ON THE COMPACTIFICATION OF THE DRINFELD
MODULAR CURVE OF LEVEL I'2(n)

SHIN HATTORI

ABSTRACT. Let p be a rational prime and ¢ a power of p. Let n
be a non-constant monic polynomial in F,[t] which has a prime
factor of degree prime to ¢ — 1. In this paper, we define a Drinfeld
modular curve Y2 (n) over A[1/n] and study the structure around
cusps of its compactification X (n), in a parallel way to Katz-
Mazur’s work on classical modular curves. Using them, we also
define a Hodge bundle over X{(n) such that Drinfeld modular
forms of level I';(n), weight k& and some type are identified with
global sections of its k-th tensor power.

1. INTRODUCTION

Let p be a rational prime and g a power of p. Put A = F[t],
Ky =F,((1/t)) and let C,, be the (1/t)-adic completion of an algebraic
closure of K. We denote by € the Drinfeld upper half plane C\ Ko,
which has a natural structure of a rigid analytic variety over K. Let
n and p be monic polynomials in A such that g is irreducible of degree
d > 0 and prime to n. We put

Iy(n) = {7 S GLQ(A)‘ N = (0 1) mod n}

and I';1(n) = I'1(n) n SLy(A). Let K be the p-adic completion of F,(t),
which is a complete discrete valuation field with uniformizer p.

For any k € Z and [ € Z/(q — 1), a Drinfeld modular form of level
I'y(n), weight k and type [ is a rigid analytic function f : Q@ — C,,
satisfying
f (az +2) = (ad — be) ez + d)¥ f(2) for any z € Q, <i Z) e'1(n)

cz +

and a certain holomorphy condition at cusps. It is a function field ana-
logue of the notion of elliptic modular form of level I'y (V) and weight k.
As in the latter case, for any non-constant n, Drinfeld modular forms
of level I'y (n), weight k£ and type [ can be considered as global sections
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of the k-th tensor power of a natural line bundle w¢, on an algebraic
curve Xi1(n)c,, over Cy called Drinfeld modular curve of level I'y;(n).
The curve Xy, (n)c,, is the compactification of an affine algebraic curve
Yi1(n)c,, such that Yi;(n)c, (Cy) is identified with I'yq (n)\Q.

We also have a g-adic version of the notion of Drinfeld modular
form—g-adic Drinfeld modular form [Vin, Gos2]. The latter is defined
as the p-adic limit in K|[[x]] of Fourier expansions at co of Drinfeld
modular forms with expansion coefficients in (). It is expected that
Drinfeld modular forms have deep p-adic properties which are compa-
rable to p-adic properties of elliptic modular forms. Note that, in order
to develop a geometric theory of p-adic Drinfeld modular forms such
that each form is determined by the Fourier expansion at oo, we need
to consider it over a Drinfeld modular curve which is geometrically
connected. Thus, to investigate p-adic properties of Drinfeld modular
forms, we need to define models X and w of Xj;(n)c, and we, over
A[1/n] so that we can pass to Ok.

The problem is that, in the literature [Dri, Gosl, Gekl, Gek2, Gek3,
vdPT, vdH, Boc, Pin], arithmetic compactifications of Drinfeld modu-
lar curves are constructed by taking the quotient of the Drinfeld modu-
lar curve X (n) of full level over A[1/n] by an appropriate group acting
on it. Since this group action is not necessarily free at cusps (in fact, the
element ((1) }) € I'11(n)/I'(n) stabilizes o0), it is unclear if the Hodge
bundle on X (n) descends to a line bundle over a model X over A[l/n]
constructed thereby. Though Pink [Pin] proved, at least on the generic
fiber, that the descent of the Hodge bundle works for the case where
the level structure is “fine”, for our situation the fineness condition
means that the Drinfeld modular curve is not geometrically connected,
and thus it is not suitable for studying g-adic Drinfeld modular forms.
To construct a Hodge bundle over a geometrically connected Drinfeld
modular curve over A[1/n], it seems that we need a more subtle study
of the formal completion along cusps.

In this paper, we carry it out by following the method of Katz-Mazur
[KM, (8.11)] in the case of classical modular curves. For this, we need
to assume that the level n has a prime factor of degree prime to ¢ — 1.
This ensures the existence of a subgroup A € (A/(n))* such that with
the natural inclusion Fy — (A4/(n))* we have A@Fy = (A/(n))*.
Under this mild assumption, a I'2(n)-structure is defined as a pair of
a usual 'y (n)-structure and an additional structure admitting an F)-
action. In particular, for any A[1/n]-algebra R, which is an excellent
regular ring, we have a fine moduli scheme Y/2(n) g, classifying Drinfeld
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modules with 'Y (n)-structures and also its compactification X2 (n)g,.
Then we can show that X{*(n)ap/m is a model of Xyi(n)c,. It also
enables us to control types of Drinfeld modular forms by a diamond
operator [Hat]. On the other hand, for the profinite completion A of A,
the T'2(n)-structure corresponds to a compact open subgroup K (n)

A

of GLy(A) which is not fine in the sense of Pink.

A
Let Cuspsp, be the formal completion of X{*(n)g, along the cusps
and Cuspsﬁ0 its reduction. Then we will prove the following theorems.

Theorem 1.1 (Theorem 5.3). Let Ry be a flat A[1/n]-algebra which is
an excellent reqular domain.
(1) Let P% be the oo-cusp of X{(n)g,. Then there exists a natural
isomorphism of complete local rings

(22)" : Oxp g, pa — Rolle]l.

(2) The Hodge bundle on Y/2(n)g, extends to an invertible sheaf

W on X (n)g, satisfying

(25)* (@) = Ro[[2]]dX,
where dX denotes an invariant differential form of a Tate-
Drinfeld module TD" (A).
(3) The formation of @ is compatible with any base change Ry —
Ry, of flat A[1/n]-algebras which are excellent reqular domains.
(4) There exist natural actions of ) on X{*(n)g, and on g, cov-
ering the former action.

Theorem 1.2 (Theorem 6.3). Let Ry be a flat A[1/n]-algebra which is
an excellent reqular domain. Let W, (X) be the n-th Carlitz cyclotomic
polynomial [Car] and R, the affine ring of a connected component of

Spec(Ro[X]/(Wa(X))). We also put

Fl = {7 & SLy(A/(n)| 7 = (1 ?) mod n}.

(1) We have a natural isomorphism
A
Cuspsg, X R, Fn > H Spec( Ra[[w]]),
(a,b)
where the direct sum is taken over a complete representative of
the set

Fo\{(a,) € (A/(m))* | (a,b) = (1)}/T}.

(2) Cuspsﬁ0 s finite etale over Ry. In particular, it defines an
effective Cartier divisor of X (n)g, over Ry.
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(3) For any (a,b) € (A/(n))? satisfying (a,b) = (1), we denote by
fo the monic generator of the ideal Anny(b(A/(n))) and by O
the fy-multiplication map of the Carlitz module C. Then, at
each point of Cusps.ﬁO in the component labeled by (a,b), the
invertible sheaf

Ol (2Cuspsg, )

X ()Ry/Ro

is locally generated by the section dx/x?, where x is defined by
1)z = ®f (1/w).

We also have similar results for the case of level I'Y(n) n To(p) (§7).

For the proof of the above theorems, the main differences from [KM]
are twofold: First, the j-invariant j; of the usual Tate-Drinfeld module,
which is used to study X (n) in the literature including [vdH], does not
give (the inverse of) a uniformizer of the j-line at the infinity, contrary
to the case of the Tate curve. For this, we use a descent TD"(A) of the
Tate-Drinfeld module by an F-action on the coefficients to obtain a
right j-invariant (see (5.1)). This enables us to study Drinfeld modular
curves directly by using a variant of [KM, Theorem 8.11.10], not via
X (n), and thus to construct a Hodge bundle @5 on X£(n)g, (§5).
As a trade-off, we need to consider I'f(n)-structures, not just I'y(n)-
structures, in order to kill an effect of the descent. The author learned
the idea of the use of the descent from a work of Armana [Arm)].

Second, since we are in the positive characteristic situation with wild
ramification along cusps, we cannot use Abhyankar’s lemma to study
the structure of X{(n)g, and @5, around cusps as in [KM, Theorem
8.6.8]. This is bypassed by a direct computation of the formal comple-
tion along each cusp over R, (§6).

In the paper [Hat|, the above theorems are combined with a dual-
ity theory of Taguchi [Tag] for Drinfeld modules of rank two, which
compensates the lack of autoduality for Drinfeld modules, to develop
a geometric theory of p-adic Drinfeld modular forms in a similar way
to [Kat].

Acknowledgments. This work was supported by JSPS KAKENHI
Grant Numbers JP26400016, JP17K05177.

2. DRINFELD MODULES

For any scheme S over F,, we denote the ¢g-th power Frobenius map
on S by Fg:S — S. For any S-scheme T and Og-module £, we put
TW =T xgp, S and L@ = F#(L). For any A-scheme S, the image of
t € A by the structure map A — Og(S) is denoted by 6.
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For any scheme S over [F, and any invertible Og-module £, we write
the associated covariant line bundle to £ as

V(L) = Specg(Symp, (£27))
with £L&7! := LY = Home,(L,Os). Tt represents the functor over

S defined by T'+— L|p(T'), where L|r denotes the pull-back to 7', and
thus we identify £ with V,(£). We have the ¢-th power Frobenius map

7oL LY 11,

by which we identify £(9 with £2?. This map induces a homomorphism
of group schemes over S

7: V(L) — V,(L£®).

Definition 2.1 ([Lau], Remark (1.2.2)). Let S be a scheme over A and
r a positive integer. A (standard) Drinfeld (A-)module of rank r over
S'is a pair E = (£, ®¥) of an invertible sheaf £ on S and an F -algebra
homomorphism
®F . A - Endg(V. (L))
satisfying the following conditions for any a € A\{0}:
e the image ®F of a by ®F is written as

rdeg(a)
oL = Z a;i(a)m’,  ag(a) € LET(S)
i=0
With o deg(a)(@) nowhere vanishing.
e ap(a) is equal to the image of a by the structure map A —

Os(9).
We often refer to the underlying A-module scheme V,(L£) as E. A
morphism (£, ®) — (L', ®’) of Drinfeld modules over S is defined to
be a morphism of A-module schemes V, (L) — V(L") over S.

We denote the Carlitz module over S by C': it is the Drinfeld module
(Og,®%) of rank one over S defined by ®¢ = 6 + 7. We identify

the underlying group scheme of C' with G, = Specg(Os[Z]) using
le 05(5)

Lemma 2.2. (1) Let E be a line bundle over S. Let H be a finite
locally free closed F,-submodule scheme of E over S. Suppose
that the rank of H is a constant q-power. Then E/H is a line
bundle over S.

(2) Let E be a Drinfeld module of rank r. Let H be a finite locally
free closed A-submodule scheme of E of constant q-power rank
over S. Suppose either
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o H is etale over S, or
e S is reduced and for any mazimal point n of S, the fiber
H,, of H overn is etale.

Then E/H is a Drinfeld module of rank r with the induced A-
action.

Proof. The assertion (1) follows in the same way as [Leh, Ch. 1, Propo-
sition 3.2]. For (2), we may assume that S = Spec(B) is affine, the
underlying invertible sheaves of F and E/H are trivial and # is free of
rank ¢" over S. We write the t-multiplication maps of £ and E/H as

OF(X) = 0X+a; X4 40, X7, B(X) = bgX +b; XU+ - +b, X9

with bs # 0. From the proof of [Leh, Ch. 1, Proposition 3.2, we may
also assume that the map F — E/H is defined by an F,-linear monic
additive polynomial

X PX)=p X+ +p X7 + X7

From the equality &/ (P(X)) = P(®(X)), we obtain r = s, b, = a?"
and p;(bp—0) = 0. If H is etale over B, then we have p; € B* and thus
by = 6. If the latter assumption in the lemma holds, then p; € B is a
non-zero divisor in the ring B/p for any minimal prime ideal p. Since
B is reduced, it is a subring of [ [ B/p, where the product is taken over
the set of minimal prime ideals p of B. This also yields by = 6, and
thus E/H is a Drinfeld module of rank r in both cases. U

Next let o be a monic irreducible polynomial of degree d > 0 in
A =TF,[t], as before. Let S be an A-scheme of characteristic p and £ =

(L, ®F) a Drinfeld module of rank two over S. By [Sha, Proposition
2.7], we can write as

OF = (ag(E) + - + aga(E)rN?,  oy(E) € £L879(3).

P

We put

Fip=1"1E— B, Vg = ag(E) + -+ + ag(E)T: EWY .

We also denote them by F; and V; if no confusion may occur. They
are isogenies of Drinfeld modules satisfying Vo F,; = (IDS and FyoVy =
®E [Sha, §2.8].

Definition 2.3. We say E is ordinary if ay(E) € L4 (5) is nowhere
vanishing, and supersingular if ay(E) = 0.

By [Sha, Proposition 2.14], E is ordinary if and only if Ker(V}) is
etale.



ON THE COMPACTIFICATION OF THE DRINFELD MODULAR CURVE 7

3. DRINFELD MODULAR CURVES

Let n be a non-constant monic polynomial in A = F,[¢] which is
prime to p. Put A, = A[1/n]. For any Drinfeld module E of rank
two over an A-scheme S and a non-constant monic polynomial m € A,
a I'(m)-structure on F is an A-linear homomorphism « : (A/(m))? —
E(S) inducing the equality of effective Cartier divisors of E

>, la(@] = Efm].

ag(A/(m))?

If m is invertible in S, then it is the same as an isomorphism of A-
module schemes a : (A/(m))? — E|m] over S, where the underline
means the constant A-module scheme. If m has at least two different
prime factors, then the functor over A sending S to the set of isomor-
phism classes of such pairs (F,«) over S is represented by a regular
affine scheme Y (m) of dimension two which is flat and of finite type over
A. Over A[l/m], for any non-constant m this functor is representable
by an affine scheme Y (m) which is smooth of relative dimension one
over A[1/m]. The natural left action of GLy(A/(m)) on (A/(m))? in-
duces a right action of this group on Y (m).

For any Drinfeld module F of rank two over an A,-scheme S, we de-
fine a I'; (n)-structure on E as a closed immersion of A-module schemes
A Cn] — E over S. Since C[n] is etale over S, we see that over a
finite etale cover of A, a I';(n)-structure on E is identified with a closed
immersion of A-module schemes A/(n) — E. Then [Fli, Proposition
4.2 (2)] implies that E has no non-trivial automorphism fixing A. Note
that the quotient F[n]/Im(\) is a finite etale A-module scheme over S
which is etale locally isomorphic to A/(n), and thus the functor

Fsoma s(A/(n), E[n]/Im(N))

is represented by a finite etale (A/(n))*-torsor I(g ) over S.

Consider the functor over A, sending an A,-scheme S to the set
of isomorphism classes [(E, A)] of pairs (E, A) consisting of a Drinfeld
module E of rank two over S and a I'y(n)-structure A on E. Then we
can show that this functor is representable by an affine scheme Y;(n)
which is smooth over A, of relative dimension one.

Suppose that there exists a prime factor q of n such that its residue
extension k(q)/F, is of degree prime to ¢—1. In this case, the inclusion
Fx — k(q)* splits and we can choose a subgroup A < (A/(n))* such
that the natural map A — (A/(n))*/FX is an isomorphism. For such
A, we define a T'f(n)-structure on E as a pair (), [p]) of a T'y(n)-
structure A on £ and an element [u] € (I(gx)/A)(S). We have a fine
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moduli scheme Y2 (n) of the isomorphism classes of triples (E, A, [u]),
which is finite etale over Yi(n). The universal Drinfeld module over
Y2(n) is denoted by E2 = V,(£2) and put

WA = Wpa = (EHAH)V7

un

where wga denotes the sheaf of invariant differential forms on EZ; .

For any Drinfeld module E over an A,-scheme S, a I'g(gp)-structure
on F is a finite locally free closed A-submodule scheme G of E[p| of
rank ¢ over S. Then we have a fine moduli scheme Y2 (n, p) classifying
tuples (E, A, [u], G) consisting of a Drinfeld module E of rank two over
an A,-scheme S, a T'2(n)-structure (\, [12]) and a [y(p)-structure G on
E. From the theory of Hilbert schemes, we see that the natural map
Y21, p) — Y2(n) is finite, and it is also etale over A,[1/p]. For any
Ay-algebra R, we write as Y2 (n)r = Y2 (n) x 4, Spec(R) and similarly
for other Drinfeld modular curves.

A Drinfeld modular curve similar to Y*(n, p) is also studied in
(Gek3]. In particular, in [Gek3, p. 232], it is claimed that we can argue
as in [DR, VI, Théoreme 6.9] to obtain its Drinfeld analogue. However,
the proof of the key lemma [DR, V, Lemme 1.12] seems incorrect as
pointed out by [Buz]. Here we give a proof in our case, following [Buz|.

Lemma 3.1. The natural map m: Y2 (n, p) — Y2 (n) is flat.

Proof. Note that Y2(n) is reduced. By [DR, V, Lemme 1.13], it is
enough to show that the rank of geometric fibers of 7 is constant. At
any geometric point of characteristic different from g, the map = is
finite etale of rank ¢¢ + 1.

Consider fibers over (p). Let k be an algebraically closed field
containing k(p) = A/(p) and E = Spec(k[X]) a Drinfeld module
over k with some I'2(n)-structure. Then E defines a geometric point
y € Y2 (n)y(p) (k). We denote by Z, the fiber of 7 over y. Note that, if
FE is ordinary, then the argument of [DR, DeRa-97, b1)] works verbatim
to show that Z, is of rank ¢% + 1.

Suppose that E is supersingular. By [Sha, Definition 2.11], the F,-
module scheme E[gp] is isomorphic to the additive F,-module scheme

(3.1) Spec(k[X]/(X7)).

Let F™ be the n-th iteration of the relative g-th Frobenius map of
E. Since the only factor of X4 of degree ¢ in k[X] is X', we see
that Ker(F9) gives the unique [y(gp)-structure on E. Thus we have
8Z,(k) = 1 and, since Z, is finite over k, it is local. Hence Z, is
determined by the valued points over local schemes which are finite
over k.
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Let (B, mp) be any local ring which is finite over k. Since B is finite,
we may identify its residue field with k. Let G be any I'¢(p)-structure
on Ep = E xj, Spec(B). Note that the affine algebra Og of G is mp-
adically complete. By 2Z,(k) = 1, the special fiber G, agrees with
Ker(F?), and thus the Noetherian B[X]-algebra Og is also X-adically
complete. Hence we may identify G as a closed formal A-submodule
scheme of the formal completion Ep = Spf(B[[X]]) of Ep along the
zero section. . R

The complete local ring A, of A at (p) acts naturally on Ep and G
is stable under the Ap—action. We write the action of a € flp on EB
as X — [a](X). Note that, for a = lim,_,4 a, with some sequence
{a,} < A, this action is given by

[a](X) = Jim [a,](X)

with respect to the X-adic topology of the ring B[[X]]. With the
canonical section k(p) — A, of the natural map A, — k(p), we con-
sider k(p) as a subring of A,. Then, for any a € k(p), the action [a]

induces the multiplication by a on the cotangent space of Ep via the
structure map k(p) — B. Replacing the formal parameter X by

- 2, o 'a(X),

aek(gp)>

we may assume [a](X) = aX for any a € k(p).
Let I < (X) be the kernel of the map B[[X]] — Og. Since G, =

Ker(F?), the ideal I ®p k is generated by X ¢ and Nakayama’s lemma
shows that I is generated by a lift of X 4. Then, by the Weierstrass
preparation theorem [Bou, Ch. VII, §3, no. 8, Proposition 6], we can

find a unique monic polynomial
F=X" 40, X" 4o f b X, biemp

which generates the ideal I. Since G is stable under the k(p)-action,
the uniqueness of the above polynomial yields

bi(a*i — 1) =0
for any i and any a € k(p)*. This gives f = X9 — bX with some

be mp. By (3.1), G is also killed by F** and the polynomial X —bX
divides X9 in the ring B[[X]]. Then we can write

X = (X7 —bX) Y X', ¢ €B,

=0
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which shows b7t = —bcy and Citgi-1) = bC(is1)(gi1) for any i = 0.
Since b is nilpotent, we obtain pa'+l = Q.
Thus to give G is the same as to give b € B satisfying b+l = 0, via

b SpE(B[X]]/(X* — bX)) < Ep.
Hence Z, is identified with
Spec(K[T1/(T"*)),
which is of rank ¢? + 1. This concludes the proof. O

Lemma 3.2. Y2(n, p) is smooth over A, outside finitely many super-
singular points on the fiber over (p).

Proof. Let B be an Artinian local A,-algebra of characteristic p and J
an ideal of B satisfying J? = 0. Let E be an ordinary Drinfeld module
of rank two over B/J and G a I'g(p)-structure on E. Since B is local,
the underlying invertible sheaf of F is trivial. It is enough to show that
the isomorphism class of the pair (£, G) lifts to B.

Since E is ordinary and B/J is Artinian local, we have ecither G =
Ker(Fy g) or the composite G — E[p] — Ker(V, g) is an isomorphism.
In the former case, write as ®F = 0 + a;7 + ao7%. For any lift a; € B
of a;, we can define a structure of a Drinfeld module of rank two over
B on E = Spec(B[X]) by putting ®F = 0 + a,7 + a,72, which is also
ordinary. Then G lifts to Ker(FdVE). In the latter case G is etale and,
by Lemma 2.2 (2), E/G has a structure of a Drinfeld module of rank
two. Moreover, it is also ordinary since (E/G)[p] has the etale quotient
G. Thus we have isomorphisms

F,
(E/g)(qd) g (E/G)/Ker(Fyp) ;f> E
sending Ker(V; g/g) to G. Since the above argument shows that /G

also lifts to an ordinary Drinfeld module F of rank two over B, the
pair (E,G) lifts to the pair (F(1"), Ker(V, 7)) over B. O

Remark 3.3. As in [DR, DeRa-99], Lemma 3.1 implies that Y2 (n, )
is Cohen-Macaulay. Moreover, combined with Lemma 3.2, it also im-
plies that Y®(n, p) is normal, and thus it agrees with the quotient of
Y (np) by a finite group, as considered in [Gek3].

Put Ky, = F,((1/t)) and let Cy, be the (1/t)-adic completion of an
algebraic closure of K. Let A; be the ring of finite adeles (namely,
the restricted direct product over the set of places of Fy(t) other than
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the (1/t)-adic one) and A its subring of elements which are integral at
all finite places. Let ) be the Drinfeld upper half plane over Cy. Put

gmodnd e (A 4/ 01))},

K{m) = {g € GLy(A) 0

L(n) = {g € GLy(4) ‘ g mod (n) = ((1) (1))}

and T'f(n) = GLy(A) n K{*(n). Since A* = F),
SLy(A). This yields

A (n) = {g & SLy(A) | g mod (n) e ((1) A/l("))}.

In particular, the group I'®(n) is independent of the choice of A. Note
that the natural right action of g € GLy(A/(n)) on Y (n)c,, corresponds
to the left action of ‘g on I'(n)\Q via the Mobius transformation. Since
F det(Kp(n)) = A%, [Dri, Proposition 6.6] implies that the analytifi-
cation of Y2 (n)c, is identified with

GLy(F(1)\Q x GLa(Af)/KT (n) = T (n)\L,

and thus the fiber Y2 (n)x, is geometrically connected. Similarly, we
see that Y2 (n, o)k, is also geometrically connected.

For any Drinfeld module E of rank two over S, we write the t-
multiplication map of E as ®F = 0 + a,7 + as7? and put

Ji(E) = @ @a@ e Os(9).
Consider the finite flat map
Jt YlA(“) - A,lal,, = Spec(Au[j]), J+ jt(Elﬁ”l)

and a similar finite map for Y;*(n, ). We define the compactifications
XA(n) and X2(n, p) of Y2(n) and Y2 (n, p) as the normalizations of
P in Y (n) and Y (n, p) via this map, respectively. As in [Sha, §7.2],
we see that X2(n) is smooth over A, and X2(n, ) is smooth over
Aq[1/p]. By a similar argument to the proof of [KM, Corollary 10.9.2],
Zariski’s connectedness theorem implies that each fiber of the map
X2(n) — Spec(4,) is geometrically connected, and so is X (n, p) —
Spec(Ay|1/p]). For any A,-algebra R which is Noetherian, excellent
and regular, we also have the compactifications X{*(n)z and X{*(n, p)r
of Y2(n)g and Y2 (n, p)g. From the smoothness of X{*(n), we have
Xf(m)gp = X{P(n) x4, Spec(R). The base change compatibility also
holds for X{(n, p)g if  is invertible in R.
On the other hand, the maps

LA D] = (B ad, (D], [CE A )] = (B A elul)]

we have I'?(n) <
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induce actions of the groups (A/(n))* and (4/(n))*/A = Fy on X{*(n)g.
We denote them by {(a), and {c)a, respectively.

Lemma 3.4. Let S be a scheme over A and E a Drinfeld module of
rank two over S. If j,(E) € Og(S) is invertible, then for the big fppf
sheaf <At 4 s(F) defined by

T [ AutA7T(E|T),

the natural map FY — it o s(E) is an isomorphism.

Proof. We may assume that S = Spec(B) is affine and the underlying
invertible sheaf of F is trivial. By [Fli, Proposition 4.2 (2)], any auto-
morphism of £ = Spec(B[X]) is linear, namely it is given by X +— bX
for some b € B*. Write as @f = 0 + a7 + as7®. From the assumption,
we have a; € B* and the equality ®F(bX) = b®F(X) yields b7 = 1.
Since the group scheme p,_; over F, is isomorphic to the constant

group scheme FX, so is y,_1|p over the [F,-algebra B. This concludes

the proof. O

Lemma 3.5. Let S be a scheme over A. Let E and E’ be Drinfeld
modules of rank two over S satisfying ji(F) = ji(E') € Og(S)*. Then
the big fppf sheaf Fsoma s(E, E') over S defined by

T— ISOIHA’T(E|T, EI|T)
is represented by a Galois covering of S with Galois group Fy.

Proof. By gluing, we reduce ourselves to the case where S = Spec(B)
is affine and the underlying line bundles of £ and E’ are trivial. We
write the t-multiplication maps of £ and E’ as

OF — 0+ ay7 +aym?, OF =0+ d\r + dyr?
with some ay,a] € B and ag,a, € B*. By assumption, we have
al™ Jay = (a})7 Jaly € B* and thus ay,d} € B*. Hence the scheme
J = Spec(B[Y]/(Y™ — a1 /d)))

is a finite etale FX-torsor over B. By Y + (X ~ Y X)), we obtain a map
of functors J — Fsomas(E, E"). To show that it is an isomorphism,
we may prove it over J. In this case, it follows from Lemma 3.4. [

4. TATE-DRINFELD MODULES

To investigate the structure around cusps of Drinfeld modular curves
and extend the sheaf w2 | we need to introduce Tate-Drinfeld modules.

Let Ry be a flat A,-algebra which is an excellent Noetherian domain
with fraction field Ky. Let Ry((z)) and Ko((z)) be the Laurent power
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series rings over Ry and Ky, respectively. Put Ty = Spec(Ry((z))).
We denote the normalized z-adic valuation on Ko((z)) by v,. We also
denote the ring of entire series over Ko((z)) by Ko((z)){{X}}; it is the
subring of Ko((z))[[X]] consisting of elements },_, a; X" satisfying

lim (v, (a;) + ip) = +oo for any p € R.
1—0

We put Ro[[2][{{X}} = Ko((2)){{X}} n Ro[[=]][[X]]-
Let (C, ®%) be the Carlitz module over Ry. For any non-zero element

feA, put

(4.1) fA = {cbj;‘a (i)

(42) enX) =X [] (1 - g) € X + 2 X2Ro[[][[XT]

a#0efA

ac A} < Ro((x)),

as in [Leh, Ch. 5, §2]. Note that any non-zero element of fA is invertible
in Ry((x)). We consider fA as an A-module via ®¢. Then it is a free
A-module of rank one, and it is also discrete inside Ky((z)). Hence the
power series ey (X) is entire, and it is an element of Ro[[z]][{{X}}.

Put
1

=_——~€
o7 (2)
Then = — Fy(z) defines an Ry-algebra homomorphism I/ff : Ro((z)) —
Ro((z)) and a map vy : Ty — Tp. For any element h(X) = Y, ¢, X" €
Ro((2))[[X]], we put v}(h)(X) = >}, v5(a;)X*. Then we have v}(A) =
fA and vi(ea)(X) = epn(X).
For any element a € A, consider the power series

Fy(z) 2T EX (1 + 2 Ro[[2]]).

(4.3) OINX) = esa(®F (e (X))) € Rol[#11[[X]].
Note that (4.2) yields
(4.4) I X) = @Y(X) mod xRy[[z]] for any a € A.

Let Ko((z))™# be an algebraic closure of Ky((x)). For any a € A, put

(25) 1 (fA) = {y € Ko((2))™* | ©F(y) € A},
which is an A-module, and let &, < (®¢)~'(fA) be a representative of

the set
(@) (fN)/FMI\{0}.

Since Ry is flat over A, we have

(1.5 o200 = ax T (1-75)

fes, esa()
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(see for example the proof of [Béc, Proposition 2.9]). In particular, it
is an F,-linear additive polynomial of degree g?d°&(®).

Lemma 4.1. If we write as ® = 0+ a,7+ as7? for some a; € Ry[[z]],
then we have

ay € 1+ zRo[[z]], a2 e 2 Ro[[z]]*.

Proof. The assertion on a; follows from (4.4). That on ay is proved by
the computation in the proof of [Boc, Lemma 2.10]. Indeed, we choose
a root n € Ko((x))™® of the equation

1
PY(X)=0X +X7= =
i

Put £ = {en | c € FX}, Sy = {¢ € Ko((x))™& | () = 0} and
Y = (8 + %) u (X0\{0}). By (4.5), we have az = 0/(] ] ex, €a(83))-
The denominator [ [y, ea(8) is equal to

The first term is equal to

[TT1¢+o I] (ﬂ) M (
[Tef® 1 (‘I’?<Zq—ﬂ>> (11 L ) R

Bes CeXo a#0eA CeXo\{0} az#0eA
BES a#0eA ey a#0eA

By the definition (4.1) of A, any a # 0 € A can be written as o =
®Y(1/x) for some a # 0 € A. Thus we have o = 277 h with r = deg(a)
and h € Ro[[z]]*, which yields (o + a? — c/x)/a? € 1 + xRy[[z]]. By
a similar computation, the second term is equal to

o TT 252 e 001 + whollal)).

a#0eA

Hence we obtain the assertion on as. ]

Using Lemma 4.1 and the map vy, we see that the polynomials ®/4
define a structure of a Drinfeld module of rank two over T;. We refer
to it as the Tate-Drinfeld module TD(fA) over T.

Lemma 4.2. For any monic polynomial m € A, there exists a natural
A-linear closed immersion M - C[m] — TD(fA) over Ty satisfying
ViAo m) = M. In particular, the Tate-Drinfeld module TD(fA) is

endowed with a natural Ty (n)-structure My over Ty.
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Proof. Let Ro[[x]]{Z) be the z-adic completion of the ring Ry[[z]][Z].
We have a natural map

i Rol[2]][2]/(25(2)) — Bol[]KZ)/(25(2)).
Since ®¢(Z) € Ry[Z] is monic, the ring on the left-hand side is finite

over the z-adically complete Noetherian ring Ry[[x]]. Hence this ring
is also x-adically complete and the map ¢ is an isomorphism. Since

Ro[[«]1{{Z}} < Rol[#]]<Z), the map
Ro[[«]][X] = Ro[[«]l{{Z}}, X — esn(Z)

induces a homomorphism of Hopf algebras

Ro((2))[X] = Ro[[z]KZ)[1/2]/(2(Z)) = Ro((x))[Z)/(®(2),
which we denote by (A)*. In the ring R[[z]](Z), we have ®IA (e (Z))
esa(®C(Z)) for any a € A and this implies that the map (Miy)* is
compatible with A-actions. Thus we obtain a homomorphism of finite
locally free A-module schemes over Ty

A+ C[m] — TD(fA)[m]

which is compatible with the map vy.

To prove that it is a closed immersion, it is enough to show that
the map Ro[[2]][X] — Ro[[]KZ)/(2(Z)) defined by X > e;a(Z) is
surjective. Since the right-hand side is z-adically complete, it suffices
to show the surjectivity modulo x, which follows from (4.2). O

Lemma 4.3. Let D be any finite flat Ry((x))-algebra whose restriction
to Frac(Ry((z))) is etale, and § any element of D. Let D be the integral
closure of Ry[[x]] in D. We consider D as a topological ring by taking
{xlD}leZZO as a fundamental system of neighborhoods of 0 € D. Then,
for any F(X) € Ro((x)){{X}}, the evaluation F(§) converges for any
0 e D. In particular, we have an F-linear map egp : D — D which is
functorial on D.

Proof. We have D[1/z] = D. Since R is excellent, so is the power series
ring Ro[[z]]. Thus D is finite over Ro[[z]] and z-adically complete.
(Here the fact that Ry[[z]] is excellent follows from an unpublished
work of Gabber [KS, Main Theorem 2]. If we assume that Ry is regular,
then the finiteness of D follows from [Mat, Proposition (31.B)]. This is
the only case we need.) This implies that the evaluation F'(§) converges
and defines an element of D. O

Put Hih, = TD(fA)[m]/Im(A) and
(4.6) Bim = Ro((2))[n]/(®5 (1) — F (1/x)).
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Then Spec(Bgﬁl) is a finite flat C[m]-torsor over Tj. Since m is invert-
ible in Ky, it is etale over Frac(Ry((z))).

Lemma 4.4. For any monic polynomial m € A, there exists an A-
linear isomorphism ui:o/,\m :A/(m) — HécoAm which is compatible with the
map vy such that the image of pl (1) € Him(Ty) in HgoAm(Bgﬁ) is
equal to the image epp(n) of the element esa(n) € TD(fA)[m](Bgi).
In particular, we have an exact sequence of A-module schemes over T

(4.7) 0 — C[m] ﬁTD(fA)[m] iA/(m) — .

Proof. By Lemma 4.3, we have an element ey (n) € TD(fA) [m](Bgﬁ;)

Since its image efa(n) in HéAm(Bgﬁl) is invariant under the action of

C[m] on B{:

0,m>»

we obtain ey () € Hlowm(Ty). This yields an A-linear
homomorphism A/(m) — Hi, over T, which is compatible with the
map vy.

To see that it is an isomorphism, using the map vy we reduce our-
selves to the case of f = 1. Since the element m is invertible in K,
using co-Lie complexes we obtain the exact sequence

A m)*
00— WYns , —— WTD(A)[m] —— WC[m] — ().

We also see that the natural sequence
0 — WTD(A) — > WTD(A) —> WTD(A)[m] — ()

is exact and similarly for C'[m]. Since we have d(e(Z)) = dZ, the map
()\&,m)* is an isomorphism. Hence wys =0 and Hgm is etale.

Now it is enough to show aex(n) # 0 in Hé’m(Bgﬁl) for any non-
zero element a € A/(m). For this, we may assume Ry = K. In
this case, note that the polynomial ®<(X) — 1/ is irreducible over
Ko(()), since the equation ®¢(1/X) = 1/x gives an Eisenstein exten-
sion over Ko[[z]]. Hence we may consider the ring Bf,, as a subfield
of Ko((x))®8. Let @ € A be a lift of a satisfying deg(a) < deg(m).
The condition aex(n) = 0 implies ®¢ (1) = ¢ mod A for some root ¢ of
®C(X) in Ko((x))*8. By inspecting z-adic valuations it forces ¢ = 0,
and the irreducibility of ®¢(X) — 1/x implies @ = 0. This concludes
the proof. 0

We often write )\é}m, ’Hg’n, B&m u&’n and Wé\o,n as Ao, Hoo, Bo, oo
and 7, respectively.
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Put Sy = Spec(Ry((y))) and consider the morphism
Og-1 - TO i S(]

defined by y + 2971, The Sy-scheme Ty is a finite etale I -torsor,
where c € Fy* acts on it by the Ry-linear map

go : Ro((7)) — Ro((z)), x> c 2.
Since A is stable under this [F-action, we see that the coefficients of
ea(X) and @A (X) are in Ry[[z7!]] for any a € A [Arm, §5C1]. This

means that there exists a unique pair of a Drinfeld module and its
I'; (n)-structure over Sp

(TDY(A), A%)
satisfying o | (TD"(A),A\},) = (TD(A), Ays). Over Ty, the Tate-Drinfeld
module TDY(A)|z, = TD(A) has a T'®(n)-structure

(TD(A), Aos [12e0])

with the element [ji0] € (Lrp(A)r)/A)(Th) defined by pie. We also
put

Hy = TDH(N)[n]/Im(Ap), 15 = Fsomas,(A/(n), Hy)-

Lemma 4.5. There exists an isomorphism of finite etale Fy-torsors

over Sy

Proof. Tt is enough to give an F-equivariant morphism Ty — I over
So, which amounts to giving an A-linear isomorphism p : A/(n) — He,

over Ty satistying cu = g% (u) for any c € Fy*. The map g, extends to a
similar Ry((z))-linear isomorphism on By via ) — c¢n, which we denote
by ge. Then the inclusion Hq (Ro((x))) = Ho(Bo) is compatible with
g. and g.. Consider the isomorphism i, of Lemma 4.4. We have
ge(ea(n)) = ealen) in By and this yields cue = g3 (Hoo)- O

5. STRUCTURE AROUND CUSPS I
Suppose moreover that Ry is regular. Note that Lemma 4.1 implies
(5.1) J(TDY(A)) € y~ Rol[y]]*-
We define a scheme @:0 by the cartesian diagram

A
CUSPSRO - XlA(n)Ro

| |




18 SHIN HATTORI

A
and put CuspsﬁO = (Cuspsg, [v(1/j))rea. Since Y{*(n)g, is regular and
(5.1) implies that the map j; induces an isomorphism

y" : So = Spec(Ro((y))) — Spec(Ro((1/1))),

_—— A
we see as in the proof of [KM, Lemma 8.11.4] that Cuspsp, is isomor-
phic to the normalization of Sy = Spec(Ry[[y]]) in the scheme Y;*(n)g,
defined by the cartesian diagram

Y2 (n)s, Y2 (1) g,
So —5—= Spec(Fo((1/7))) Ak,

For e € {7, A}, let us consider the functor sending a scheme S over
So to the set of T'j(n)-structures on TD"(A)|g, which is representable
by a finite etale scheme [I'} (n)]rpv over Sy. By Lemma 3.4 and Lemma
3.5, as in the proof of [KM, Corollary 8.4.4] we obtain a natural iso-
morphism

[FlA(n)]TDV/F; - YlA(“)So,

where F acts as the automorphism group of TD"(A). Thus C/us?ﬁgo
is isomorphic to the quotient Z]%O /IFqX of the normalization Z}%O of Sy in
[LF ()] rpe by the induced action of F. Note that we have a natural
identification

[[1(n)]rpv xs, To = [['1(n)]rp,
where the right-hand side is a similar finite etale scheme over T} for
TD(A). We also put Ty = Spec(Rp[[z]]). It is normal since Ry is
regular.

Lemma 5.1. There exists a natural isomorphism over Sy

[T1(m)]rp = [T1(0)]rpe x5, To — [IF ()] rpe

which is compatible with actions of FY = Auta s, (TDY(A)). Here this
group acts on the left-hand side diagonally.

Proof. Let A be the universal 'y (n)-structure on TD"(A) over [Ty (n)]pv.
Taking the determinant of locally constant etale sheaves of locally free
A/(n)-modules, we obtain a natural isomorphism of A-module schemes
L 1o ir e — TDY(A)[n]/Im(X). Then, by Lemma 4.5, the map
(/D) s wpe = [PT)]rpe, [ A/ () = HL)] = [e0]

gives the desired isomorphism. 0
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Lemma 5.2. The scheme Zg over Sy is decomposed as

Zh = ZRP L ZRT, 2 ]_[ To.
(A/(w)

Moreover, the group Fy = Autyg,(TDY(A)) induces free actions on
the two components of the former decomposition.

Proof. First note that, for any scheme S over A, and any finite etale
A-module scheme G over S, the big fppf sheaf F#om 4 s(C[n],G) is
representable by a finite etale A-module scheme over S and thus its
zero section is a closed and open immersion.

Since Ty is normal, Lemma 5.1 implies that Z]%O is identified with
the normalization of 7y in the finite etale scheme [I'y(n)]rp over Tj.
For any scheme T over T, we have an exact sequence of finite etale
A-module schemes over T’

0 —> Cln]|r —2= TD(A)[n]|r == A/(0)|z — 0,
)

over T induces an A-

Any T'y(n)-structure A : C[n]|z — TD I
(n)|r. This gives a mor-

(A
linear homomorphism 7, o A @ C[n]|r —
phism over Tj

[T (W)]rp — Homaz, (Cln], A/()) = Tou U,

[
A

where U is the complement of the zero section. Let [I';(n)]%p be the
inverse image of Tj. It is isomorphic to @it 4 7, (Cn]) = (4/(n))*.
Since Homa7,(C[n], A/(n)) is also a finite etale A-module scheme
over To, it agrees with the normalization of 7g in #om 4 7, (C[n], A/(n)).
Moreover, it is etale locally isomorphic to A/(n). Thus we obtain a map

Zg, — Homag,(Cn], A/(n) = To 0 U,
where U is the complement of the zero section. Since U is etale locally
isomorphic to A/(n)\{0}, the group F) acts freely on U.

Let Zﬁo’o and Zﬁ(f&o be the inverse images of 7y and U, respectively.

Since the component Zﬁo’o is the normalization of 7p in [['y(n)]}p, the
latter decomposition of the lemma follows. Hence we also obtain the
freeness of the F-actions as in the lemma. O

The tuple (TD(A), A, [1e]) over Tp gives a map Ty — Y (n)g,.
Since the ring Ro[[x]] is normal, this extends to a map

:L‘é : 76 - XlA(n)Ro
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The Rg-algebra homomorphism defined by = ~— 0 gives a point P2 €
X£(n)p,, which we refer to as the oo-cusp. We write the complete local
ring at this point as OXIA(H)RWP%.

Theorem 5.3. Suppose that Ry is a flat An-algebra which is an excel-
lent regular domain.

(1) The map =2 induces an isomorphism of complete local rings
Ak . A
(22)" * Oxp(uyp,.pa = Roll2]]-

(2) The invertible sheaf w5, on Y{2(n)g, extends to an invertible

sheaf @3 on X (n)g, satisfying
(25)* (@) = Ro[[2]]dX,

where dX denotes the invariant differential form of TDY(A)
associated to its parameter X.

(3) The formation of @2, is compatible with any base change Ry —
R}, of flat Ay-algebras which are excellent regular domains.

(4) The natural action of ) on wg, via ¢ — [c]a extends to an

un
A

action on Wy,

covering its action on X (n)g,.

Proof. The assertion (1) follows from Lemma 5.2. Moreover, Lemma
5.2 also implies that the trivial invertible sheaf O 24 dX, with the nat-
0

ural Fx-action via X ~— cX which covers the action on Zg , descends

—— A
to the quotient Zgz /F ~ Cuspsy, and we obtain w3, by gluing. (3)
follows from the uniqueness of the descended sheaf.
For (4), Lemma 5.1 implies that [c]a acts on

P =D (W)]rpy = [T1(W)]rpe x5 To

via 1 x g*. Thus, for the universal I';(n)-structure A7, on TD"(A) over
[T'1(n)]rpv, we have

[c]A(TDY(A)|p, Aiul») = (TDY(A)|p, Aulp)-

Since any I'; (n)-structure has no non-trivial automorphism, the natural
action of [c]a on Wi | sr; is the descent of the map given by

[c]4(OpdX) - OpdX, dX @1 — dX.

Hence it extends to the sheat Oza dX, and thus to Wa.. O
‘0
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6. STRUCTURE AROUND CUSPS 11

Let W,(X) be the n-th Carlitz cyclotomic polynomial, namely the
unique monic prime factor of ®¢(X) in A[X] which does not divide
®Y(X) for any non-trivial divisor m of n [Car, §3]. Then

I = Fsomy p,(A/(n),C[n])

is represented by Spec(Ro[X]/(Wa(X))), which is finite etale over Ry.
For any scheme S over Ry, we put g = I xp,S. Let R, be the affine ring
of a connected component of I, which is a finite etale domain over Rj.
We denote by ( the image of X in R,,. In this section, we give an explicit
description of the scheme [['{(n)]rpv over S, = Spec(Ra((y))), from
which we obtain more precise information on the formal completion
along cusps.

Put T, = Spec(R,((x))). By Lemma 5.1, it is enough to describe the
restriction

[1(W)]rpyy, = [T1(W)]rp 1 T

For this, we denote by J# the set of A-linear surjections (A/(n))? —
A/(n). By the map (a,b) — ((u,v) — (a,b)(u,v)), we identify the
set S with {(a,b) € (A/(n))? | (a,b) = (1)}. As in [KM, Proposition
10.2.4], for any = € % we denote by k= the unique generator of Ker(Z)
satisfying Z(I) = det(kz,!) for any [ € (A/(n))%. We also choose Iz €
(A/(n))? satisfying =(lz) = 1. Then, for any g € GLy(A/(n)) there
exists a unique n(g, =) € A/(n) satisfying

(6.1) lzog = g *(Iz) + n(g,2)g *(k=).

Put Fix(Z) = {g € GLy(A/(n)) | =0 g = Z}. Considering the repre-
senting matrix for g with respect to the ordered basis (kz, =), we have
an isomorphism

(6.2) Fix(Z) — {(deto(9> e E)) ‘ ge Fix(E)} |

We denote by [['(n)]rp),, the scheme representing the functor over
T, sending a Ty-scheme 7' to the set of I'(n)-structures on TD(A)|p. It
is finite etale over T,. By (4.7), to give a € [I'(n)]rpy,, (T) satisfying
T 0 = Z is the same as to give a(kz) € C[n](T) inducing an A-linear
isomorphism A/(n) — C[n] and «a(lz) € 7' ([1])(T), where [1] is the
section T, — A/(n) corresponding to 1 € A/(n).

By taking the determinant, we have an A-linear isomorphism of etale
sheaves of locally free A/(n)-modules

w: /\ TD(A)[n] — C[n],
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which defines a map [['(n)]rp;, — I by (@ — wo A%a). For any
scheme T' over Ty, we say an element a € [I'(n)]rpj,, (T) is canonical if
the map wo A2a : T — [ is equal to the structure map 7" — T, — 1.
The subfunctor of canonical elements is represented by a finite etale
scheme [['(n)]p, . over T,.

;emma 6.1. Put B, = R.((2))[n]/(®S (n) — 1/z). Then the map over
[ [ Spec(Ba) — )55,

ZeH
which is defined on the =Z-component by the canonical T'(n)-structure
(k=,lz) — (ea(C),en(n)) over By, is an isomorphism.

Proof. The element e, (n) € B, defines a map Spec(B,) — 7' ([1])-
Since it is C[n]-equivariant, it is an isomorphism of C|[n]-torsors over
T, and the lemma follows. [

Put ['; = {( (1)) € GLQ(A/(n))} and T'! = I'y n SLy(A/(n)). For
any element f # 0 e A, we define

eg eg 1
Gf(w) _ wqd (€2) _rw q¢ (f)CDC (E) c Ro[[x]] [w]
Then we have natural maps

Ro[[w]] — Rol[]][w]/(G s (w)) — Ro[[w]]

which are isomorphisms. Moreover, for any b € A/(n), let f, be the
monic generator of the ideal Anny(b(A/(n))). Then f, divides n and
fb € AIT .

Lemma 6.2. The scheme [FlA(n)]TDv over Sy 1is decomposed as
Yoy = ]_[ Spec(Ra((x))[w]/(Gy, (w H Spec(Ry((w))).
(a,b) (a,b)
Here the direct sum is taken over a complete representative of the set
{(a,b) € (A/(n)* | (a,b) = (1)}/T1.

Proof. For any scheme T over Ty, any I'(n)-structure a on TD(A)|7 de-
fines a I'y(n)-structure ¢ — a('(0,1)). Since we have SLy(A/(n))/I' =
GLy(A/(n))/T'1, Lemma 6.1 yields

can lmle
[Fl(n)]Tkan = [['(n) TD|T,,/Fl | | Spec(B )
Zes# )T}
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Note that, via the isomorphism of Lemma 6.1, any element g € I'} n
Fix(Z) acts on B, of the Z-component by

N+ @S(g,s)(é)-
For = = (a,b), we have kz = (b, —a) and

P = { (e 1)}

By the isomorphism (6.2), the additive subgroup

n(Z) = {n(g,=) € A/(n) | g€ T} N Fix(2)}
is isomorphic to (fy)/(n). In particular, they have the same cardinality.
On the other hand, for any g € I'} n Fix(Z), (6.1) yields bn(g,Z) = 0
and thus n(Z) < (f)/(n). Hence they are equal.
Put hy = n/f,. Consider the map

Ru((@) /(25 (0) = 1/x) = By, > @ ().
Note that the left-hand side is isomorphic to R,((1/7)) and thus nor-

mal. Hence this map identifies the left-hand side with BFlmFlX( =) By
changing the variable as w = 1/1', Lemma 5.1 yields the decomposition
as in the lemma. 0

Theorem 6.3. Suppose that Ry is a flat A,-algebra which is an excel-
lent reqular domain.
(1) We have a natural isomorphism over Rn[[ 11

Guspsp, = | [ Spec(Ral[a]][w]/(Gy, (w)) Ij%m wl]).

(a,b) (a,b)

Here the direct sum is taken over a complete representative of
the set

Fy\{(a,b) € (A/(n))* | (a.b) = (1)}/T1.
(2) Cusps%0 is finite etale over Ry. In particular, it defines an
effective Cartier divisor of X2 (n)g, over Ry.
(3) At each point of Cuspsy, , the invertible sheaf
QXA(H)R /R (QCUSPS%())
is locally generated by the section dx/x?.
Proof. Note that the ring R,[[w]] is normal. Since the group Fy acts
freely on the index set of the decomposition of Lemma 6.2, we ob-

tain the assertion (1), which implies the assertion (2) since we have
Cuspsﬁn = Cuspsf%0 X Ry Spec(Ry).
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For the assertion (3), by a base change it is enough to show it over
R,. Put e = deg(fy) and Gy, (w) = w? — xH(w). Then we have
H(w)dz = zfyw? ~2dw in Q}%n[[w]]/Rn and

dv H(w) dx  1dz
w? fy aw? fya?

which concludes the proof. 0

On the component of (ﬂs\psgn corresponding to = = (a, b), the pull-
back of TDY(A) agrees with TD(fA) over R,((w)) with a universal
['®(n)-structure (A, [u]). Let us describe them explicitly. We set T =
Spec(R,((w))), and consider the ring R,((w)) as a subring of B, as in
the proof of Lemma 6.2. Put

(P=, Q=) = (er,a(Q)s era(m) (b=, =)~
Then we have Q= € TD(f,A)[n](T}) and
(63) A: ClaJ(TY) — TD(AA (T, ¢ Q=.

On the other hand, taking the determinant as in the proof of Lemma
5.1 yields

2
Cln] @ (TD(fyA)[n]/Im(A) — /\ TD(fy)[n]
(® (P=z mod Im(X\)) —» Q= A P=
and similarly for A%}, Since det(k=, lz) = 1, we obtain an isomorphism
L Helry = TD(fpA)[n]/Im(N)
defined by e, (n) mod Im(A2}) — —P= mod Im()\). Then we have
W=1ro u&ﬁ, which is given by
(6.4) p:A/(n) - TD(fpA)[n]/Im(N), 1~ —Pz mod Im(X\).

7. CASE OF LEVEL I'2(n, p)

For the structure around cusps of X2 (n, p), we first note that Y2 (n, o)
is normal near infinity in the sense of [KM, (8.6.2)] by Lemma 3.2.
Thus the description around cusps using Tate-Drinfeld modules and
normalization as in the beginning of §5 is also valid in this case.

The closed immersion A}, , : C[p] — TD(A) defines a I'o(p)-structure
on TD(A) over T,. Hence we have a map

xé,p : 7(-) - XlA(nu p)Ro

and a point P2 € X2(n, p)g,.

0
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More generally, for any = = (a,b) € 2, consider the map Ry((x)) —
Ry((w)) = Ro((z))[w]/(Gy, (w)) and the Tate-Drinfeld module TD( f,A)
over Ry((w)). The latter has a canonical I'g(p)-structure C given
by the closed immersion A&f}, of Lemma 4.2. We denote by Z =
[Lo(9)]TD(f,a) the scheme representing the functor sending each scheme
T over Ry((w)) to the set of I'y(p)-structures on TD( fA)|r. It is finite
over Ry((w)) and thus Noetherian. We denote by G,, the universal
Lo(p)-structure on Z.

For any Noetherian scheme T over Ry((w)) and any I'g(gp)-structure
G on TD(f,A)|r, the theory of Hilbert schemes shows that the functor
Homr a(G, A/(p)) is representable, locally of finite presentation and
separated over T. From the etaleness of A/(p), we see that the group
scheme #omr 4(G, A/(p)) is also formally etale over 7. Hence it is
etale over T" and thus its zero section is a closed and open immersion.
We write its complement as Ur.

By composing with 7123 : TD(f,A)[p] — A/(p), the universal 'y (g)-
structure G,,, gives a map

Z = [Lo(@)]to(sa) = Homza(Gun, A/ (9)) = Z L Uz.

Hence the left-hand side is decomposed accordingly, and the component
over Z agrees with the section Spec(Ry((w))) — Z given by C. From
this, we can show that we have the same description of the complete
local ring at P5'® € X2(n, p)g, and a similar extended invertible sheaf
w5 which is compatible with @2, as in Theorem 5.3. Furthermore,
after passing to R,((w)), we can also show that the formal completion
of X2 (n, p)g, along the cusp corresponding to C over the component
of = is isomorphic to R,[[w]] via the projection to X&(n)g,. It can be
considered as a Drinfeld analogue of the unramified cusp of the modular
curve Xo(p).
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