
ON THE COMPACTIFICATION OF THE DRINFELD
MODULAR CURVE OF LEVEL Γ∆

1 pnq

SHIN HATTORI

Abstract. Let p be a rational prime and q a power of p. Let n
be a non-constant monic polynomial in Fqrts which has a prime
factor of degree prime to q ´ 1. In this paper, we define a Drinfeld
modular curve Y ∆

1 pnq over Ar1{ns and study the structure around
cusps of its compactification X∆

1 pnq, in a parallel way to Katz-
Mazur’s work on classical modular curves. Using them, we also
define a Hodge bundle over X∆

1 pnq such that Drinfeld modular
forms of level Γ1pnq, weight k and some type are identified with
global sections of its k-th tensor power.

1. Introduction

Let p be a rational prime and q a power of p. Put A “ Fqrts,
K8 “ Fqpp1{tqq and let C8 be the p1{tq-adic completion of an algebraic
closure of K8. We denote by Ω the Drinfeld upper half plane C8zK8,
which has a natural structure of a rigid analytic variety over K8. Let
n and ℘ be monic polynomials in A such that ℘ is irreducible of degree
d ą 0 and prime to n. We put

Γ1pnq “

"

γ P GL2pAq

ˇ

ˇ

ˇ

ˇ

γ ”

ˆ

˚ ˚

0 1

˙

mod n

*

and Γ11pnq “ Γ1pnqXSL2pAq. Let K be the ℘-adic completion of Fqptq,
which is a complete discrete valuation field with uniformizer ℘.

For any k P Z and l P Z{pq ´ 1q, a Drinfeld modular form of level
Γ1pnq, weight k and type l is a rigid analytic function f : Ω Ñ C8

satisfying

f

ˆ

az ` b

cz ` d

˙

“ pad ´ bcq´lpcz ` dqkfpzq for any z P Ω,

ˆ

a b
c d

˙

P Γ1pnq

and a certain holomorphy condition at cusps. It is a function field ana-
logue of the notion of elliptic modular form of level Γ1pNq and weight k.
As in the latter case, for any non-constant n, Drinfeld modular forms
of level Γ1pnq and weight k are identified with global sections of the

Date: October 19, 2017.
1



2 SHIN HATTORI

k-th tensor power of a natural line bundle ω̄C8 on an algebraic curve
X11pnqC8 over C8 called Drinfeld modular curve of level Γ11pnq. The
curve X11pnqC8 is the compactification of a moduli space Y11pnqC8 of
Drinfeld modules of rank two endowed with some level structures such
that Y11pnqC8pC8q is identified with Γ11pnqzΩ.

We also have a ℘-adic version of the notion of Drinfeld modular
form—℘-adic Drinfeld modular form [Vin, Gos2]. The latter is defined
as the ℘-adic limit in Krrxss of Fourier expansions at 8 of Drinfeld
modular forms with expansion coefficients in Fqptq. It is expected that
Drinfeld modular forms have deep ℘-adic properties which are compa-
rable to p-adic properties of elliptic modular forms.

To investigate ℘-adic properties of Drinfeld modular forms, we need
to define models X and ω̄ of X11pnqC8 and ω̄C8 over Ar1{ns in order to
pass to OK . The problem is that, the study around cusps of Drinfeld
modular curves in the literature [Dri, Gos1, Gek1, Gek2, Gek3, vdPT,
vdH, Böc] is carried out by, first describing the formal completion for
the case of the Drinfeld modular curve Xpnq of full level over Ar1{ns

and then taking the quotient by an appropriate group acting on Xpnq.
Since this group action is not necessarily free at cusps (in fact, the

element

ˆ

1 1
0 1

˙

P Γ11pnq{Γpnq stabilizes 8), it is unclear if the Hodge

bundle on Xpnq descends to a model X over Ar1{ns and we need a
more precise study of the formal completion along cusps.

In this paper, we resolve it by following the method of Katz-Mazur
[KM] in the case of classical modular curves. For this, we need to
assume that the level n has a prime factor of degree prime to q ´ 1.
This ensures the existence of a subgroup ∆ Ď pA{pnqqˆ which is a di-
rect summand of Fˆ

q . Under this mild assumption, a Γ∆
1 pnq-structure

is defined as a pair of a usual Γ1pnq-structure and an additional struc-
ture admitting an Fˆ

q -action. In particular, for any Ar1{ns-algebra
R0 which is an excellent regular ring, we have a fine moduli scheme
Y ∆
1 pnqR0 classifying Drinfeld modules with Γ∆

1 pnq-structures and also
its compactification X∆

1 pnqR0 . Then we can show that X∆
1 pnqAr1{ns is

a model of X11pnqC8 . It also enables us to control types of Drinfeld
modular forms by a diamond operator [Hat].

Let {Cusps
∆

R0
be the formal completion of X∆

1 pnqR0 along the cusps

and Cusps∆R0
its reduction. Then we will prove the following theorems.

Theorem 1.1 (Theorem 5.3). Let R0 be a flat Ar1{ns-algebra which is
an excellent regular domain.
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(1) Let P∆
8 be the 8-cusp of X∆

1 pnqR0. Then there exists a natural
isomorphism of complete local rings

px∆
8q˚ : ÔX∆

1 pnqR0
,P∆

8
Ñ R0rrxss.

(2) The Hodge bundle on Y ∆
1 pnqR0 extends to an invertible sheaf

ω̄∆
un on X∆

1 pnqR0 satisfying

px∆
8q˚pω̄∆

unq “ R0rrxssdX,

where dX denotes an invariant differential form of a Tate-
Drinfeld module TD▽pΛq.

(3) The formation of ω̄∆
un is compatible with any base change R0 Ñ

R1
0 of flat Ar1{ns-algebras which are excellent regular domains.

(4) There exist natural actions of Fˆ
q on X∆

1 pnqR0 and on ω̄∆
un cov-

ering the former action.

Theorem 1.2 (Theorem 6.3). Let R0 be a flat Ar1{ns-algebra which is
an excellent regular domain. Let WnpXq be the n-th Carlitz cyclotomic
polynomial [Car] and Rn the affine ring of a connected component of
SpecpR0rXs{pWnpXqqq. We also put

Γ̄1
1 “

"

γ P SL2pA{pnqq

ˇ

ˇ

ˇ

ˇ

γ ”

ˆ

1 0
˚ 1

˙

mod n

*

.

(1) We have a natural isomorphism

{Cusps
∆

R0
ˆR0 Rn »

ž

pa,bq

SpecpRnrrwssq,

where the direct sum is taken over a complete representative of
the set

Fˆ
q ztpa, bq P pA{pnqq2 | pa, bq “ p1qu{Γ̄1

1.

(2) Cusps∆R0
is finite etale over R0. In particular, it defines an

effective Cartier divisor of X∆
1 pnqR0 over R0.

(3) For any pa, bq P pA{pnqq2 satisfying pa, bq “ p1q, we denote by
fb the monic generator of the ideal AnnApbpA{pnqqq and by ΦC

fb
the fb-multiplication map of the Carlitz module C. Then, at
each point of Cusps∆R0

in the component labeled by pa, bq, the
invertible sheaf

Ω1
X∆

1 pnqR0
{R0

p2Cusps∆R0
q

is locally generated by the section dx{x2, where x is defined by
1{x “ ΦC

fb
p1{wq.
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We also have similar results for the case of level Γ∆
1 pnq X Γ0p℘q (§7).

For the proof of the above theorems, the main differences from [KM]
are twofold: First, the j-invariant jt of the usual Tate-Drinfeld module
does not give (the inverse of) a uniformizer of the j-line at the infinity,
contrary to the case of the Tate curve. For this, we use a descent
TD▽pΛq of the Tate-Drinfeld module by an Fˆ

q -action on the coefficients
to obtain a right j-invariant (see (5.1)). This enables us to study
Drinfeld modular curves directly in §5, not via taking quotients of
Xpnq. As a trade-off, we need to consider Γ∆

1 pnq-structures, not just
Γ1pnq-structures, in order to kill an effect of the descent. The author
learned the idea of the use of the descent from a work of Armana [Arm].

Second, since we are in the positive characteristic situation with
wild ramification along cusps, we cannot use Abhyankar’s lemma to
study the structure of Drinfeld modular curves around cusps. This is
bypassed by a direct computation of the formal completion along each
cusp over Rn (§6).

In the paper [Hat], the above theorems are combined with a dual-
ity theory of Taguchi [Tag] for Drinfeld modules of rank two, which
compensates the lack of autoduality for Drinfeld modules, to develop
a geometric theory of ℘-adic Drinfeld modular forms in a similar way
to [Kat].

Acknowledgments. This work was supported by JSPS KAKENHI
Grant Numbers JP26400016, JP17K05177.

2. Drinfeld modules

For any scheme S over Fq, we denote the q-th power Frobenius map
on S by FS : S Ñ S. For any S-scheme T and OS-module L, we put
T pqq “ T ˆS,FS

S and Lpqq “ F ˚
S pLq. For any A-scheme S, the image of

t P A by the structure map A Ñ OSpSq is denoted by θ.
For any scheme S over Fq and any invertible OS-module L, we write

the associated covariant line bundle to L as

V˚pLq “ SpecSpSymOS
pLb´1qq

with Lb´1 :“ L_ “ HomOS
pL,OSq. It represents the functor over

S defined by T ÞÑ L|T pT q, where L|T denotes the pull-back to T , and
thus we identify L with V˚pLq. We have the q-th power Frobenius map

τ : L Ñ Lbq, l ÞÑ lbq,

by which we identify Lpqq with Lbq. This map induces a homomorphism
of group schemes over S

τ : V˚pLq Ñ V˚pLbqq.



ON THE COMPACTIFICATION OF THE DRINFELD MODULAR CURVE 5

Definition 2.1 ([Lau], Remark (1.2.2)). Let S be a scheme over A and
r a positive integer. A (standard) Drinfeld (A-)module of rank r over
S is a pair E “ pL,ΦEq of an invertible sheaf L on S and an Fq-algebra
homomorphism

ΦE : A Ñ EndSpV˚pLqq

satisfying the following conditions for any a P Azt0u:

‚ the image ΦE
a of a by ΦE is written as

ΦE
a “

r degpaq
ÿ

i“0

αipaqτ i, αipaq P Lb1´qipSq

with αr degpaqpaq nowhere vanishing.
‚ α0paq is equal to the image of a by the structure map A Ñ

OSpSq.

We often refer to the underlying A-module scheme V˚pLq as E. A
morphism pL,Φq Ñ pL1,Φ1q of Drinfeld modules over S is defined to
be a morphism of A-module schemes V˚pLq Ñ V˚pL1q over S.

We denote the Carlitz module over S by C: it is the Drinfeld module
pOS,Φ

Cq of rank one over S defined by ΦC
t “ θ ` τ . We identify

the underlying group scheme of C with Ga “ SpecSpOSrZsq using
1 P OSpSq.

Lemma 2.2. (1) Let E be a line bundle over S. Let H be a finite
locally free closed Fq-submodule scheme of E over S. Suppose
that the rank of H is a constant q-power. Then E{H is a line
bundle over S.

(2) Let E be a Drinfeld module of rank r. Let H be a finite locally
free closed A-submodule scheme of E of constant q-power rank
over S. Suppose either

‚ H is etale over S, or
‚ S is reduced and for any maximal point η of S, the fiber
Hη of H over η is etale.

Then E{H is a Drinfeld module of rank r with the induced A-
action.

Proof. The assertion (1) follows in the same way as [Leh, Ch. 1, Propo-
sition 3.2]. For (2), we may assume that S “ SpecpBq is affine, the
underlying invertible sheaves of E and E{H are trivial and H is free of
rank qn over S. We write the t-multiplication maps of E and E{H as

ΦE
t pXq “ θX`a1X

q`¨ ¨ ¨`arX
qr , Φ

E{H
t pXq “ b0X`b1X

q`¨ ¨ ¨`bsX
qs
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with bs ‰ 0. From the proof of [Leh, Ch. 1, Proposition 3.2], we may
also assume that the map E Ñ E{H is defined by an Fq-linear monic
additive polynomial

X ÞÑ P pXq “ p1X ` ¨ ¨ ¨ ` pn´1X
qn´1

` Xqn .

From the equality Φ
E{H
t pP pXqq “ P pΦE

t pXqq, we obtain r “ s, br “ aq
n

r

and p1pb0 ´θq “ 0. If H is etale over B, then we have p1 P Bˆ and thus
b0 “ θ. If the latter assumption in the lemma holds, then p1 P B is a
non-zero divisor in the ring B{p for any minimal prime ideal p. Since
B is reduced, it is a subring of

ś

B{p, where the product is taken over
the set of minimal prime ideals p of B. This also yields b0 “ θ, and
thus E{H is a Drinfeld module of rank r in both cases. □

Next let ℘ be a monic irreducible polynomial of degree d ą 0 in
A “ Fqrts, as before. Let S̄ be an A-scheme of characteristic ℘ and Ē “

pL̄,ΦĒq a Drinfeld module of rank two over S̄. By [Sha, Proposition
2.7], we can write as

ΦĒ
℘ “ pαdpĒq ` ¨ ¨ ¨ ` α2dpĒqτ dqτ d, αipĒq P L̄b1´qipS̄q.

We put

Fd,Ē “ τ d : Ē Ñ Ēpqdq, Vd,Ē “ αdpĒq ` ¨ ¨ ¨ ` α2dpĒqτ d : Ēpqdq Ñ Ē.

We also denote them by Fd and Vd if no confusion may occur. They
are isogenies of Drinfeld modules satisfying Vd ˝Fd “ ΦĒ

℘ and Fd ˝Vd “

ΦĒpqdq

℘ [Sha, §2.8].

Definition 2.3. We say Ē is ordinary if αdpĒq P L̄b1´qdpS̄q is nowhere
vanishing, and supersingular if αdpĒq “ 0.

By [Sha, Proposition 2.14], Ē is ordinary if and only if KerpVdq is
etale.

3. Drinfeld modular curves

Let n be a non-constant monic polynomial in A “ Fqrts which is
prime to ℘. Put An “ Ar1{ns. For any Drinfeld module E of rank
two over an A-scheme S and a non-constant monic polynomial m P A,
a Γpmq-structure on E is an A-linear homomorphism α : pA{pmqq2 Ñ

EpSq inducing the equality of effective Cartier divisors of E
ÿ

aPpA{pmqq2

rαpaqs “ Erms.

If m is invertible in S, then it is the same as an isomorphism of A-
module schemes α : pA{pmqq2 Ñ Erms over S, where the underline
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means the constant A-module scheme. If m has at least two different
prime factors, then the functor over A sending S to the set of isomor-
phism classes of such pairs pE,αq over S is represented by a regular
affine scheme Y pmq of dimension two which is flat and of finite type over
A. Over Ar1{ms, for any non-constant m this functor is representable
by an affine scheme Y pmq which is smooth of relative dimension one
over Ar1{ms. The natural left action of GL2pA{pmqq on pA{pmqq2 in-
duces a right action of this group on Y pmq.

For any Drinfeld module E of rank two over an An-scheme S, we de-
fine a Γ1pnq-structure on E as a closed immersion of A-module schemes
λ : Crns Ñ E over S. Since Crns is etale over S, we see that over a
finite etale cover of An a Γ1pnq-structure on E is identified with a closed
immersion of A-module schemes A{pnq Ñ E. Then [Fli, Proposition

4.2 (2)] implies that E has no non-trivial automorphism fixing λ. Note
that the quotient Erns{Impλq is a finite etale A-module scheme over S
which is etale locally isomorphic to A{pnq, and thus the functor

IsomA,SpA{pnq, Erns{Impλqq

is represented by a finite etale pA{pnqqˆ-torsor IpE,λq over S.
Consider the functor over An sending an An-scheme S to the set

of isomorphism classes rpE, λqs of pairs pE, λq consisting of a Drinfeld
module E of rank two over S and a Γ1pnq-structure λ on E. Then we
can show that this functor is representable by an affine scheme Y1pnq

which is smooth over An of relative dimension one.
Suppose that there exists a prime factor q of n such that its residue

extension kpqq{Fq is of degree prime to q´1. In this case, the inclusion
Fˆ
q Ñ kpqqˆ splits and we can choose a subgroup ∆ Ď pA{pnqqˆ such

that the natural map ∆ Ñ pA{pnqqˆ{Fˆ
q is an isomorphism. For such

∆, we define a Γ∆
1 pnq-structure on E as a pair pλ, rµsq of a Γ1pnq-

structure λ on E and an element rµs P pIpE,λq{∆qpSq. We have a fine
moduli scheme Y ∆

1 pnq of the isomorphism classes of triples pE, λ, rµsq,
which is finite etale over Y1pnq. The universal Drinfeld module over
Y ∆
1 pnq is denoted by E∆

un “ V˚pL∆
unq and put

ω∆
un :“ ωE∆

un
“ pL∆

unq_,

where ωE∆
un

denotes the sheaf of invariant differential forms on E∆
un.

For any Drinfeld module E over an An-scheme S, a Γ0p℘q-structure
on E is a finite locally free closed A-submodule scheme G of Er℘s of
rank qd over S. Then we have a fine moduli scheme Y ∆

1 pn, ℘q classifying
tuples pE, λ, rµs,Gq consisting of a Drinfeld module E of rank two over
an An-scheme S, a Γ∆

1 pnq-structure pλ, rµsq and a Γ0p℘q-structure G on



8 SHIN HATTORI

E. From the theory of Hilbert schemes, we see that the natural map
Y ∆
1 pn, ℘q Ñ Y ∆

1 pnq is finite, and it is also etale over Anr1{℘s. For any
An-algebra R, we write as Y ∆

1 pnqR “ Y ∆
1 pnq ˆAn SpecpRq and similarly

for other Drinfeld modular curves.

Lemma 3.1. Y ∆
1 pn, ℘q is smooth over An outside finitely many super-

singular points on the fiber over p℘q.

Proof. Let B be an Artinian local An-algebra of characteristic ℘ and J
an ideal of B satisfying J2 “ 0. Let E be an ordinary Drinfeld module
of rank two over B{J and G a Γ0p℘q-structure on E. Since B is local,
the underlying invertible sheaf of E is trivial. It is enough to show that
the isomorphism class of the pair pE,Gq lifts to B.

Since E is ordinary and B{J is Artinian local, we have either G “

KerpFd,Eq or the composite G Ñ Er℘s Ñ KerpVd,Eq is an isomorphism.
In the former case, write as ΦE

t “ θ ` a1τ ` a2τ
2. For any lift âi P B

of ai, we can define a structure of a Drinfeld module of rank two over

B on Ê “ SpecpBrXsq by putting ΦÊ
t “ θ ` â1τ ` â2τ

2, which is also
ordinary. Then G lifts to KerpFd,Êq. In the latter case G is etale and,
by Lemma 2.2 (2), E{G has a structure of a Drinfeld module of rank
two. Moreover, it is also ordinary since pE{Gqr℘s has the etale quotient
G. Thus we have isomorphisms

pE{Gqpqdq pE{Gq{KerpFd,Eq „

℘ //
„

Fd,E{Goo E

sending KerpVd,E{Gq to G. Since the above argument shows that E{G
also lifts to an ordinary Drinfeld module F̂ of rank two over B, the
pair pE,Gq lifts to the pair pF̂ pqdq,KerpVd,F̂ qq over B. □

Put K8 “ Fqpp1{tqq and let C8 be the p1{tq-adic completion of an
algebraic closure of K8. Let Af be the ring of finite adeles (namely,
the restricted direct product over the set of places of Fqptq other than

the p1{tq-adic one) and Â its subring of elements which are integral at
all finite places. Let Ω be the Drinfeld upper half plane over C8. Put

K∆
1 pnq “

"

g P GL2pÂq

ˇ

ˇ

ˇ

ˇ

g mod nÂ P

ˆ

∆ A{pnq

0 1

˙*

,

Γpnq “

"

g P GL2pAq

ˇ

ˇ

ˇ

ˇ

g mod pnq “

ˆ

1 0
0 1

˙*

and Γ∆
1 pnq “ GL2pAq X K∆

1 pnq. Since Aˆ “ Fˆ
q , we have Γ∆

1 pnq Ď

SL2pAq. This yields

Γ∆
1 pnq “

"

g P SL2pAq

ˇ

ˇ

ˇ

ˇ

g mod pnq P

ˆ

1 A{pnq

0 1

˙*

.
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In particular, the group Γ∆
1 pnq is independent of the choice of ∆. Note

that the natural right action of g P GL2pA{pnqq on Y pnqC8 corresponds
to the left action of tg on ΓpnqzΩ via the Möbius transformation. Since

Fˆ
q detpK∆

1 pnqq “ Âˆ, [Dri, Proposition 6.6] implies that the analytifi-

cation of Y ∆
1 pnqC8 is identified with

GL2pFqptqqzΩ ˆ GL2pAf q{K∆
1 pnq “ Γ∆

1 pnqzΩ,

and thus the fiber Y ∆
1 pnqK8 is geometrically connected. Similarly, we

see that Y ∆
1 pn, ℘qK8 is also geometrically connected.

For any Drinfeld module E of rank two over S, we write the t-
multiplication map of E as ΦE

t “ θ ` a1τ ` a2τ
2 and put

jtpEq “ abq`1
1 b ab´1

2 P OSpSq.

Consider the finite flat map

jt : Y
∆
1 pnq Ñ A1

An
“ SpecpAnrjsq, j ÞÑ jtpE

∆
unq

and a similar finite map for Y ∆
1 pn, ℘q. We define the compactifications

X∆
1 pnq and X∆

1 pn, ℘q of Y ∆
1 pnq and Y ∆

1 pn, ℘q as the normalizations of
P1
An

in Y ∆
1 pnq and Y ∆

1 pn, ℘q via this map, respectively. As in [Sha, §7.2],
we see that X∆

1 pnq is smooth over An and X∆
1 pn, ℘q is smooth over

Anr1{℘s. By a similar argument to the proof of [KM, Corollary 10.9.2],
Zariski’s connectedness theorem implies that each fiber of the map
X∆

1 pnq Ñ SpecpAnq is geometrically connected, and so is X∆
1 pn, ℘q Ñ

SpecpAnr1{℘sq. For any An-algebra R which is Noetherian, excellent
and regular, we also have the compactifications X∆

1 pnqR and X∆
1 pn, ℘qR

of Y ∆
1 pnqR and Y ∆

1 pn, ℘qR. From the smoothness of X∆
1 pnq, we have

X∆
1 pnqR “ X∆

1 pnq ˆAn SpecpRq. The base change compatibility also
holds for X∆

1 pn, ℘qR if ℘ is invertible in R.
On the other hand, the maps

rpE, λ, rµsqs ÞÑ rpE, aλ, rµsqs, rpE, λ, rµsqs ÞÑ rpE, λ, crµsqs

induce actions of the groups pA{pnqqˆ and pA{pnqqˆ{∆ “ Fˆ
q onX∆

1 pnqR.
We denote them by xayn and xcy∆, respectively.

Lemma 3.2. Let S be a scheme over A and E a Drinfeld module of
rank two over S. If jtpEq P OSpSq is invertible, then for the big fppf
sheaf AutA,SpEq defined by

T ÞÑ AutA,T pE|T q,

the natural map Fˆ
q Ñ AutA,SpEq is an isomorphism.
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Proof. We may assume that S “ SpecpBq is affine and the underlying
invertible sheaf of E is trivial. By [Fli, Proposition 4.2 (2)], any auto-
morphism of E “ SpecpBrXsq is linear, namely it is given by X ÞÑ bX
for some b P Bˆ. Write as ΦE

t “ θ ` a1τ ` a2τ
2. From the assumption,

we have a1 P Bˆ and the equality ΦE
t pbXq “ bΦE

t pXq yields bq´1 “ 1.
Since the group scheme µq´1 over Fq is isomorphic to the constant
group scheme Fˆ

q , so is µq´1|B over the Fq-algebra B. This concludes

the proof. □

Lemma 3.3. Let S be a scheme over A. Let E and E 1 be Drinfeld
modules of rank two over S satisfying jtpEq “ jtpE

1q P OSpSqˆ. Then
the big fppf sheaf IsomA,SpE,E 1q over S defined by

T ÞÑ IsomA,T pE|T , E
1|T q

is represented by a Galois covering of S with Galois group Fˆ
q .

Proof. By gluing, we reduce ourselves to the case where S “ SpecpBq

is affine and the underlying line bundles of E and E 1 are trivial. We
write the t-multiplication maps of E and E 1 as

ΦE
t “ θ ` a1τ ` a2τ

2, ΦE1

t “ θ ` a1
1τ ` a1

2τ
2

with some a1, a
1
1 P B and a2, a

1
2 P Bˆ. By assumption, we have

aq`1
1 {a2 “ pa1

1q
q`1{a1

2 P Bˆ and thus a1, a
1
1 P Bˆ. Hence the scheme

J “ SpecpBrY s{pY q´1 ´ a1{a
1
1qq

is a finite etale Fˆ
q -torsor over B. By Y ÞÑ pX ÞÑ Y Xq, we obtain a map

of functors J Ñ IsomA,SpE,E 1q. To show that it is an isomorphism,
we may prove it over J . In this case, it follows from Lemma 3.2. □

4. Tate-Drinfeld modules

To investigate the structure around cusps of Drinfeld modular curves
and extend the sheaf ω∆

un, we need to introduce Tate-Drinfeld modules.
Let R0 be a flat An-algebra which is an excellent Noetherian domain
with fraction field K0. Let R0ppxqq and K0ppxqq be the Laurent power
series rings over R0 and K0, respectively. Put T0 “ SpecpR0ppxqqq.
We denote the normalized x-adic valuation on K0ppxqq by vx. We also
denote the ring of entire series over K0ppxqq by K0ppxqqttXuu; it is the
subring of K0ppxqqrrXss consisting of elements

ř

iě0 aiX
i satisfying

lim
iÑ8

pvxpaiq ` iρq “ `8 for any ρ P R.

We put R0rrxssttXuu “ K0ppxqqttXuu X R0rrxssrrXss.
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Let pC,ΦCq be the Carlitz module over R0. For any non-zero element
f P A, put

fΛ “

"

ΦC
fa

ˆ

1

x

˙ ˇ

ˇ

ˇ

ˇ

a P A

*

Ď R0ppxqq,(4.1)

efΛpXq “ X
ź

α‰0PfΛ

ˆ

1 ´
X

α

˙

P X ` xX2R0rrxssrrXss(4.2)

as in [Leh, Ch. 5, §2]. Note that any non-zero element of fΛ is invertible
in R0ppxqq. We consider fΛ as an A-module via ΦC . Then it is a free
A-module of rank one, and it is also discrete inside K0ppxqq. Hence the
power series efΛpXq is entire, and it is an element of R0rrxssttXuu.

Put

Ff pxq “
1

ΦC
f

`

1
x

˘ P xqdegpfqFˆ
q p1 ` xR0rrxssq.

Then x ÞÑ Ff pxq defines an R0-algebra homomorphism ν7
f : R0ppxqq Ñ

R0ppxqq and a map νf : T0 Ñ T0. For any element hpXq “
ř

i aiX
i P

R0ppxqqrrXss, we put ν˚
f phqpXq “

ř

i ν
7
f paiqX

i. Then we have ν7
f pΛq “

fΛ and ν˚
f peΛqpXq “ efΛpXq.

For any element a P A, consider the power series

(4.3) ΦfΛ
a pXq “ efΛpΦC

a pe´1
fΛpXqqq P R0rrxssrrXss.

Note that (4.2) yields

(4.4) ΦfΛ
a pXq ” ΦC

a pXq mod xR0rrxss for any a P A.

Let K0ppxqqalg be an algebraic closure of K0ppxqq. For any a P A, put

pΦC
a q´1pfΛq “ ty P K0ppxqqalg | ΦC

a pyq P fΛu,

which is an A-module, and let Σa Ď pΦC
a q´1pfΛq be a representative of

the set

ppΦC
a q´1pfΛq{fΛqzt0u.

Since R0 is flat over A, we have

(4.5) ΦfΛ
a pXq “ aX

ź

βPΣa

ˆ

1 ´
X

efΛpβq

˙

(see for example the proof of [Böc, Proposition 2.9]). In particular, it
is an Fq-linear additive polynomial of degree q2 degpaq.

Lemma 4.1. If we write as ΦΛ
t “ θ`a1τ `a2τ

2 for some ai P R0rrxss,
then we have

a1 P 1 ` xR0rrxss, a2 P xq´1R0rrxssˆ.
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Proof. The assertion on a1 follows from (4.4). That on a2 is proved by
the computation in the proof of [Böc, Lemma 2.10]. Indeed, we choose
a root η P K0ppxqqalg of the equation

ΦC
t pXq “ θX ` Xq “

1

x
.

Put Σ̃ “ tcη | c P Fˆ
q u, Σ0 “ tζ P K0ppxqqalg | ΦC

t pζq “ 0u and

Σt “ pΣ̃ ` Σ0q Y pΣ0zt0uq. By (4.5), we have a2 “ θ{p
ś

βPΣt
eΛpβqq.

The denominator
ś

βPΣt
eΛpβq is equal to

ź

βPΣ̃

ź

ζPΣ0

pβ ` ζq
ź

α‰0PΛ

ˆ

α ´ pβ ` ζq

α

˙

¨
ź

ζPΣ0zt0u

ζ
ź

α‰0PΛ

ˆ

α ´ ζ

α

˙

.

The first term is equal to

ź

βPΣ̃

ΦC
t pβq

ź

α‰0PΛ

ˆ

ΦC
t pα ´ βq

αq

˙

“

´

ś

cPFˆ
q
c
¯

xq´1
¨

ź

cPFˆ
q

ź

α‰0PΛ

θα ` αq ´ c
x

αq
.

By the definition (4.1) of Λ, any α ‰ 0 P Λ can be written as α “

ΦC
a p1{xq for some a ‰ 0 P A. Thus we have α “ x´qrh with r “ degpaq

and h P R0rrxssˆ, which yields pθα ` αq ´ c{xq{αq P 1 ` xR0rrxss. By
a similar computation, the second term is equal to

θ
ź

α‰0PΛ

θ ` αq´1

αq´1
P θp1 ` xR0rrxssq.

Hence we obtain the assertion on a2. □

Using Lemma 4.1 and the map νf , we see that the polynomials ΦfΛ
a

define a structure of a Drinfeld module of rank two over T0. We refer
to it as the Tate-Drinfeld module TDpfΛq over T0.

Lemma 4.2. For any monic polynomial m P A, there exists a natural
A-linear closed immersion λfΛ

8,m : Crms Ñ TDpfΛq over T0 satisfying

ν˚
f pλΛ

8,mq “ λfΛ
8,m. In particular, the Tate-Drinfeld module TDpfΛq is

endowed with a natural Γ1pnq-structure λfΛ
8,n over T0.

Proof. Let R0rrxssxZy be the x-adic completion of the ring R0rrxssrZs.
We have a natural map

i : R0rrxssrZs{pΦC
mpZqq Ñ R0rrxssxZy{pΦC

mpZqq.

Since ΦC
mpZq P R0rZs is monic, the ring on the left-hand side is finite

over the x-adically complete Noetherian ring R0rrxss. Hence this ring



ON THE COMPACTIFICATION OF THE DRINFELD MODULAR CURVE 13

is also x-adically complete and the map i is an isomorphism. Since
R0rrxssttZuu Ď R0rrxssxZy, the map

R0rrxssrXs Ñ R0rrxssttZuu, X ÞÑ efΛpZq

induces a homomorphism of Hopf algebras

R0ppxqqrXs Ñ R0rrxssxZyr1{xs{pΦC
mpZqq

i´1

Ñ R0ppxqqrZs{pΦC
mpZqq,

which we denote by pλfΛ
8,mq˚. In the ringRrrxssxZy, we have ΦfΛ

a pefΛpZqq “

efΛpΦC
a pZqq for any a P A and this implies that the map pλfΛ

8,mq˚ is
compatible with A-actions. Thus we obtain a homomorphism of finite
locally free A-module schemes over T0

λfΛ
8,m : Crms Ñ TDpfΛqrms

which is compatible with the map νf .
To prove that it is a closed immersion, it is enough to show that

the map R0rrxssrXs Ñ R0rrxssxZy{pΦC
mpZqq defined by X ÞÑ efΛpZq is

surjective. Since the right-hand side is x-adically complete, it suffices
to show the surjectivity modulo x, which follows from (4.2). □
Lemma 4.3. Let D be any finite flat R0ppxqq-algebra whose restriction
to FracpR0ppxqqq is etale, and δ any element of D. Let D be the integral
closure of R0rrxss in D. We consider D as a topological ring by taking
txlDulPZě0 as a fundamental system of neighborhoods of 0 P D. Then,
for any F pXq P R0ppxqqttXuu, the evaluation F pδq converges for any
δ P D. In particular, we have an Fq-linear map efΛ : D Ñ D which is
functorial on D.

Proof. We haveDr1{xs “ D. SinceR0 is excellent, so is the power series
ring R0rrxss. Thus D is finite over R0rrxss and x-adically complete.
(Here the fact that R0rrxss is excellent follows from an unpublished
work of Gabber [KS, Main Theorem 2]. If we assume that R0 is regular,
then the finiteness of D follows from [Mat, Proposition (31.B)]. This is
the only case we need.) This implies that the evaluation F pδq converges
and defines an element of D. □

Put HfΛ
8,m “ TDpfΛqrms{ImpλfΛ

8,mq and

(4.6) BfΛ
0,m “ R0ppxqqrηs{pΦC

mpηq ´ ΦC
f p1{xqq.

Then SpecpBfΛ
0,mq is a finite flat Crms-torsor over T0. Since m is invert-

ible in K0, it is etale over FracpR0ppxqqq.

Lemma 4.4. For any monic polynomial m P A, there exists an A-
linear isomorphism µfΛ

8,m : A{pmq Ñ HfΛ
8,m which is compatible with the

map νf such that the image of µfΛ
8 p1q P HfΛ

8,mpT0q in HfΛ
8,mpBfΛ

0,mq is
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equal to the image efΛpηq of the element efΛpηq P TDpfΛqrmspBfΛ
0,mq.

In particular, we have an exact sequence of A-module schemes over T0

(4.7) 0 // Crms
λfΛ

8,m // TDpfΛqrms
πfΛ

8,m // A{pmq // 0.

Proof. By Lemma 4.3, we have an element efΛpηq P TDpfΛqrmspBfΛ
0,mq.

Since its image efΛpηq in HfΛ
8,mpBfΛ

0,mq is invariant under the action of

Crms on BfΛ
0,m, we obtain efΛpηq P HfΛ

8,mpT0q. This yields an A-linear

homomorphism A{pmq Ñ HfΛ
8,m over T0 which is compatible with the

map νf .
To see that it is an isomorphism, using the map νf we reduce our-

selves to the case of f “ 1. Since the element m is invertible in K0,
using co-Lie complexes we obtain the exact sequence

0 // ωHΛ
8,m

// ωTDpΛqrms

pλΛ
8,mq˚

// ωCrms
// 0.

We also see that the natural sequence

0 // ωTDpΛq
m // ωTDpΛq

// ωTDpΛqrms
// 0

is exact and similarly for Crms. Since we have dpeΛpZqq “ dZ, the map
pλΛ

8,mq˚ is an isomorphism. Hence ωHΛ
8,m

“ 0 and HΛ
8,m is etale.

Now it is enough to show aeΛpηq ‰ 0 in HΛ
8,mpBfΛ

0,mq for any non-
zero element a P A{pmq. For this, we may assume R0 “ K0. In
this case, note that the polynomial ΦC

mpXq ´ 1{x is irreducible over
K0ppxqq, since the equation ΦC

mp1{Xq “ 1{x gives an Eisenstein exten-
sion over K0rrxss. Hence we may consider the ring BΛ

0,m as a subfield

of K0ppxqqalg. Let â P A be a lift of a satisfying degpâq ă degpmq.

The condition aeΛpηq “ 0 implies ΦC
â pηq ” ζ mod Λ for some root ζ of

ΦC
mpXq in K0ppxqqalg. By inspecting x-adic valuations it forces ζ “ 0,

and the irreducibility of ΦC
mpXq ´ 1{x implies â “ 0. This concludes

the proof. □

We often write λΛ
8,n, HΛ

8,n, B
Λ
0,n, µ

Λ
8,n and πΛ

8,n as λ8, H8, B0, µ8

and π8, respectively.
Put S0 “ SpecpR0ppyqqq and consider the morphism

σq´1 : T0 Ñ S0

defined by y ÞÑ xq´1. The S0-scheme T0 is a finite etale Fˆ
q -torsor,

where c P Fˆ
q acts on it by the R0-linear map

gc : R0ppxqq Ñ R0ppxqq, x ÞÑ c´1x.
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Since Λ is stable under this Fˆ
q -action, we see that the coefficients of

eΛpXq and ΦΛ
a pXq are in R0rrx

q´1ss for any a P A [Arm, §5C1]. This
means that there exists a unique pair of a Drinfeld module and its
Γ1pnq-structure over S0

pTD▽pΛq, λ▽
8q

satisfying σ˚
q´1pTD▽pΛq, λ▽

8q “ pTDpΛq, λ8q. Over T0, the Tate-Drinfeld

module TD▽pΛq|T0 “ TDpΛq has a Γ∆
1 pnq-structure

pTDpΛq, λ8, rµ8sq

with the element rµ8s P pIpTDpΛq,λ8q{∆qpT0q defined by µ8. We also
put

H▽
8 “ TD▽pΛqrns{Impλ▽

8q, I▽8 “ IsomA,S0pA{pnq,H▽
8q.

Lemma 4.5. There exists an isomorphism of finite etale Fˆ
q -torsors

over S0

T0 Ñ I▽8{∆.

Proof. It is enough to give an Fˆ
q -equivariant morphism T0 Ñ I▽8 over

S0, which amounts to giving an A-linear isomorphism µ : A{pnq Ñ H8

over T0 satisfying cµ “ g˚
c pµq for any c P Fˆ

q . The map gc extends to a
similar R0ppxqq-linear isomorphism on B0 via η ÞÑ cη, which we denote
by g̃c. Then the inclusion H8pR0ppxqqq Ñ H8pB0q is compatible with
gc and g̃c. Consider the isomorphism µ8 of Lemma 4.4. We have
g̃cpeΛpηqq “ eΛpcηq in B0 and this yields cµ8 “ g˚

c pµ8q. □

5. Structure around cusps I

Suppose moreover that R0 is regular. Note that Lemma 4.1 implies

(5.1) jtpTD
▽pΛqq P y´1R0rryssˆ.

We define a scheme {Cusps
∆

R0
by the cartesian diagram

{Cusps
∆

R0
//

��

X∆
1 pnqR0

��
SpecpR0rr

1
j
ssq // P1

R0

and put Cusps∆R0
“ p{Cusps

∆

R0
|V p1{jqqred. Since Y ∆

1 pnqR0 is regular and
(5.1) implies that the map jt induces an isomorphism

y▽ : S0 “ SpecpR0ppyqqq Ñ SpecpR0pp1{jqqq,
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we see as in the proof of [KM, Lemma 8.11.4] that {Cusps
∆

R0
is isomor-

phic to the normalization of S0 “ SpecpR0rryssq in the scheme Y ∆
1 pnqS0

defined by the cartesian diagram

Y ∆
1 pnqS0

//

��

Y ∆
1 pnqR0

��
S0

y▽
// SpecpR0pp1{jqqq // A1

R0
.

For ‚ P tH,∆u, let us consider the functor sending a scheme S over
S0 to the set of Γ‚

1pnq-structures on TD▽pΛq|S, which is representable
by a finite etale scheme rΓ‚

1pnqsTD▽ over S0. By Lemma 3.2 and Lemma
3.3, as in the proof of [KM, Corollary 8.4.4] we obtain a natural iso-
morphism

rΓ∆
1 pnqsTD▽{Fˆ

q Ñ Y ∆
1 pnqS0 ,

where Fˆ
q acts as the automorphism group of TD▽pΛq. Thus {Cusps

∆

R0

is isomorphic to the quotient Z∆
R0

{Fˆ
q of the normalization Z∆

R0
of S0 in

rΓ∆
1 pnqsTD▽ by the induced action of Fˆ

q . Note that we have a natural
identification

rΓ1pnqsTD▽ ˆS0 T0 “ rΓ1pnqsTD,

where the right-hand side is a similar finite etale scheme over T0 for
TDpΛq. We also put T0 “ SpecpR0rrxssq. It is normal since R0 is
regular.

Lemma 5.1. There exists a natural isomorphism over S0

rΓ1pnqsTD “ rΓ1pnqsTD▽ ˆS0 T0 Ñ rΓ∆
1 pnqsTD▽

which is compatible with actions of Fˆ
q “ AutA,S0pTD▽pΛqq. Here this

group acts on the left-hand side diagonally.

Proof. Let λ be the universal Γ1pnq-structure on TD▽pΛq over rΓ1pnqsTD▽ .
Taking the determinant of locally constant etale sheaves of locally free
A{pnq-modules, we obtain a natural isomorphism of A-module schemes
ι : H▽

8|rΓ1pnqsTD▽ Ñ TD▽pΛqrns{Impλq. Then, by Lemma 4.5, the map

pI▽8{∆q|rΓ1pnqsTD▽ Ñ rΓ∆
1 pnqsTD▽ , rpj : A{pnq Ñ H▽

8qs ÞÑ rι ˝ js

gives the desired isomorphism. □
Lemma 5.2. The scheme Z∆

R0
over S0 is decomposed as

Z∆
R0

“ Z∆,0
R0

\ Z∆,‰0
R0

, Z∆,0
R0

“
ž

pA{pnqqˆ

T0.
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Moreover, the group Fˆ
q “ AutA,S0pTD▽pΛqq induces free actions on

the two components of the former decomposition.

Proof. First note that, for any scheme S over An and any finite etale
A-module scheme G over S, the big fppf sheaf HomA,SpCrns,Gq is
representable by a finite etale A-module scheme over S and thus its
zero section is a closed and open immersion.

Since T0 is normal, Lemma 5.1 implies that Z∆
R0

is identified with
the normalization of T0 in the finite etale scheme rΓ1pnqsTD over T0.
For any scheme T over T0, we have an exact sequence of finite etale
A-module schemes over T

0 // Crns|T
λ8 // TDpΛqrns|T

π8 // A{pnq|T // 0.

Any Γ1pnq-structure λ : Crns|T Ñ TDpΛqrns|T over T induces an A-
linear homomorphism π8 ˝ λ : Crns|T Ñ A{pnq|T . This gives a mor-
phism over T0

rΓ1pnqsTD Ñ HomA,T0pCrns, A{pnqq “ T0 \ U,

where U is the complement of the zero section. Let rΓ1pnqs0TD be the
inverse image of T0. It is isomorphic to AutA,T0pCrnsq “ pA{pnqqˆ.

Since HomA,T0pCrns, A{pnqq is also a finite etale A-module scheme

over T0, it agrees with the normalization of T0 in HomA,T0pCrns, A{pnqq.

Moreover, it is etale locally isomorphic to A{pnq. Thus we obtain a map

Z∆
R0

Ñ HomA,T0pCrns, A{pnqq “ T0 \ U ,

where U is the complement of the zero section. Since U is etale locally
isomorphic to A{pnqzt0u, the group Fˆ

q acts freely on U .
Let Z∆,0

R0
and Z∆,‰0

R0
be the inverse images of T0 and U , respectively.

Since the component Z∆,0
R0

is the normalization of T0 in rΓ1pnqs0TD, the
latter decomposition of the lemma follows. Hence we also obtain the
freeness of the Fˆ

q -actions as in the lemma. □

The tuple pTDpΛq, λ8, rµ8sq over T0 gives a map T0 Ñ Y ∆
1 pnqR0 .

Since the ring R0rrxss is normal, this extends to a map

x∆
8 : T0 Ñ X∆

1 pnqR0 .

The R0-algebra homomorphism defined by x ÞÑ 0 gives a point P∆
8 P

X∆
1 pnqR0 , which we refer to as the 8-cusp. We write the complete local

ring at this point as ÔX∆
1 pnqR0

,P∆
8
.

Theorem 5.3. Suppose that R0 is a flat An-algebra which is an excel-
lent regular domain.
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(1) The map x∆
8 induces an isomorphism of complete local rings

px∆
8q˚ : ÔX∆

1 pnqR0
,P∆

8
Ñ R0rrxss.

(2) The invertible sheaf ω∆
un on Y ∆

1 pnqR0 extends to an invertible
sheaf ω̄∆

un on X∆
1 pnqR0 satisfying

px∆
8q˚pω̄∆

unq “ R0rrxssdX,

where dX denotes the invariant differential form of TD▽pΛq

associated to its parameter X.
(3) The formation of ω̄∆

un is compatible with any base change R0 Ñ

R1
0 of flat An-algebras which are excellent regular domains.

(4) The natural action of Fˆ
q on ω∆

un via c ÞÑ rcs∆ extends to an

action on ω̄∆
un covering its action on X∆

1 pnqR0.

Proof. The assertion (1) follows from Lemma 5.2. Moreover, Lemma
5.2 also implies that the trivial invertible sheaf OZ∆

R0
dX, with the nat-

ural Fˆ
q -action via X ÞÑ cX which covers the action on Z∆

R0
, descends

to the quotient Z∆
R0

{Fˆ
q » {Cusps

∆

R0
and we obtain ω̄∆

un by gluing. (3)
follows from the uniqueness of the descended sheaf.

For (4), Lemma 5.1 implies that rcs∆ acts on

P :“ rΓ∆
1 pnqsTD▽ » rΓ1pnqsTD▽ ˆS0 T0

via 1ˆ g˚
c . Thus, for the universal Γ1pnq-structure λ▽

un on TD▽pΛq over
rΓ1pnqsTD▽ , we have

rcs˚
∆pTD▽pΛq|P , λ

▽
un|Pq “ pTD▽pΛq|P , λ

▽
un|Pq.

Since any Γ1pnq-structure has no non-trivial automorphism, the natural
action of rcs∆ on ω∆

un|P{Fˆ
q
is the descent of the map given by

rcs˚
∆pOPdXq Ñ OPdX, dX b 1 ÞÑ dX.

Hence it extends to the sheaf OZ∆
R0
dX, and thus to ω̄∆

un. □

6. Structure around cusps II

Let WnpXq be the n-th Carlitz cyclotomic polynomial, namely the
unique monic prime factor of ΦC

n pXq in ArXs which does not divide
ΦC

mpXq for any non-trivial divisor m of n [Car, §3]. Then
I “ IsomA,R0pA{pnq, Crnsq

is represented by SpecpR0rXs{pWnpXqqq, which is finite etale over R0.
For any scheme S overR0, we put IS “ IˆR0S. LetRn be the affine ring
of a connected component of I, which is a finite etale domain over R0.
We denote by ζ the image ofX in Rn. In this section, we give an explicit
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description of the scheme rΓ∆
1 pnqsTD▽ over Sn “ SpecpRnppyqqq, from

which we obtain more precise information on the formal completion
along cusps.

Put Tn “ SpecpRnppxqqq. By Lemma 5.1, it is enough to describe the
restriction

rΓ1pnqsTD|Tn
“ rΓ1pnqsTD ˆT0 Tn.

For this, we denote by H the set of A-linear surjections pA{pnqq2 Ñ

A{pnq. By the map pa, bq ÞÑ ptpu, vq ÞÑ pa, bqtpu, vqq, we identify the
set H with tpa, bq P pA{pnqq2 | pa, bq “ p1qu. As in [KM, Proposition
10.2.4], for any Ξ P H we denote by kΞ the unique generator of KerpΞq

satisfying Ξplq “ detpkΞ, lq for any l P pA{pnqq2. We also choose lΞ P

pA{pnqq2 satisfying ΞplΞq “ 1. Then, for any g P GL2pA{pnqq there
exists a unique npg,Ξq P A{pnq satisfying

(6.1) lΞ˝g “ g´1plΞq ` npg,Ξqg´1pkΞq.

Put FixpΞq “ tg P GL2pA{pnqq | Ξ ˝ g “ Ξu. Considering the repre-
senting matrix for g with respect to the ordered basis pkΞ, lΞq, we have
an isomorphism

(6.2) FixpΞq Ñ

"ˆ

detpgq npg,Ξq

0 1

˙ ˇ

ˇ

ˇ

ˇ

g P FixpΞq

*

.

We denote by rΓpnqsTD|Tn
the scheme representing the functor over

Tn sending a Tn-scheme T to the set of Γpnq-structures on TDpΛq|T . It
is finite etale over Tn. By (4.7), to give α P rΓpnqsTD|Tn

pT q satisfying
π8 ˝α “ Ξ is the same as to give αpkΞq P CrnspT q inducing an A-linear
isomorphism A{pnq Ñ Crns and αplΞq P π´1

8 pr1sqpT q, where r1s is the

section Tn Ñ A{pnq corresponding to 1 P A{pnq.
By taking the determinant, we have an A-linear isomorphism of etale

sheaves of locally free A{pnq-modules

ω :
2

ľ

TDpΛqrns Ñ Crns,

which defines a map rΓpnqsTD|Tn
Ñ I by pα ÞÑ ω ˝ ^2αq. For any

scheme T over Tn, we say an element α P rΓpnqsTD|Tn
pT q is canonical if

the map ω ˝ ^2α : T Ñ I is equal to the structure map T Ñ Tn Ñ I.
The subfunctor of canonical elements is represented by a finite etale
scheme rΓpnqscanTD|Tn

over Tn.

Lemma 6.1. Put Bn “ Rnppxqqrηs{pΦC
n pηq ´ 1{xq. Then the map over

Tn
ž

ΞPH

SpecpBnq Ñ rΓpnqscanTD|Tn
,
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which is defined on the Ξ-component by the canonical Γpnq-structure
pkΞ, lΞq ÞÑ peΛpζq, eΛpηqq over Bn, is an isomorphism.

Proof. The element eΛpηq P Bn defines a map SpecpBnq Ñ π´1
8 pr1sq.

Since it is Crns-equivariant, it is an isomorphism of Crns-torsors over
Tn and the lemma follows. □

Put Γ̄1 “

"ˆ

˚ 0
˚ 1

˙

P GL2pA{pnqq

*

and Γ̄1
1 “ Γ̄1 X SL2pA{pnqq. For

any element f ‰ 0 P A, we define

Gf pwq “ wqdegpfq

´ xwqdegpfq

ΦC
f

ˆ

1

w

˙

P R0rrxssrws.

Then we have natural maps

R0rrwss // R0rrxssrws{pGf pwqq // R0rrwss

which are isomorphisms. Moreover, for any b P A{pnq, let fb be the
monic generator of the ideal AnnApbpA{pnqqq. Then fb divides n and
fb P Aˆ

n .

Lemma 6.2. The scheme rΓ∆
1 pnqsTD▽ over Sn is decomposed as

rΓ∆
1 pnqsTD▽ “

ž

pa,bq

SpecpRnppxqqrws{pGfbpwqqq »
ž

pa,bq

SpecpRnppwqqq.

Here the direct sum is taken over a complete representative of the set

tpa, bq P pA{pnqq2 | pa, bq “ p1qu{Γ̄1
1.

Proof. For any scheme T over Tn, any Γpnq-structure α on TDpΛq|T de-
fines a Γ1pnq-structure ζ ÞÑ αptp0, 1qq. Since we have SL2pA{pnqq{Γ̄1

1 “

GL2pA{pnqq{Γ̄1, Lemma 6.1 yields

rΓ1pnqsTD|Tn
“ rΓpnqscanTD|Tn

{Γ̄1
1 “

ž

ΞPH {Γ̄1
1

SpecpB
Γ̄1
1XFixpΞq

n q.

Note that, via the isomorphism of Lemma 6.1, any element g P Γ̄1
1 X

FixpΞq acts on Bn of the Ξ-component by

η ÞÑ η ` ΦC
npg,Ξqpζq.

For Ξ “ pa, bq, we have kΞ “ tpb,´aq and

Γ̄1
1 X FixpΞq “

"ˆ

1 0
pfbq{pnq 1

˙*

.

By the isomorphism (6.2), the additive subgroup

npΞq “ tnpg,Ξq P A{pnq | g P Γ̄1
1 X FixpΞqu
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is isomorphic to pfbq{pnq. In particular, they have the same cardinality.
On the other hand, for any g P Γ̄1

1 X FixpΞq, (6.1) yields bnpg,Ξq “ 0
and thus npΞq Ď pfbq{pnq. Hence they are equal.

Put hb “ n{fb. Consider the map

Rnppxqqrη1s{pΦC
fb

pη1q ´ 1{xq Ñ Bn, η1 ÞÑ ΦC
hb

pηq.

Note that the left-hand side is isomorphic to Rnpp1{η1qq and thus nor-

mal. Hence this map identifies the left-hand side with B
Γ̄1
1XFixpΞq

n . By
changing the variable as w “ 1{η1, Lemma 5.1 yields the decomposition
as in the lemma. □
Theorem 6.3. Suppose that R0 is a flat An-algebra which is an excel-
lent regular domain.

(1) We have a natural isomorphism over Rnrryss

{Cusps
∆

Rn
“

ž

pa,bq

SpecpRnrrxssrws{pGfbpwqqq »
ž

pa,bq

SpecpRnrrwssq.

Here the direct sum is taken over a complete representative of
the set

Fˆ
q ztpa, bq P pA{pnqq2 | pa, bq “ p1qu{Γ̄1

1.

(2) Cusps∆R0
is finite etale over R0. In particular, it defines an

effective Cartier divisor of X∆
1 pnqR0 over R0.

(3) At each point of Cusps∆R0
, the invertible sheaf

Ω1
X∆

1 pnqR0
{R0

p2Cusps∆R0
q

is locally generated by the section dx{x2.

Proof. Note that the ring Rnrrwss is normal. Since the group Fˆ
q acts

freely on the index set of the decomposition of Lemma 6.2, we ob-
tain the assertion (1), which implies the assertion (2) since we have
Cusps∆Rn

“ Cusps∆R0
ˆR0 SpecpRnq.

For the assertion (3), by a base change it is enough to show it over
Rn. Put e “ degpfbq and Gfbpwq “ wqe ´ xHpwq. Then we have
Hpwqdx “ xfbw

qe´2dw in Ω1
Rnrrwss{Rn

and

dw

w2
“

Hpwq

fb

dx

xwqe
“

1

fb

dx

x2
,

which concludes the proof. □

On the component of {Cusps
∆

Rn
corresponding to Ξ “ pa, bq, the pull-

back of TD▽pΛq agrees with TDpfbΛq over Rnppwqq with a universal
Γ∆
1 pnq-structure pλ, rµsq. Let us describe them explicitly. We set T 1

n “
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SpecpRnppwqqq, and consider the ring Rnppwqq as a subring of Bn as in
the proof of Lemma 6.2. Put

pPΞ, QΞq “ pefbΛpζq, efbΛpηqqpkΞ, lΞq´1.

Then we have QΞ P TDpfbΛqrnspT 1
nq and

(6.3) λ : CrnspT 1
nq Ñ TDpfbΛqrnspT 1

nq, ζ ÞÑ QΞ.

On the other hand, taking the determinant as in the proof of Lemma
5.1 yields

Crns b pTDpfbΛqrns{Impλqq Ñ

2
ľ

TDpfbΛqrns

ζ b pPΞ mod Impλqq ÞÑ QΞ ^ PΞ

and similarly for λfbΛ
8,n. Since detpkΞ, lΞq “ 1, we obtain an isomorphism

ι : H8|T 1
n

Ñ TDpfbΛqrns{Impλq

defined by efbΛpηq mod ImpλfbΛ
8,nq ÞÑ ´PΞ mod Impλq. Then we have

µ “ ι ˝ µfbΛ
8,n, which is given by

(6.4) µ : A{pnq Ñ TDpfbΛqrns{Impλq, 1 ÞÑ ´PΞ mod Impλq.

7. Case of level Γ∆
1 pn, ℘q

For the structure around cusps ofX∆
1 pn, ℘q, we first note that Y ∆

1 pn, ℘qR0

is normal near infinity in the sense of [KM, (8.6.2)] by Lemma 3.1.
Thus the description around cusps using Tate-Drinfeld modules and
normalization as in the beginning of §5 is also valid in this case.

The closed immersion λΛ
8,℘ : Cr℘s Ñ TDpΛq defines a Γ0p℘q-structure

on TDpΛq over T0. Hence we have a map

x∆,℘
8 : T0 Ñ X∆

1 pn, ℘qR0

and a point P∆,℘
8 P X∆

1 pn, ℘qR0 .
More generally, for any Ξ “ pa, bq P H , consider the map R0ppxqq Ñ

R0ppwqq “ R0ppxqqrws{pGfbpwqq and the Tate-Drinfeld module TDpfbΛq

over R0ppwqq. The latter has a canonical Γ0p℘q-structure C given

by the closed immersion λfbΛ
8,℘ of Lemma 4.2. We denote by Z “

rΓ0p℘qsTDpfbΛq the scheme representing the functor sending each scheme
T over R0ppwqq to the set of Γ0p℘q-structures on TDpfbΛq|T . It is finite
over R0ppwqq and thus Noetherian. We denote by Gun the universal
Γ0p℘q-structure on Z.

For any Noetherian scheme T over R0ppwqq and any Γ0p℘q-structure
G on TDpfbΛq|T , the theory of Hilbert schemes shows that the functor
HomT,ApG, A{p℘qq is representable, locally of finite presentation and
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separated over T . From the etaleness of A{p℘q, we see that the group

scheme HomT,ApG, A{p℘qq is also formally etale over T . Hence it is
etale over T and thus its zero section is a closed and open immersion.
We write its complement as UT .

By composing with πfbΛ
8,℘ : TDpfbΛqr℘s Ñ A{p℘q, the universal Γ0p℘q-

structure Gun gives a map

Z “ rΓ0p℘qsTDpfbΛq Ñ HomZ,ApGun, A{p℘qq “ Z \ UZ .

Hence the left-hand side is decomposed accordingly, and the component
over Z agrees with the section SpecpR0ppwqqq Ñ Z given by C. From
this, we can show that we have the same description of the complete
local ring at P∆,℘

8 P X∆
1 pn, ℘qR0 and a similar extended invertible sheaf

ω̄∆,℘
un which is compatible with ω̄∆

un, as in Theorem 5.3. Furthermore,
after passing to Rnppwqq, we can also show that the formal completion
of X∆

1 pn, ℘qRn along the cusp corresponding to C over the component
of Ξ is isomorphic to Rnrrwss via the projection to X∆

1 pnqRn . It can be
considered as a Drinfeld analogue of the unramified cusp of the modular
curve X0ppq.
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