(G) = w. Let M be the object

of the category Mod1,φ,V/S1
corresponding to G via the anti-equivalence G(−).
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Consider the objects M1 and Fil1M1 of the category Mod1,φ
/ÕK

as in the

previous section. Then, a verbatim argument as in the proof of [9, Lemma
3.3] shows the following proposition.

Proposition 3.1. Let the notation be as above. For any finite flat closed
subgroup scheme D of G over OK , let L be the subobject of M in the category

Mod1,φ,V/S1
corresponding to the quotient G/D. Suppose w < p/(p+ 1). Then

there exists a unique D satisfying L/ue(1−w)L = Fil1M1/u
e(1−w)Fil1M1.

Moreover, for this unique D, we have the equality vR(det(φL)) = w.

We temporarily refer to the unique D in Proposition 3.1 as the conjugate
Hodge subgroup of G, which will be shown to be equal to the canonical
subgroup of G.

Lemma 3.2. Let G be as above and D be the conjugate Hodge subgroup of
G. Then D is the unique finite flat closed subgroup scheme of G over OK

such that (G/D)∨×S1−w coincides with the Frobenius kernel of G∨×S1−w.
In particular, the construction of the conjugate Hodge subgroup is compatible
with any finite extension of K.

Proof. Put i = 1−w. First let us show that the group scheme (G/D)∨×Si

coincides with the Frobenius kernel of G∨ × Si. By comparing orders, it
is enough to show that the group scheme (G/D)∨ ×Si is contained in the
Frobenius kernel of G∨×Si. By [5, Proposition 1], it is equivalent to saying
that the natural map

ωG/D ⊗OK,i → ωG ⊗OK,i

is zero. By Lemma 2.2 (2), this map can be identified with the top horizontal
arrow of the commutative diagram

(Fil1MS(L)/(Fil
1S)MS(L))⊗OK,i

//

��

(Fil1MS(M)/(Fil1S)MS(L))⊗OK,i� _

��
(MS(L)/(Fil

1S)MS(L))⊗OK,i
� � // (MS(M)/(Fil1S)MS(M))⊗OK,i,

where the bottom horizontal arrow and the right vertical arrow are injective.
Let δ1, . . . , δh−d be a basis of the S-module L and D be the element of
Mh−d(k[[u]]) satisfying

φ(δ1, . . . , δh−d) = (δ1, . . . , δh−d)D.

From the definition of the functor MS(−), we see that the module on the
top left corner of the diagram is equal to the OK,i-module

SpanÕK
((1⊗ δ1, . . . , 1⊗ δh−d)u

eD−1)⊗OK,i.

The equality vR(det(D)) = w implies that the entries of the matrix ueD−1

are divisible by uei and the left vertical arrow of the diagram is zero. Hence
the assertion follows.
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On the other hand, let D′ be a finite flat closed subgroup scheme of G over
OK such that (G/D′)∨×Si coincides with the Frobenius kernel of G∨×Si.
Let L′ be the subobject of M corresponding to the quotient G/D′. Since G is
a truncated Barsotti-Tate group of level one, the group scheme D′×Si also
coincides with the Frobenius kernel of G ×Si. Note that the principal ideal
m⩾i

R of the ring Rpi has a unique divided power structure satisfying γn(x) = 0

for any x ∈ m⩾i
R and n ≥ p. We can consider the surjection pr0 : Rpi → OK̄,i

as a divided power thickening over the surjection S → OK . Evaluating the
exact sequence

0→ D∗(Im(F ))→ D∗(G ×Si)→ D∗(Ker(F ))→ 0

on this divided power thickening, we obtain the equality

Rpi ⊗SMS(L
′) = Im(Rpi ⊗φ,SMS(M)

1⊗φ→ Rpi ⊗SMS(M)).

Since the ÕK-module Fil1M1 is a direct summand of M1, the Rpi-module

Rpi⊗φ,ÕK
Fil1M1 is a submodule of Rpi⊗φ,ÕK

M1 and is equal to the image

on the right-hand side of the above equality. Thus we obtain the equality

Rpi ⊗φ,OK,i
(L′/ueiL′) = Rpi ⊗φ,OK,i

(Fil1M1/u
eiFil1M1)

and the natural map

L′/ueiL′ → (M1/u
eiM1)/(Fil

1M1/u
eiFil1M1)

is zero after tensoring the injection φ : OK,i → Rpi. Since the OK,i-
modules of the both sides of this natural map is free, we obtain the inclusion
L′/ueiL′ ⊆ Fil1M1/u

eiFil1M1. Since the OK,i-module L′/ueiL′ is also a di-
rect summand of M1/u

eiM1, the reverse inclusion follows similarly and the
equality

L′/ueiL′ = Fil1M1/u
eiFil1M1

holds. Then the uniqueness assertion in Proposition 3.1 implies the equality
D = D′.

For the last assertion, let L/K be a finite extension. Put GOL
= G ×

Spec(OL) and similarly for DOL
. The subgroup scheme (GOL

/DOL
)∨ ×

S1−w also coincides with the Frobenius kernel of (GOL
)∨ ×S1−w. By the

uniqueness we have just proved, the subgroup scheme DOL
coincides with

the conjugate Hodge subgroup of GOL
. This concludes the proof of the

lemma. □

Lemma 3.3. Let G be as above and D be the conjugate Hodge subgroup of
G.

(1) D = G(1−w)/(p−1).
(2) If w < (p−1)/p, then the subgroup D(OK̄) coincides with the kernel

of the Hodge-Tate map

HTb : G(OK̄)→ ωG∨ ⊗OK̄,b

for any b satisfying w/(p− 1) < b ≤ 1− w.
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(3) If w < 1/2, then we have D = Gb for any b satisfying w/(p − 1) <
b ≤ (1− w)/(p− 1).

Proof. First we consider the assertion (1). It is enough to show the equality
DOL

= (GOL
)(1−w)/(p−1) for a finite extension L/K. By Lemma 3.2, the

subgroup scheme DOL
is the conjugate Hodge subgroup of GOL

. Thus we
may assume G(OK̄) = G(OK). Let M and N be the objects of the category

Mod1,φ,V/S1
corresponding to G and D, respectively. Then we can show the

equality

H(N) = H(M)(1−w)/(p−1)

as in the proof of [9, Theroem 3.1 (c)]. Take x ∈ G(M). Let G′ be the
scheme-theoretic closure in G of the subgroup Fpx ⊆ G(OK̄) and M′ be the
quotient of M corresponding to G′. By the Oort-Tate classification ([19])
and Lemma 2.2 (3), we have the following equivalences:

G(M′)(1−w)/(p−1) = G(M′)⇔ vR(det(φM′)) ≥ 1− w
⇔ H(M′)(1−w)/(p−1) = H(M′).

Note the commutative diagram

G(M′)(OK̄)
εM′

∼
//

� _

��

H(M′)(R)� _

��
G(M)(OK̄)

εM
∼

// H(M)(R)

G(N)(OK̄)
εN
∼

//
?�

OO

H(N)(R),
?�

OO

where the horizontal arrows are isomorphisms and the vertical arrows are
injections. Then we have

x ∈ D(OK̄) = G(N)(OK̄)⇔ εM(x) ∈ H(N)(R) = H(M)(1−w)/(p−1)(R)

⇔ H(M′)(1−w)/(p−1) = H(M′)

⇔ G(M′)(1−w)/(p−1) = G(M′)

⇔ x ∈ G(M)(1−w)/(p−1)(OK̄)

and the assertion (1) follows. The assertions (2) and (3) can be shown by a
verbatim argument as in the proof of [9, Theorem 3.1 (2), (3)]. □

Remark 3.4. By using results of [12] and Remark 2.4, we can drop the
assumption that G is unipotent from Proposition 3.1, Lemma 3.2 and Lemma
3.3, though we do no use this fact in what follows.

Now we proceed to prove the following theorem, which is the level one
case of Theorem 1.1.
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Theorem 3.5. Let the notation be as in Section 1. Let G be a truncated
Barsotti-Tate group of level one, height h and dimension d over OK with
0 < d < h and Hodge height w = Hdg(G).

(1) If w < p/(p+1), then there exists a unique finite flat closed subgroup
scheme C of G of order pd over OK such that C × S1−w coincides
with the kernel of the Frobenius homomorphism of G ×S1−w. We
refer to the subgroup scheme C as the (level one) canonical subgroup
of G. Moreover, the subgroup scheme C has the following properties:
(a) deg(G/C) = w.
(b) Let C′ be the canonical subgroup of G∨. Then we have the equal-

ity of subgroup schemes C′ = (G/C)∨, or equivalently C(OK̄) =
C′(OK̄)⊥, where ⊥ means the orthogonal subgroup with respect
to the Cartier pairing.

(c) C = G(1−w)/(p−1) = Gpw/(p−1)+.
(2) If w < (p−1)/p, then the subgroup C(OK̄) coincides with the kernel of

the Hodge-Tate map HTb : G(OK̄)→ ωG∨⊗OK̄,b for any b satisfying
w/(p− 1) < b ≤ 1− w.

(3) If w < 1/2, then C coincides both with the lower ramification sub-
group scheme Gb for any b satisfying w/(p−1) < b ≤ (1−w)/(p−1)
and the upper ramification subgroup scheme Gj+ for any j satisfying
pw/(p− 1) ≤ j < p(1− w)/(p− 1).

Proof. By a base change argument as in the proof of [9, Theorem 3.1], we
may assume that the residue field k of K is perfect. Let G0 (resp. Get) be
the unit component (resp. the maximal etale quotient) of the group scheme
G, and consider their Cartier duals (G0)∨ and (Get)∨. These four group
schemes are all truncated Barsotti-Tate groups of level one over OK and let
h0 be the height of G0. Then (G0)∨ is a unipotent truncated Barsotti-Tate
group of level one, height h0 and dimension h0−d. If h0 = d, then the group
scheme G is ordinary (namely, (G0)∨ is etale) and the assertions are clear.
Thus we may assume h0 > d.

Since Hdg(G) = Hdg(G∨) and Lie(G) = Lie(G0), the truncated Barsotti-
Tate group (G0)∨ satisfies the assumption on the Hodge height in Proposition
3.1. Let D be the conjugate Hodge subgroup of (G0)∨, which is of order
ph0−d. We define the canonical subgroup C by C = ((G0)∨/D)∨, which is a
finite flat closed subgroup scheme of G0 of order pd over OK . By Lemma
3.2, the group scheme C × S1−w coincides with the Frobenius kernel of
G0 ×S1−w, which is equal to the Frobenius kernel of G ×S1−w. If a finite
flat closed subgroup scheme E of G has the reduction E ×S1−w equal to this
Frobenius kernel, then E is connected and Lemma 3.2 implies C = E . Thus
the uniqueness assertion of Theorem 3.5 (1) follows.

By Lemma 2.2 (3) and Proposition 3.1, we have deg((G0)∨/D) = w and

deg(G/C) = deg(G0/C) = deg(D∨) = h0 − d− deg(D)
= h0 − d− deg((G0)∨) + deg((G0)∨/D) = w.
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Thus the part (a) of the theorem follows. Cartier duality and the uniqueness
of the canonical subgroup we have just proved imply the part (b).

For the part (c), we insert here the following lemma due to the lack of
references.

Lemma 3.6. Let H be a finite flat group scheme over OK and H0 be its
unit component. Then we have Hj = (H0)j for any positive rational number
j.

Proof. Replacing K by a finite extension, we may assume that the maximal
etale quotient Het is a constant group scheme M for some abelian group M
and that we have an isomorphism of schemes over OK

H0 ×M → H

which induces the natural isomorphism of group schemes H0 × {0} → H0.
Let F j be the functor of the set of geometric connected components of
the j-th tubular neighborhood as in [1, Section 2]. By [1, Lemme 2.1.1], the
functor F j is compatible with products and we have a commutative diagram

H0(OK̄)×M(OK̄) //

��

H(OK̄)

��
F j(H0)×F j(M) // F j(H),

where the vertical arrows are homomorphisms and the horizontal arrows are
bijections preserving zero elements. For j > 0, the natural map M(OK̄)→
F j(M) is an isomorphism and the kernel of the left vertical arrow is the
subgroup (H0)j(OK̄) × {0}. Thus the kernel of the right vertical arrow is
the subgroup (H0)j(OK̄) and the lemma follows. □

Now Lemma 3.3 (1) implies the equality D = ((G0)∨)b for b = (1 −
w)/(p−1). By Lemma 3.6 and a theorem of Tian and Fargues ([20, Theorem
1.6] or [5, Proposition 6]), we have the equalities C = (G0)j+ = Gj+ for
j = p/(p− 1)− pb = pw/(p− 1). From this and the part (b), we also obtain
the equality C = Gb and the part (c) follows. The part (3) can be shown
similarly, by using Lemma 3.3 (3).

Finally we show the assertion (2). By replacing G by G∨, it is enough to
show the assertion for the canonical subgroup C′ of G∨. Put T = (Get)∨. Let
D be the conjugate Hodge subgroup of (G0)∨ as above and D̃ be the inverse
image of D by the natural epimorphism ι∨ : G∨ → (G0)∨. We claim the

equality C′ = D̃. Indeed, by Lemma 3.3 (1), we have D = ((G0)∨)(1−w)/(p−1).
By the part (c) of the theorem, this implies that D is the canonical subgroup

of (G0)∨ and also coincides with ((G0)∨)pw/(p−1)+. Since C′ = (G∨)pw/(p−1)+,
the natural map ι∨ induces the surjection C′(OK̄)→ D(OK̄). In particular,

the subgroup C′(OK̄) is contained in D̃(OK̄). On the other hand, since the
group scheme T is isomorphic to a direct sum of µp after a finite extension,
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we have the inclusions

T = T1/(p−1) ⊆ (G∨)1/(p−1) ⊆ (G∨)(1−w)/(p−1) = C′,

from which the claim follows.
Therefore, we have a commutative diagram with exact rows

0 // T (OK̄) // C′(OK̄) //

��

D(OK̄) //

��

0

0 // T (OK̄) // G∨(OK̄) //

��

(G0)∨(OK̄) //

��

0

ωG ⊗OK̄,b
∼ // ωG0 ⊗OK̄,b,

where the lowest vertical arrows are the Hodge-Tate maps HTb and the
lowest horizontal arrow is an isomorphism. By Lemma 3.3 (2), the subgroup
D(OK̄) coincides with the kernel of the lowest right vertical arrow for any b

satisfying w/(p− 1) < b ≤ 1−w. This implies that the subgroup D̃(OK̄) =
C′(OK̄) is the kernel of the lowest left vertical arrow for any such b and the
assertion (2) follows. This concludes the proof of Theorem 3.5. □

Since the arguments in the proof of [9, Theorem 1.1] work verbatim also
for p = 2, Theorem 1.1 follows from Theorem 3.5.

Moreover, we can show the following proposition on anti-canonical sub-
groups, by modifying the proof of [9, Proposition 4.3].

Proposition 3.7. Let G be a truncated Barsotti-Tate group of level two,
height h and dimension d over OK with 0 < d < h and Hodge height w =
Hdg(G). Suppose w < 1/2 and let C be the canonical subgroup of G[p] as in
Theorem 3.5. Let D be a finite flat closed subgroup scheme of G[p] over OK

such that the natural map C(OK̄)⊕D(OK̄)→ G[p](OK̄) is an isomorphism.

(1) The truncated Barsotti-Tate group p−1D/D of level one has Hodge
height Hdg(p−1D/D) = p−1w.

(2) The subgroup scheme G[p]/D is the canonical subgroup of p−1D/D.
(3) deg(D) = p−1w.

Proof. By a base change argument as before, we may assume that the residue
field k of K is perfect. Note that the truncated Barsotti-Tate group p−1D/D
of level one is also of height h and dimension d. The natural homomorphism
C → G[p]/D induces an isomorphism between the generic fibers of both sides.
Since the group scheme C is connected, the connected-etale sequence implies
that the group scheme G[p]/D is also connected. Now we claim that the
group scheme (G[p]/D)×S1−w is killed by the Frobenius. For this, let L and

L′ be the objects of the category Mod1,φ,V/S corresponding to the unipotent

finite flat group schemes C∨ and (G[p]/D)∨ via the anti-equivalence G(−),
respectively. By [17, Corollary 2.2.2], the generic isomorphism (G[p]/D)∨ →
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C∨ corresponds to an injection L→ L′. Then the S1-modules ∧dL and ∧dL′

are free of rank one and this injection induces an injection ∧dL → ∧dL′.
Hence we obtain the inequality vR(detφL′) ≤ vR(detφL) = w. Since the
group scheme G[p]/D is a finite flat closed subgroup scheme of the truncated
Barsotti-Tate group (p−1D/D)0 of level one over OK , a similar argument to
the proof of Lemma 3.2 implies the claim. Then the proposition follows as
in the proof of [9, Proposition 4.3]. □

We also have the following generalization of [9, Proposition 4.4] to the
case of p = 2.

Proposition 3.8. Let G be a truncated Barsotti-Tate group of level n, height
h and dimension d over OK with 0 < d < h and Hodge height w < p(p −
1)/(pn+1−1). Let Cn be the level n canonical subgroup of G, which is defined
by Theorem 1.1. Let Dn be a finite flat closed subgroup scheme of G over
OK such that Dn(OK̄) ≃ (Z/pnZ)d and the group scheme Dn×S1−pn−1w is
killed by the n-th iterated Frobenius Fn. Then we have Cn = Dn.

Proof. Suppose n ≥ 2. Let C1 be the scheme-theoretic closure of Cn(OK̄)[p]
in Cn and define D1 similarly. The group scheme C1 coincides with the
canonical subgroup of G[p] by Theorem 1.1 (e). We claim C1 = D1, which
implies the proposition by an induction as in the proof of [9, Proposition
4.4]. For this, by a base change argument as before, we may assume that
the residue field k of K is perfect and G(OK̄) = G(OK). Suppose C1 ̸= D1.
Then we can find a finite flat closed subgroup scheme E of G[p] such that
C1(OK̄) ⊕ E(OK̄) = G[p](OK̄) and D1(OK̄) ∩ E(OK̄) ̸= 0. Let F be the
scheme-theoretic closure of the latter intersection in G[p]. As in the proof of
Theorem 3.5 (2), we see that the group scheme C1 contains the multiplicative
part of G[p]. Thus the quotient G[p]/C is unipotent. Since the natural map
E → G[p]/C is a generic isomorphism, the connected-etale sequence shows
that E , and thus also F , are unipotent. Let F be the object of the category

Mod1,φ,V/S1
corresponding to F . Then Lemma 2.2 (3) and Proposition 3.7 (3)

implies

vR(det(φF)) = deg(F) ≤ deg(E) = p−1w.

On the other hand, the group scheme F ×S1−pn−1w is killed by the n-th

iterated Frobenius. Put i = 1 − pn−1w. Evaluating D∗(F) on the divided
power thickening Rpi → OK̄,i as before, we see that the map

1⊗ φ⊗ φF : Rpi ⊗φ,Rpi (Rpi ⊗φ,S F)→ Rpi ⊗φ,S F

is the one induced by the Frobenius

D∗(F ) : D∗((F ×Si)
(p))→ D∗(F ×Si)

and that the composite of its pull-backs

φn∗(Rpi ⊗φ,S F)→ φn−1∗(Rpi ⊗φ,S F)→ · · · → Rpi ⊗φ,S F
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is the map induced by the n-th iterated Frobenius. Taking the valuation of
the determinant of this map, we obtain the inequalities

p(1− pn−1w) ≤ vR(detφF)p(p
n − 1)/(p− 1) ≤ w(pn − 1)/(p− 1),

which contradict the assumption on w and the equality C1 = D1 follows. □
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