
TRIVIALITY OF THE HECKE ACTION ON
ORDINARY DRINFELD CUSPFORMS OF LEVEL Γ1ptnq

SHIN HATTORI

Abstract. Let k ě 2 and n ě 1 be any integers. In this paper, we
prove that all Hecke operators act trivially on the space of ordinary
Drinfeld cuspforms of level Γ1ptnq and weight k.

1. Introduction

Let p be a rational prime, q ą 1 a p-power integer, A “ Fqrts,
K “ Fqptq and K8 “ Fqpp1{tqq. Let C8 be the p1{tq-adic completion
of an algebraic closure of K8 and put Ω “ C8zK8, which has a natural
structure as a rigid analytic variety over K8. For any non-zero element
n P A, we put

Γ1pnq “

"

γ P SL2pAq

ˇ

ˇ

ˇ

ˇ

γ ”

ˆ

1 ˚

0 1

˙

mod n

*

.

For any arithmetic subgroup Γ of SL2pAq and integer k ě 2, a rigid
analytic function f : Ω Ñ C8 is called a Drinfeld modular form of level
Γ and weight k if it satisfies

f

ˆ

az ` b

cz ` d

˙

“ pcz ` dqkfpzq for any

ˆ

a b
c d

˙

P Γ

and a certain regularity condition at cusps. A Drinfeld modular form
is called a cuspform if it vanishes at all cusps, and a double cuspform if
it vanishes twice at all cusps. They form C8-vector spaces SkpΓq and

S
p2q

k pΓq, respectively. These spaces admit a natural action of Hecke
operators.

Let ℘ P A be an irreducible polynomial, K℘ the ℘-adic completion
of K and C℘ the ℘-adic completion of an algebraic closure of K℘. For
the algebraic closure K̄ of K in C8, we fix an embedding ι℘ : K̄ Ñ C℘.

Suppose that ℘ divides n. The Hecke operator at ℘ acting on
SkpΓ1pnqq is denoted by U℘. Note that any eigenvalue of U℘ is an
element of K̄. We say f P SkpΓ1pnqq is ordinary (with respect to ι℘)
if f is in the generalized eigenspace belonging to an eigenvalue λ P K̄
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satisfying ι℘pλq P Oˆ
C℘
. We denote the subspace of ordinary Drinfeld

cuspforms by Sord
k pΓ1pnqq. It is an analogue of the notion of ordinariness

for elliptic modular forms studied in [Hid].
Let us focus on the case n “ tn and ℘ “ t with some integer n ě 1. In

this case, the structure of Sord
k pΓ1pt

nqq seems quite simple. For n “ 1, it
is known that all Hecke operators act trivially on the one-dimensional
C8-vector space Sord

k pΓ1ptqq [Hat3, Proposition 4.3]. In this paper, we
prove that this holds in general, as follows.

Theorem 1.1 (Theorem 4.9). Let k ě 2 and n ě 1 be any integers.
Then we have

dimC8 Sord
k pΓ1ptnqq “ qn´1

and all Hecke operators act trivially on Sord
k pΓ1pt

nqq.

This suggests that Hida families for Drinfeld cuspforms should be
trivial for the level Γ1ptnq.

For Drinfeld modular forms, it is well-known that the weak multi-
plicity one, which states that any Hecke eigenform is determined up to
a scalar multiple by the Hecke eigenvalues, is false. Gekeler [Gek, §7]
raised a question if the property holds when we fix the weight. The-
orem 1.1 gives a negative answer to it (see also [Böc, Examples 15.4
and 15.7] for a variant ignoring Hecke eigenvalues at places dividing
the level).

For the proof of Theorem 1.1, we study a subspace S 1
k of Sk “

SkpΓ1pt
nqq containing S

p2q

k “ S
p2q

k pΓ1ptnqq. It consists of cuspforms
which vanish twice at unramified cusps (§3.3). We show that all Hecke

operators act trivially on Sk{S 1
k and Ut is nilpotent on S 1

k{S
p2q

k (Lemma
3.9 and Proposition 3.10). Then, using the constancy of the dimension
of Sord

k pΓ1pt
nqq with respect to k [Hat3, Proposition 3.4], we reduce

Theorem 1.1 to showing that the dimension of Sord
2 pΓ1pt

nqq is no more
than qn´1 (Theorem 3.11).

Consider the multiplicative group Θn “ 1 ` tA{tnA, which acts on
SkpΓ1pt

nqq via the diamond operator. To obtain the upper bound of the
dimension, the key point is the freeness of S2pΓ1pt

nqq as a module over
the group ring C8rΘns (Proposition 4.8): From the fact that Sord

2 pΓ1ptqq

is one-dimensional [Hat2, Lemma 2.4] and another constancy result of
the dimension of the ordinary subspace [Hat3, Proposition 3.5], we see
that the Θn-fixed part of Sord

2 pΓ1ptnqq is also one-dimensional. Thus
the freeness implies that it injects into a single component C8rΘns of
the free C8rΘns-module S2pΓ1ptnqq, which gives the desired bound.

The paper is organized as follows. In §2, we will recall the defini-
tion of Hecke operators and study their effect on Fourier expansions of
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Drinfeld cuspforms at cusps. In §3, we will define the subspace S 1
k and

study its properties analytically. In §4, using the description of Drinfeld
cuspforms via harmonic cocycles on the Bruhat–Tits tree [Tei, Böc], we
will give an explicit basis of the C8-vector space S2pΓ1ptnqq and a de-
scription of the diamond operator in terms of the basis. These enable
us to show the freeness and Theorem 1.1.

Acknowledgements. The author would like to thank Ernst-Ulrich
Gekeler and Federico Pellarin for helpful conversations on this topic,
Gebhard Böckle for pointing out an error in a previous manuscript and
the anonymous referee for careful reading and valuable comments. A
part of this work was carried out during the author’s visit to Université
Jean Monnet. He wishes to thank its hospitality.

2. Drinfeld cuspforms of level Γ1pnq

Let k ě 2 be any integer and n any element of AzFq. In this section,
we study Hecke operators acting on SkpΓ1pnqq. For any group Γ acting
on a set X, we denote the stabilizer of x P X in Γ by StabpΓ, xq.

2.1. Cusps and uniformizers. Consider the action of SL2pAq on
P1pC8q defined by

ˆ

a b
c d

˙ ˆ

x
y

˙

“

ˆ

ax ` by
cx ` dy

˙

.

We refer to any element of P1pKq as a cusp. For any arithmetic sub-
group Γ of SL2pAq, put

CuspspΓq “ ΓzP1pKq.

We abusively identify an element of CuspspΓq with a cusp representing
it.

Next we recall the definition of the uniformizer at each cusp [GR,
(2.7)], following the normalization of [Gek, (4.1)]. Let C be the Carlitz
module. It is the Drinfeld module of rank one over A defined by the
homomorphism of Fq-algebras

A “ Fqrts Ñ EndpGaq, t ÞÑ pZ ÞÑ tZ ` Zqq,

where we put Ga “ SpecpArZsq. For any a P A, we denote by ΦC
a pZq

the element of ArZs such that the image of a by the map above is
defined by pZ ÞÑ ΦC

a pZqq.
For any subgroup b of A containing a non-zero ideal of A, we define

ebpzq “ z
ź

0‰bPb

´

1 ´
z

b

¯

,
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which is an entire function on Ω. Let π̄ P C8 be a Carlitz period, so
that

(2.1) ΦC
t pπ̄eApzqq “ π̄eAptzq.

For any integer l ě 0, we put

ubpzq “
1

π̄ebpzq
, upzq “ uApzq, ulpzq “ uptlqpzq “

1

tl
u

´ z

tl

¯

.

Since n P AzFq, the group Γ1pnq is p1-torsion free. For any cusp
s P P1pKq, choose νs P SL2pAq satisfying νsp8q “ s and put

bs “

"

b P A

ˇ

ˇ

ˇ

ˇ

ˆ

1 b
0 1

˙

P Stabpν´1
s Γ1pnqνs,8q

*

Ě pnq.

Then we refer to the function

uspzq :“ ubspzq

as the uniformizer at s for Γ1pnq. Note that bs depends only on s up to
a multiple of an element of Fˆ

q . Thus bs and uspzq are independent of
the choice of νs if bs is an ideal of A for some choice of νs. For example,
we have b8 “ A for any choice of ν8 and the uniformizer at 8 is upzq.

For any function f on Ω, integer k ě 2 and γ P GL2pKq, we define
the slash operator by

pf |kγq pzq “ detpγqk´1pcz ` dq´kf

ˆ

az ` b

cz ` d

˙

, γ “

ˆ

a b
c d

˙

.

Then, for any f P SkpΓ1pnqq, we can write

pf |kνsqpzq “
ÿ

iě1

aiuspzqi, ai P C8

when the p1{tq-adic absolute value |uspzq| of uspzq is sufficiently small.
We refer to it as the Fourier expansion of f at the cusp s and put

ordps, fq “ minti ě 1 | ai ‰ 0u.

The latter is independent of the choice of νs.

Lemma 2.1. Let m P A be any monic irreducible polynomial and i ě 1
any integer.

(1)
ř

degpβqădegpmq u
`

z`β
m

˘

“ mupzq.

(2) If i ě 2, then
ř

degpβqădegpmq u
`

z`β
m

˘i
P mupzq2Arupzqs.

(3) upmzq P upzq2Arrupzqss.

Here the sum
ř

degpβqădegpmq runs over the set of β P A satisfying

degpβq ă degpmq.
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Proof. Put r “ degpmq and ΦC
mpZq “ mZ`c1Z

q `¨ ¨ ¨`cr´1Z
qr´1

`Zqr .
We denote by Crms the kernel of the multiplication by m on C and by
CrmspC8q the A-module of C8-valued points of it. Then we have

(2.2) z
ź

0‰bPCrmspC8q

´

1 ´
z

b

¯

“ m´1ΦC
mpzq.

Let αi be the coefficient of Zqi in m´1ΦC
mpZq. By [Hat1, Lemma 3.2],

we have αi P A for any 0 ď i ď r ´ 1 and αr “ m´1.
Let Gi,mpXq be the i-th Goss polynomial with respect to the Fq-

vector space CrmspC8q. Then [Gek, computation above (7.3)] gives

(2.3)
ÿ

degpβqădegpmq

u

ˆ

z ` β

m

˙i

“ Gi,mpmupzqq.

For i “ 1, we have Gi,mpXq “ X and 1 follows. For i ě 2, [Gek,
(3.8)] and (2.2) show that Gi,mpXq has no linear term and Gi,mpmXq P

mArXs, which yields 2. Moreover, we have

upmzq “
upzqq

r

1 ` cr´1upzqq
r´qr´1

` ¨ ¨ ¨ ` mupzqq
r´1

,

which implies 3. □
Put ζtl “ π̄eA

`

1
tl

˘

P C8, so that ΦC
tl

pζtlq “ 0 by (2.1).

Lemma 2.2. Let l ě 1 be any integer. For any β P Fq, we have

ul´1

ˆ

z ` β

t

˙

P tulpzqArζtlsrrulpzqss.

Here Arζtls is the A-subalgebra of C8 generated by ζtl.

Proof. This follows from

ul´1

ˆ

z ` β

t

˙

“
t

tlπ̄eA
`

z`β
tl

˘ “
t

tlπ̄eA
`

z
tl

˘ ¨
1

1 `
tlπ̄eAp β

tl
q

tlπ̄eAp z

tl
q

“ tulpzq ¨
1

1 ` tlβζtlulpzq
.

□
2.2. Hecke operators. Now we recall the definition of Hecke opera-
tors (for example, see [Hat3, §3.1]). Let m P A be any monic irreducible
polynomial. Then the Hecke operator Tm acting on SkpΓ1pnqq is defined
as

Tmf “
ÿ

ξ

f |kξ,
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where ξ runs over any complete set of representatives of the coset space

(2.4) Γ1pnqzΓ1pnq

ˆ

1 0
0 m

˙

Γ1pnq.

When m|n, we write Tm also as Um.
Let a P A be any element which is prime to n. Take any matrix

ηa,˛ P SL2pAq satisfying

ηa,˛ ”

ˆ

˚ ˚

0 a

˙

mod n

and put

ξa,˛ “ ηa,˛

ˆ

a 0
0 1

˙

.

Note that we have

ηa,˛Γ1pnqη´1
a,˛ “ Γ1pnq, ξa,˛Γ1panqξ´1

a,˛ Ď Γ1pnq.

Hence we obtain

(2.5) f P SkpΓ1pnqq ñ f |kηa,˛ P SkpΓ1pnqq, f |kξa,˛ P SkpΓ1panqq.

For any α P pA{pnqqˆ, we choose a lift a P A of α and put

xαynf “ f |kηa,˛

for any f P SkpΓ1pnqq, which is independent of the choices of a and ηa,˛.
Then α ÞÑ xαyn defines an action of the group pA{pnqqˆ on SkpΓ1pnqq.

Lemma 2.3. For any α P pA{pnqqˆ, the diamond operator xαyn com-
mutes with all Hecke operators.

Proof. Let m P A be any monic irreducible polynomial. First suppose
m | n. Write

ηa,˛ “

ˆ

S S 1

T T 1

˙

with some S, S 1, T, T 1 P A satisfying T ” 0, T 1 ” a mod n and ST 1 ´

S 1T “ 1. Since S is prime to n, there exists β P A satisfying βS ”

S 1 mod n. Then we have

η´1
a,˛

ˆ

1 0
0 m

˙

ηa,˛ P Γ1pnq

ˆ

1 β
0 m

˙

“ Γ1pnq

ˆ

1 0
0 m

˙ ˆ

1 β
0 1

˙

,

which yields

(2.6) Γ1pnqη´1
a,˛

ˆ

1 0
0 m

˙

ηa,˛Γ1pnq “ Γ1pnq

ˆ

1 0
0 m

˙

Γ1pnq.

The lemma in this case follows from this equality.
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Next suppose m ∤ n. Note that the natural map

SL2pAq Ñ SL2pA{pnqq ˆ SL2pA{pmqq

is surjective. Since xαyn is independent of the choices of a and ηa,˛, we
may assume that ηa,˛ satisfies

ηa,˛ ”

ˆ

1 0
0 1

˙

mod m.

Then we have

η´1
a,˛

ˆ

1 0
0 m

˙

ηa,˛ P Γ1pnq

ˆ

1 0
0 m

˙

and (2.6) holds also in this case, which yields the lemma. □
Let us give an explicit description of the Hecke operator Tm. For any

β P A satisfying degpβq ă degpmq, put

ξm,β “

ˆ

1 β
0 m

˙

.

When m “ t, we also write ξβ for ξt,β. Then the operator Um for m | n
is given by

pUmfqpzq “
ÿ

degpβqădegpmq

pf |kξm,βqpzq “
1

m

ÿ

degpβqădegpmq

f

ˆ

z ` β

m

˙

.

When m ∤ n, the set

tξm,β | degpβq ă degpmqu Y tξm,˛u

forms a complete set of representatives of the coset space (2.4) and thus

Tmf “
ÿ

degpβqădegpmq

f |kξm,β ` f |kξm,˛.

3. Ut-operator of level Γ1pt
nq

Let k ě 2 and n ě 1 be any integers. In the rest of the paper, we
assume n “ tn.

In this section, we study the operator Ut acting on SkpΓ1pt
nqq, and

prove a criterion, in terms of Ut, for all Hecke operators to act trivially

on Sord
k pΓ1pt

nqq (Theorem 3.11). We denote SkpΓ1pt
nqq and S

p2q

k pΓ1pt
nqq

also by Sk and S
p2q

k , respectively.
Put An “ A{ptnq. Let vt be the t-adic valuation on K normalized as

vtptq “ 1. For any c P An´1, take any lift c̃ P A of c and put

v̄tpcq “ mintvtpc̃q, n ´ 1u,

which is independent of the choice of c̃.
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3.1. Cusps of Γ1ptnq. For any c, d P An´1, put

h̄pc,dq “

ˆ

1
1`td

0
tc 1 ` td

˙

P SL2pAnq.

Since the natural map SL2pAq Ñ SL2pAnq is surjective, we can take a
lift hpc,dq P Γ1ptq of h̄pc,dq by this map.

Lemma 3.1. Let pc, dq be any element of A2
n´1. Suppose that an ele-

ment h P Γ1ptq satisfies

h ”

ˆ

˚ ˚

tc 1 ` td

˙

mod tn.

Then h P Γ1pt
nqhpc,dq.

Proof. We have detphh´1
pc,dq

q “ 1 and

hh´1
pc,dq

”

ˆ

˚ ˚

tc 1 ` td

˙ ˆ

1 ` td 0
´tc 1

1`td

˙

“

ˆ

˚ ˚

0 1

˙

mod tn.

Hence the p1, 1q-entry of hh´1
pc,dq

is also congruent to one modulo tn and

thus hh´1
pc,dq

P Γ1pt
nq. □

From Lemma 3.1, we see that the set

thpc,dq | c, d P An´1u

forms a complete set of representatives of Γ1pt
nqzΓ1ptq.

Note that for

SBpAq “

"ˆ

˚ ˚

0 ˚

˙

P SL2pAq

*

,

the map

Γ1ptqzSL2pAq{SBpAq Ñ Γ1ptqzP1pKq, γ ÞÑ γp8q

is bijective. Hence we obtain

CuspspΓ1ptqq “ t8, 0u.

Consider the natural map

CuspspΓ1ptnqq Ñ CuspspΓ1ptqq.

For ‚ P t8, 0u, we denote by Cusps‚pΓ1pt
nqq the inverse image of ‚ by

this map. Then we have a bijection

Γ1ptnqzΓ1ptq{StabpΓ1ptq, ‚q Ñ Cusps‚pΓ1pt
nqq, γ ÞÑ γp‚q.
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From the equalities

StabpΓ1ptq,8q “

"ˆ

1 b
0 1

˙ ˇ

ˇ

ˇ

ˇ

b P A

*

,

StabpΓ1ptq, 0q “

"ˆ

1 0
tc 1

˙ ˇ

ˇ

ˇ

ˇ

c P A

*

,

we can show the following lemma.

Lemma 3.2. (1) Let Λ8 be a subset of A2
n´1 which forms a com-

plete set of representatives for the equivalence relation

pc, dq „ pc1, d1q ô c “ c1 and d1 ´ d P cAn´1.

Then the set

thpc,dqp8q | pc, dq P Λ8u

forms a complete set of representatives of Cusps8pΓ1pt
nqq.

(2) The set

thp0,dqp0q | d P An´1u

forms a complete set of representatives of Cusps0pΓ1ptnqq.

Lemma 3.3. Let pc, dq be any element of A2
n´1. Put m “ v̄tpcq P

r0, n ´ 1s.

(1) For s “ hpc,dqp8q, we have

bs “ ptn´1´mq, uspzq “ un´1´mpzq “
1

tn´1´m
u

´ z

tn´1´m

¯

.

(2) For s “ hp0,dqp0q, we have

bs “ ptnq, uspzq “ unpzq “
1

tn
u

´ z

tn

¯

.

Proof. For any x P A, the element

(3.1) hpc,dq

ˆ

1 x
0 1

˙

h´1
pc,dq

P SL2pAq

is congruent modulo tn to
ˆ

1 ´ tcx
1`td

x
p1`tdq2

´t2c2x 1 ` tcx
1`td

˙

and thus the element of (3.1) lies in Γ1ptnq if and only if

v̄tpxq ě maxtn ´ 1 ´ m,n ´ 2 ´ 2mu “ n ´ 1 ´ m,

which yields 1.
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For 2, observe

hp0,dqp0q “ hp0,dqJp8q, J “

ˆ

0 ´1
1 0

˙

.

Since

hp0,dqJ

ˆ

1 x
0 1

˙

J´1h´1
p0,dq

”

ˆ

1 0
´xp1 ` tdq2 1

˙

mod tn,

the element of the left-hand side lies in Γ1pt
nq if and only if x P ptnq.

This concludes the proof. □

3.2. Hecke operators of level Γ1pt
nq.

Lemma 3.4. For any f P SkpΓ1pt
nqq, monic irreducible polynomial

m P A and d P An´1, we have

pTmfq|khp0,dq “

"
ř

degpβqădegpmq f |khp0,dqξβ pm “ tq,
ř

degpβqădegpmq f |khp0,dqξm,β ` f |khp0,dqξm,˛ pm ‰ tq.

Moreover, when m ‰ t, we can write

pf |khp0,dqξm,˛qpzq “
ÿ

iě2

ciupzqi, ci P C8

if |upzq| is sufficiently small.

Proof. Since f |khp0,dq “ x1 ` tdytnf , Lemma 2.3 shows the former as-
sertion.

Let us show the latter assertion for m ‰ t. We have

pf |khp0,dqξm,˛qpzq “ mk´1pf |khp0,dqηm,˛qpmzq.

For any x P A, observe

hp0,dqηm,˛

ˆ

1 x
0 1

˙

php0,dqηm,˛q´1 P Γ1pt
nq,

which shows that the uniformizer at the cusp hp0,dqηm,˛p8q is upzq. Then
we can write

pf |khp0,dqηm,˛qpzq “
ÿ

iě1

biupzqi, bi P C8,

and the assertion follows from Lemma 2.1 3. □
Lemma 3.5. Let β P Fq and pc, dq P A2

n´1 be any elements.

(1) ξβhpc,dq P Γ1pt
nqhptc,d´βcqξβ.

(2) If β ‰ 0, then

ξβhpc,dqJ P Γ1ptnqhpβ´1p1`tdq,d´βcq

ˆ

1 0
0 t

˙ ˆ

β ´1
0 β´1

˙

.
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(3) ξ0hpc,dqJ P Γ1ptnqhptc,dqJ

ˆ

t 0
0 1

˙

.

Proof. Write

hpc,dq “

ˆ

P tnQ
tR S

˙

, P,Q,R, S P A.

Since S ” P mod t, we have t´1pS ´ P q P A and the element

ξβhpc,dqξ
´1
β “

ˆ

P ` tβR β
`

S´P
t

˘

´ β2R ` tn´1Q
t2R S ´ tβR

˙

P Γ1ptq

satisfies

ξβhpc,dqξ
´1
β ”

ˆ

˚ ˚

t2c 1 ` tpd ´ βcq

˙

mod tn.

Thus Lemma 3.1 shows 1.
For 2, the matrix ξβhpc,dqJ equals

ˆ

tnβ´1Q ` S β
`

S´P
t

˘

` tn´1Q ´ β2R
tβ´1S S ´ tβR

˙ ˆ

1 0
0 t

˙ ˆ

β ´1
0 β´1

˙

.

The first matrix lies in Γ1ptq, and it is congruent modulo tn to
ˆ

˚ ˚

tβ´1p1 ` tdq 1 ` tpd ´ βcq

˙

.

By Lemma 3.1, this matrix is contained in Γ1pt
nqhpβ´1p1`tdq,d´βcq and 2

follows.
For 3, the matrix ξ0hpc,dqJ equals

ˆ

1 0
0 t

˙ ˆ

P tnQ
tR S

˙ ˆ

0 ´1
1 0

˙

“

ˆ

P tn´1Q
t2R S

˙

J

ˆ

t 0
0 1

˙

.

The first matrix of the right-hand side lies in Γ1ptq, and it is congruent
modulo tn to

ˆ

˚ ˚

t2c 1 ` td

˙

,

from which 3 follows by Lemma 3.1. □
Lemma 3.6. Let a, c, d P An´1 be any elements. Take any lift a P A
of 1 ` ta P An. Then we have

ηa,˛hpc,dq P Γ1pt
nqhpp1`taqc,a`d`tadq.

Proof. Since a ” 1 mod t, the matrix ηa,˛ lies in Γ1ptq. Thus the lemma
follows from

ηa,˛hpc,dq ”

ˆ

˚ ˚

tp1 ` taqc p1 ` taqp1 ` tdq

˙

mod tn.

□
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3.3. Unramified double cuspforms. Put

S 1
k “ tf P Sk | ord

`

hp0,dqp8q, f
˘

ě 2 for any d P An´1u.

Lemma 3.7. S 1
k is stable under all Hecke operators.

Proof. Let f be any element of S 1
k and m P A any monic irreducible

polynomial. By Lemma 3.3 1 the uniformizer at the cusp hp0,dqp8q is
upzq and we can write

pf |khp0,dqqpzq “
ÿ

iě2

aiupzqi, ai P C8.

Then Lemma 2.1 2 shows that the term
ÿ

degpβqădegpmq

f |khp0,dqξm,β

in the equality of Lemma 3.4 has no linear term of upzq. Thus the
lemma follows from the latter assertion of Lemma 3.4. □

For any f P Sk and d P An´1, we write

pf |khp0,dqqpzq “
ÿ

iě1

aiupzqi, ai P C8

and put Ldpfq “ a1. Then the C8-linear map

L : Sk{S 1
k Ñ

à

dPAn´1

C8, f ÞÑ pLdpfqqd

is injective.

Lemma 3.8.
dimC8 Sk{S 1

k “ qn´1.

In particular, the map L is bijective.

Proof. We denote CuspspΓ1pt
nqq also by Cusps. By Lemma 3.2 1, the

points
hp0,dqp8q, d P An´1

form a subset Cusps1 of cardinality qn´1 of Cusps. We abusively identify
Cusps and Cusps1 with the reduced divisors they define on the Drinfeld
modular curve X1ptnqC8 over C8, and put D “ Cusps ` Cusps1. Let
g be the genus of X1pt

nqC8 and h the number of cusps. Since 0 P

CuspszCusps1, we have h ą qn´1.
Let ω̄ be the Hodge bundle on X1pt

nqC8 , so that degpω̄b2q “ 2g ´

2 ` 2h and degpω̄q ě 0 (see for example [Hat1, Corollary 4.2] with
∆ “ t1u). For k ě 2, we have

degpω̄bkp´Dqq “ k degpω̄q ´ degpDq

“ pk ´ 2q degpω̄q ` 2g ´ 2 ` h ´ qn´1 ě 2g ´ 1.
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Since S 1
k can be identified with H0pX1pt

nqC8 , ω̄
bkp´Dqq, the Riemann–

Roch theorem implies

dimC8 S 1
k “ degpω̄bkp´Dqq ` 1 ´ g “ pk ´ 1qpg ´ 1 ` hq ´ qn´1.

From dimC8 Sk “ pk ´ 1qpg ´ 1 ` hq [Böc, Proposition 5.4], we obtain
dimC8 Sk{S 1

k “ qn´1. Since the both sides of the injection L have the
same dimension, it is a bijection. □

Lemma 3.9. All Hecke operators act trivially on Sk{S 1
k.

Proof. Let m P A be any monic irreducible polynomial. Take any
f P Sk. By Lemma 2.1 and Lemma 3.4, we obtain LdpTmfq “ Ldpfq for
any d P An´1 and the injectivity of the map L shows Tmf ” f mod S 1

k.
This concludes the proof. □

3.4. Nilpotency of Ut on S 1
k{S

p2q

k . For any integer i, put

Ci “ tpc, dq P A2
n´1 | v̄tpcq ě iu.

To study the Ut-action on S 1
k, we define

S 1
k,i “ tf P Sk | ordphpc,dqp8q, fq ě 2 for any pc, dq P Ciu

so that

S 1
k “ S 1

k,n´1 Ě S 1
k,n´2 Ě ¨ ¨ ¨ Ě S 1

k,0 “ S 1
k,´1 Ě S

p2q

k .

Proposition 3.10. Let i P r0, n ´ 1s be any integer.

(1) UtpS
1
k,iq Ď S 1

k,i´1.

(2) UtpS
1
k,0q Ď S

p2q

k .

In particular, the operator Ut acting on S 1
k{S

p2q

k is nilpotent.

Proof. For the assertion 1, take any f P S 1
k,i and pc, dq P Ci´1. We need

to show

(3.2) ordphpc,dqp8q, Utfq ě 2.

Since the case of c “ 0 follows from Lemma 3.7, we may assume c ‰ 0.
Put m “ v̄tpcq. For any β P Fq, we have ptc, d ´ βcq P Ci and the
assumption yields v̄tptcq “ m ` 1. By Lemma 3.3 1, we can write

pf |khptc,d´βcqqpzq “
ÿ

jě2

a
pβq

j un´2´mpzqj, a
pβq

j P C8
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and Lemma 3.5 1 yields

ppUtfq|khpc,dqqpzq “
ÿ

βPFq

pf |kξβhpc,dqqpzq “
ÿ

βPFq

pf |khptc,d´βcqξβqpzq

“
1

t

ÿ

βPFq

ÿ

jě2

a
pβq

j un´2´m

ˆ

z ` β

t

˙j

.

Since the uniformizer at hpc,dqp8q is un´1´mpzq, Lemma 2.2 gives the
inequality (3.2).

Let us show the assertion 2. Take any f P S 1
k,0 and d P An´1. Since

we already know Utf P S 1
k,0 by 1, it is enough to show

(3.3) ordphp0,dqp0q, Utfq ě 2.

By Lemma 3.3 2, the uniformizer at hp0,dqp0q “ hp0,dqJp8q is unpzq.
Consider the equality

(3.4) pUtfq|khp0,dqJ “
ÿ

βPFˆ
q

f |kξβhp0,dqJ ` f |kξ0hp0,dqJ.

For the first term in the right-hand side of (3.4), we have

v̄tpβ
´1p1 ` tdqq “ 0

and by Lemma 3.3 1 we can write

pf |khpβ´1p1`tdq,dqqpzq “
ÿ

jě2

ajun´1pzqj, aj P C8.

Then Lemma 3.5 2 gives

pf |kξβhp0,dqJqpzq “ tk´1pβ´1tq´k
ÿ

jě2

ajun´1

ˆ

βz ´ 1

β´1t

˙j

“
βk

t

ÿ

jě2

ajβ
´2jun´1

ˆ

z ´ β´1

t

˙j

and by Lemma 2.2 this term lies in unpzq2C8rrunpzqss.
For the second term in the right-hand side of (3.4), write

pf |khp0,dqJqpzq “
ÿ

jě1

ajunpzqj, aj P C8.

By Lemma 3.5 3, we have

pf |kξ0hp0,dqJqpzq “ tk´1pf |khp0,dqJqptzq “ tk´1
ÿ

jě1

ajunptzqj.

Since Lemma 2.1 3 shows

unptzq P unpzq2C8rrunpzqss,
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we obtain the inequality (3.3). This concludes the proof of the propo-
sition. □

Recall that we fixed an embedding ιt : K̄ Ñ Ct. We say λ P K̄ is a
t-adic unit if ιtpλq P Oˆ

Ct
.

Theorem 3.11. For any integer k ě 2, the following are equivalent.

(1) Ut acting on S
p2q

k pΓ1pt
nqq has no t-adic unit eigenvalue.

(2) Ut acting on S 1
k has no t-adic unit eigenvalue.

(3) dimC8 Sord
k pΓ1ptnqq ď qn´1.

(4) Ut acting on S
p2q

2 pΓ1pt
nqq is nilpotent.

(5) Ut acting on S 1
2 is nilpotent.

(6) dimC8 Sord
2 pΓ1ptnqq ď qn´1.

If these equivalent conditions hold, then for any k ě 2 we have

dimC8 Sord
k pΓ1ptnqq “ qn´1

and all Hecke operators act trivially on Sord
k pΓ1pt

nqq.

Proof. The equivalence of 1 and 2 follows from Proposition 3.10. Note
that the multiplicity µ of t-adic unit eigenvalues of Ut acting on Sk is
equal to dimC8 Sord

k pΓ1pt
nqq. By Lemma 3.8 and Lemma 3.9, the only

t-adic unit eigenvalue of Ut acting on Sk{S 1
k is one, with multiplicity

qn´1. Hence µ ě qn´1, and the equality holds if and only if there is no
other t-adic unit eigenvalue on Sk. The latter condition means that 2
holds. This implies that 2 and 3 are equivalent, and that 3 is equivalent
to dimC8 Sord

k pΓ1pt
nqq “ qn´1.

By [Hat3, (2.6) and Proposition 2.2], any eigenvalue of Ut acting on
S2pΓ1pt

nqq is algebraic over Fq. Thus Ut acts on a subspace of S2pΓ1pt
nqq

without t-adic unit eigenvalue if and only if the action is nilpotent. This
shows the equivalence of 4–6. The equivalence of 3 and 6 follows from
[Hat3, Proposition 3.4 (1)].

If these conditions hold, then we have dimC8 Sord
k pΓ1pt

nqq “ qn´1 and
the natural map

Sord
k pΓ1ptnqq Ñ Sk{S 1

k

is an isomorphism compatible with all Hecke operators. Now the last
assertion follows from Lemma 3.9. □

Since X1ptqC8 is of genus zero, we have S
p2q

2 pΓ1ptqq “ 0 and the
nilpotency of Ut acting on it holds trivially. Thus Theorem 3.11 yields
the following corollary, which reproves [Hat2, Lemma 2.4] and [Hat3,
Proposition 4.3] without using the theory of A-expansions [Pet] or
Bandini–Valentino’s formula [BV, (4.2)].
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Corollary 3.12. For any k ě 2, we have

dimC8 Sord
k pΓ1ptqq “ 1

and all Hecke operators act trivially on Sord
k pΓ1ptqq.

Note that by [GN, Corollary 5.7] the genus of X1ptnqC8 is

(3.5) 1 ` q2n´2 ´ pn ` 1qqn´1 ` pn ´ 1qqn´2

and for n ě 2 it is zero only if n “ q “ 2. Thus the nilpotency of Ut

acting on S
p2q

2 pΓ1pt
nqq seems non-trivial in general. We will prove it in

a rather indirect way (Corollary 4.10).

4. Freeness and triviality

In this section, we prove the triviality of the Hecke action on SkpΓ1ptnqq

for any k ě 2 and n ě 1 (Theorem 4.9). Put Θn “ 1` tAn Ď Aˆ
n . The

key point of the proof is to show that S2pΓ1pt
nqq, which we consider

as a C8rΘns-module via the diamond operator, is the direct sum of
copies of C8rΘns (Proposition 4.8). For this, we need a description of
S2pΓ1pt

nqq using harmonic cocycles on the Bruhat–Tits tree.

4.1. Bruhat–Tits tree and Γ1ptnq. We consider K2
8 as the set of row

vectors, and define an action ˝ of GL2pK8q on K2
8 by

γ ˝ px1, x2q “ px1, x2qγ
´1.

Let T be the Bruhat–Tits tree for SL2pK8q (see for example [Ser,
Ch. II, §1], [GN, §1] and [Böc, §3.1]). Recall that the set T0 of vertices
of T is by definition the set of Kˆ

8-equivalence classes of OK8-lattices
in K2

8, where OK8 is the ring of integers of K8. The action ˝ induces
an action of GL2pK8q on the tree T , and also on the oriented tree T o

associated to T . We denote by T o
1 the set of oriented edges. For any

e P T o
1 , the origin, the terminus and the opposite edge of e are denoted

by opeq, tpeq and ´e, respectively. Then the group t˘1u acts on T o
1 by

p´1qe “ ´e, which commutes with the action of GL2pK8q.
Put π “ 1{t, which is a uniformizer of K8. For any integer i, let

vi be the class of the lattice OK8pπi, 0q ‘ OK8p0, 1q. Then we have
ˆ

π´i 0
0 1

˙

v0 “ vi. We denote by ei the oriented edge with origin vi

and terminus vi`1.
For any subgroup Γ of SL2pAq, we say e P T o

1 is Γ-stable if StabpΓ, eq “

t1u, and Γ-unstable otherwise. We define Γ-stability of a vertex simi-

larly. The set of Γ-stable edges is denoted by T o,Γ-st
1 . For Γ “ Γ1ptq, we
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know [LM, §7] that the set of Γ1ptq-stable edges is equal to Γ1ptqJp˘e0q
with

J “

ˆ

0 ´1
1 0

˙

.

Lemma 4.1. A complete set of representatives of Γ1pt
nqzT o,Γ1ptq-st

1 {t˘1u

is given by
Λ1,n “ thpc,dqJe0 | c, d P An´1u.

Proof. Consider the natural map

(4.1) Λ1,n Ñ Γ1pt
nqzT o,Γ1ptq-st

1 {t˘1u,

which is surjective since T o,Γ1ptq-st
1 “ Γ1ptqJp˘e0q. Suppose that pc, dq, pc1, d1q P

A2
n´1 satisfy

γhpc,dqJe0 “ hpc1,d1qJe0 or γhpc,dqJp´e0q “ hpc1,d1qJe0

with some γ P Γ1pt
nq. For the former case, since Je0 is Γ1ptq-stable we

have γhpc,dq “ hpc1,d1q and thus pc, dq “ pc1, d1q. For the latter case, we
have

J´1h´1
pc1,d1q

γhpc,dqJv0 “ v1.

Since the distance of v0 and v1 is one, it contradicts [Ser, Ch. II, §1.2,
Corollary]. Hence the map (4.1) is also injective. □

4.2. Harmonic cocycles. In this subsection, we recall a description
of Drinfeld cuspforms using harmonic cocycles due to Teitelbaum [Tei],
following [Böc] and [Hat3].

Let k ě 2 be any integer. We denote by Hk´2pC8q the C8-subspace
of homogeneous polynomials of degree k ´ 2 in the polynomial ring
C8rX,Y s. We consider the left action ˝ of GL2pKq on it defined by

γ ˝ pX,Y q “ pX,Y qγ.

We put VkpC8q “ HomC8pHk´2pC8q,C8q, on which GL2pKq acts nat-
urally. For ξ P GL2pKq, ω P VkpC8q and P pX,Y q P Hk´2pC8q, the
action is given by

pξ ˝ ωqpP pX,Y qq “ ωpξ´1 ˝ P pX,Y qq “ ωpP ppX,Y qξ´1qq.

Definition 4.2. A map c : T o
1 Ñ VkpC8q is called a harmonic cocycle

of weight k over C8 if the following two conditions hold:

(1) For any v P T0, we have
ÿ

ePT o
1 , tpeq“v

cpeq “ 0.

(2) For any e P T o
1 , we have cp´eq “ ´cpeq.
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For any arithmetic subgroup Γ of SL2pAq, we say c is Γ-equivariant
if cpγeq “ γ ˝ cpeq for any γ P Γ and e P T o

1 . We denote the C8-
vector space of Γ-equivariant harmonic cocycles of weight k over C8

by Char
k pΓq.

Let Γ be an arithmetic subgroup of SL2pAq which is p1-torsion free.
In this case, for any Γ-unstable vertex v, the group StabpΓ, vq fixes a
unique rational end which we denote by bpvq.

Definition 4.3. A Γ-stable edge e1 P T o
1 is called a Γ-source of an edge

e P T o
1 if the following conditions hold.

(1) If e is Γ-stable, then e1 “ e.
(2) If e is Γ-unstable, then a vertex v of e1 is Γ-unstable, e lies on the

unique half line from v to bpvq and e has the same orientation
as e1 with respect to this half line.

The set of Γ-sources of e is denoted by srcΓpeq.

For any harmonic cocycle c : T o
1 Ñ VkpC8q of weight k over C8, we

have

(4.2) cpeq “
ÿ

e1PsrcΓpeq

cpe1q.

We denote by SkpΓq the C8-vector space of Drinfeld cuspforms of
level Γ and weight k. Then, for any rigid analytic function f on Ω
and e P T o

1 , Teitelbaum defined an element Respfqpeq P VkpC8q, which
gives a natural isomorphism of C8-vector spaces

(4.3) ResΓ : SkpΓq Ñ Char
k pΓq, f ÞÑ pe ÞÑ Respfqpeqq

[Tei, Theorem 16]. Note that we are following the normalization in
[Böc, Theorem 5.10]. Moreover, by [Böc, (17)], the slash operator can
be read off via the corresponding harmonic cocycle by

(4.4) Respf |kγqpeq “ γ´1 ˝ Respfqpγeq.

Lemma 4.4.

dimC8 Char
2 pΓ1pt

nqq “ q2pn´1q.

Proof. By [GN, Proposition 5.6] (or Lemma 3.2), the number h of cusps
of X1pt

nqC8 equals

h “ pn ` 1qqn´1 ´ pn ´ 1qqn´2.

Thus the lemma follows from [Böc, Proposition 5.4], (3.5) and (4.3). □
Lemma 4.5. Let c be any element of Char

2 pΓ1pt
nqq.

(1) For any γ P Γ1pt
nq and e P T o

1 , we have cpγeq “ cpeq.
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(2) c is determined by its restriction to the subset Λ1,n of Lemma
4.1.

Proof. Since the group GL2pKq acts trivially on V2pC8q “ C8, we have
cpγeq “ γ ˝ cpeq “ cpeq and the assertion 1 follows.

For the assertion 2, it suffices to show that if the restriction of c to
Λ1,n is zero, then cpeq “ 0 for any e P T o

1 . By (4.2), we may assume
that e is Γ1ptq-stable. Then it is written as e “ ˘γe1 with some e1 P Λ1,n

and γ P Γ1pt
nq, which yields cpeq “ ˘γ ˝ cpe1q “ 0. This concludes the

proof. □
Corollary 4.6. The C8-linear map

Char
2 pΓ1pt

nqq Ñ
à

ePΛ1,n

C8, c ÞÑ pcpeqqePΛ1,n

is an isomorphism.

Proof. By Lemma 4.5 2, the map is injective. Since 7Λ1,n “ q2pn´1q,
Lemma 4.4 implies that it is an isomorphism. □

By Corollary 4.6, there exists a unique element rc, ds P Char
2 pΓ1pt

nqq

satisfying

rc, dsphpc1,d1qJe0q “

"

1 if pc1, d1q “ pc, dq,
0 otherwise.

The set trc, ds | c, d P An´1u forms a basis of the C8-vector space
Char

2 pΓ1pt
nqq.

4.3. Proof of the main theorem. Consider the subgroup Θn “

1` tAn of Aˆ
n . Via the isomorphism ResΓ1ptnq of (4.3), the diamond op-

erator xαytn acting on S2pΓ1pt
nqq induces an operator on Char

2 pΓ1ptnqq,
which we also denote by xαytn . In particular, the group Θn acts on
Char

2 pΓ1pt
nqq via α ÞÑ xαytn .

Lemma 4.7. For any a, c, d P An´1, the action of 1` ta P Θn on rc, ds

is given by

x1 ` taytnrc, ds “ rp1 ` taq´1c, p1 ` taq´1pd ´ aqs.

Proof. By (4.4) and Lemma 3.6, for any c1, d1 P An´1 we have

px1 ` taytnrc, dsq phpc1,d1qJe0q “ rc, dsphpp1`taqc1,a`d1`tad1qJe0q,

which is equal to one if pc1, d1q “ pp1 ` taq´1c, p1 ` taq´1pd ´ aqq and
zero otherwise. This concludes the proof. □
Proposition 4.8. The C8rΘns-module S2pΓ1pt

nqq is isomorphic to the
direct sum of qn´1 copies of C8rΘns.
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Proof. It suffices to show the assertion for Char
2 pΓ1pt

nqq. Take any
pc, dq P A2

n´1. We claim that the Θn-orbit

tx1 ` taytnrc, ds | a P An´1u

of rc, ds is of cardinality qn´1. Indeed, if x1`taytnrc, ds “ x1`ta1ytnrc, ds

for some a, a1 P An´1, then Lemma 4.7 yields

p1 ` taq´1pd ´ aq “ p1 ` ta1q´1pd ´ a1q,

which is equivalent to p1 ` tdqpa1 ´ aq “ 0 and we obtain a1 “ a.
We denote by V pc, dq the C8-subspace of Char

2 pΓ1pt
nqq spanned by

the Θn-orbit of rc, ds. Then V pc, dq is stable under the Θn-action and
dimC8 V pc, dq “ qn´1. Consider the map

C8rΘns Ñ V pc, dq, α ÞÑ xαytnrc, ds.

It is a homomorphism of C8rΘns-modules which is surjective. Since
the both sides have the same dimension, it is an isomorphism. Since
the C8-vector space Char

2 pΓ1pt
nqq is the direct sum of V pc, dq’s, the

proposition follows from Lemma 4.4. □
Theorem 4.9. We have

dimC8 Sord
2 pΓ1ptnqq “ qn´1

and all Hecke operators act trivially on Sord
k pΓ1pt

nqq for any k ě 2.

Proof. By Theorem 3.11, it is enough to show dimC8 Sord
2 pΓ1ptnqq ď

qn´1. Put

Γp
0ptnq “

"

γ P SL2pAq

ˇ

ˇ

ˇ

ˇ

γ mod tn P

ˆ

1 ` tAn An

0 1 ` tAn

˙*

,

as in [Hat3, §3]. Then the Θn-fixed part of S2pΓ1pt
nqq is S2pΓ

p
0ptnqq.

Since the Hecke operator Ut commutes with the action of Θn and it
is defined by the same formula for the levels Γ1pt

nq and Γp
0ptnq [Hat3,

§3.1], we see that Sord
2 pΓ1ptnqq is stable under the Θn-action and

Sord
2 pΓ1ptnqqΘn “ Sord

2 pΓp
0ptnqq,

where the right-hand side is the ordinary subspace of S2pΓ
p
0ptnqq defined

similarly to the case of S2pΓ1pt
nqq. Then [Hat3, Proposition 3.5] and

Corollary 3.12 yield

dimC8 Sord
2 pΓ1pt

nqqΘn “ dimC8 Sord
2 pΓp

0ptnqq “ dimC8 Sord
2 pΓ1ptqq “ 1.

On the other hand, Proposition 4.8 gives an injection of C8rΘns-
modules

Sord
2 :“ Sord

2 pΓ1pt
nqq Ñ

qn´1
à

i“1

Vi, Vi “ C8rΘns.
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Let I be the set of integers M P r1, qn´1s such that there exists an

injection of C8rΘns-modules Sord
2 Ñ

ÀM
i“1 Vi. Then I is nonempty and

let m be its minimal element.
Now we reduce ourselves to showing m “ 1. Suppose m ą 1 and

consider an injection Sord
2 Ñ

Àm
i“1 Vi. Since Θn is an abelian p-group

and C8 contains no non-trivial p-power root of unity, Schur’s lemma
implies that the only irreducible representation of Θn over C8 is the
trivial representation. Since both of

Sord
2 X V1, Sord

2 X

m
à

i“2

Vi

are C8rΘns-submodules of Sord
2 , if one of them is non-zero then it con-

tains the trivial representation. Since the C8-vector space pSord
2 qΘn is

one-dimensional, we see that either of them is zero. Thus either of the
induced maps

Sord
2 Ñ

˜

m
à

i“1

Vi

¸

{V1 »

m´1
à

i“1

Vi, Sord
2 Ñ

˜

m
à

i“1

Vi

¸

{

˜

m
à

i“2

Vi

¸

» V1

is injective, which contradicts the minimality of m. This concludes the
proof of the theorem. □

Theorem 3.11 and Theorem 4.9 yield the following corollary.

Corollary 4.10. The operator Ut acting on S
p2q

2 pΓ1pt
nqq is nilpotent.

Remark 4.11. By Theorem 3.11, if we could prove the nilpotency of

Ut acting on S
p2q

2 pΓ1pt
nqq directly, then Theorem 4.9 would follow. As

the proof of Theorem 4.9 indicates, the reason we can bypass it is that
we know the dimension of Sord

2 pΓ1ptqq because X1ptqC8 is of genus zero.
The author has no idea of how to show the nilpotency directly.
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