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SHIN HATTORI

ABSTRACT. Let p be a rational prime and ¢ > 1 a p-power. Let
Si(T'1(t)) be the space of Drinfeld cuspforms of level T'y(¢) and
weight k for Fy[t]. For any non-negative rational number «, we de-
note by d(k, ) the dimension of the slope « generalized eigenspace
for the U-operator acting on S(I'1(¢)). In this paper, we prove a
function field analogue of the Gouvéa-Mazur conjecture for this
setting. Namely, we show that for any o < m and k1, ke > o + 1,
if k1 = ky mod p™, then d(k1, @) = d(ka, ).

1. INTRODUCTION

Let p be a rational prime, ¢ > 1 a p-power, A = F [t] and p € A
a monic irreducible polynomial. For Ky = F. ((1/t)), we denote by
Cy the (1/t)-adic completion of an algebraic closure of K. Then the
Drinfeld upper half plane Q@ = Cy\Ky has a natural structure of a
rigid analytic variety over K.

Let k be an integer and I' a subgroup of SLy(A). Then a Drinfeld
modular form of level I' and weight k is a rigid analytic function f :
Q — C, satisfying

f(az—l—b) = (cz + d)* f(2) for any 2z € Q, <Z Z) el

cz+d

and a holomorphy condition at cusps. The notion of Drinfeld modular
form can be considered as a function field analogue of that of elliptic
modular form and the former often has properties which are parallel
to the latter. However, despite that the theory of p-adic families of
elliptic modular forms is highly developed and has been yielding many
applications, g-adic properties of Drinfeld modular forms are not well-
understood yet. A typical difficulty in the Drinfeld case seems that
a naive analogue of the universal character Z); — Z,[[Z;]]* is not
locally analytic by [Jeo, Lemma 2.5] and thus similar constructions to
those in the classical case including [AIP] will not immediately produce
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an analytic family of invertible sheaves interpolating automorphic line
bundles.

Still, there seem to exist interesting structures in p-adic properties
of Drinfeld modular forms. In [BV1, BV2], Bandini-Valentino studied
an analogue of the classical Atkin U-operator, which we also denote by
U, acting on the space Si(I'i(t)) of Drinfeld cuspforms of level I'y ()
and weight k. The operator U is defined by

(1) wne -1 3 (557).

BeF,
The normalized t-adic valuation of an eigenvalue of U is called slope.
Note that here we adopt the different normalization from that of Bandini-
Valentino, and as a result our notion of slope is smaller than theirs by
one. For a non-negative rational number a, we denote by d(k,a) the
dimension of the generalized eigenspace of U acting on Si(I'1(t)) for
the eigenvalues of slope a. Then they proposed a conjecture on a p-adic
variation of d(k, ) with respect to k [BV2, Conjecture 6.1] which can
be regarded as a function field analogue of the Gouvéa-Mazur conjec-
ture [GM1, Conjecture 1]. In this paper, we will prove it.

Theorem 1.1. (Theorem 2.10) Let m = 0 be an integer and o a non-
negative rational number. Suppose a < m. Then the dimension d(k, )
of the slope a generalized eigenspace in Sk(I'1(t)) satisfies

k‘l,k'g > o+ 1, kl = k’g mod pm = d(l{?hO[) = d(k’g,a).

We will also prove its variant for level I'g(¢) (Theorem 3.1).
For the proof, put

P®(X) = det(I — XU | Si(T1(t))).

First note that, as is mentioned in [Wan, §4, Remarks|, the arguments
of [GM2] and [Wan] can be generalized over suitable Drinfeld modular
curves (including X2 (n) of [Hat]). In particular, the characteristic
power series of U acting on the spaces of p-adic overconvergent Drinfeld
modular forms of weight k; and k, are congruent modulo . As
its analogue in our setting, we can show the congruence P*1(X) =
P®#2)(X) mod " up to some factor. However, though with this we
can prove Theorem 1.1 for p > 3, it is not enough to settle the case of
p = 2 on which Bandini-Valentino stated their conjecture.

To go further, we investigate the formula of the representing matrix
of U given by Bandini-Valentino [BV1, (3.1)] more closely. Luckily,
the representing matrix is of very special form: each entry on the j-th
column (with the normalization that the leftmost column is the zeroth)
is an element of F,#/. Thanks to this fact, we can give a lower bound
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of elementary divisors of the representing matrix (Lemma 2.2). Then
a perturbation argument shows that the n-th coefficients of P*)(X)
and P%+P™)(X) are much more congruent than modulo #™ up to some
factor of slope = k—1 (Corollary 2.7), which is enough to yield Theorem
1.1 for any p.

Acknowledgments. The author would like to thank Gebhard Bockle
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nomials of U, and Maria Valentino for pointing out an error in the
author’s previous computer calculation. He also would like to thank
the anonymous referee for improving Lemma 2.2 and giving a sugges-
tion to consider the case of I'g(t). This work was supported by JSPS
KAKENHI Grant Number JP17K05177.

2. DIMENSION VARIATION
Let k = 2 be an integer. Put

Ty (t) = {7 € GLy(A) | v = ((1) 1) mod t} < SLy(A).

On the space Si(I'1(t)) of Drinfeld cuspforms of level I'; (t) and weight
k, we consider the U-operator for ¢ defined by (1.1). Note that we
follow the usual normalization of the U-operator which differs from that
of [BV1, §2.4] by 1/t. Then Bandini-Valentino [BV1, (3.1)] explicitly
describe the action of U with respect to some basis c(()k), ceey ckk_2, which
reads as follows with our normalization:

(k)Y _ i (k—2—3\ (k) j k—2—j—h(q—1
Uy =(=07 () v 3 ()
(21) heZ,h#0
i+1 (k—2—j—h{g—1) (k)
(=L )}%h(q—l)'

c
d

are zero if j+h(qg—

Here it is understood that the binomial coefficient ( ) is zero if any of

g”i)h(q—l)
1) ¢ [0,k —2]. We denote by U®) = (Uigl;))ogi,jgkfz the representing
matrix of U for this basis. Then we have U®*) € M,_;(A). We identify
the t-adic completion of A with F,[[t]] naturally and consider U*) as
an element of Mj_(F,[[t]]). Let v; be the t-adic additive valuation

normalized as v;(t) = 1.

¢, d, c—d is negative and the terms involving c

Definition 2.1. (1) Let B = (B j)o<ism-1,0<j<n—1 be an element
of M, »(F,[[t]]) and b a non-negative integer. We say B is
b-glissando if B; ; € F,t% for any 1, j.
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(2) For such B, write B = Bydiag(1,t*,...,t*™ ), where B, €
M,, »(F,) and diag(1,#°, ..., "=V} is the diagonal matrix whose
diagonal entries are as indicated. We say a non-negative integer
j is a pivot number of B if in the row reduced form of By, a
pivot is on the j-th column.

By (2.1), the matrix U®) is 1-glissando. Moreover, the [-th smallest
pivot number j; of a b-glissando matrix satisfies j; > [ — 1.

Lemma 2.2. Let b be a non-negative integer. Let B = (B; ;)o<i<m—1,0<j<n—1
be a b-glissando matriz in My, ,(F,[[t]]). Let j1 < --- < j, be the pivot
numbers of B. Let s; < sy < --+ < s, be the elementary divisors of B
(namely, they are integers or +oo such that the (i — 1,7 — 1)-entry of
the Smith normal form of B has normalized t-adic valuation s;). Then
s; < 4o if and only if | < r, and for any such |, we have s; = by;.

In particular, we have s; = b(l — 1) for any l.

Proof. Let By be as in Definition 2.1 (2) and By its row reduced form.
Then the Smith normal form of B agrees with that of Bydiag(1,, ..., t*"1).
The latter product is of row echelon form such that the [-th pivot is
%t and every entry of the [-th row is divisible by the pivot. This yields
the lemma. O

For any element P(X) = Y,° p,X" € F,[[¢]][[X]], the Newton
polygon of P(X) is by definition the lower convex hull of the set

{(n,ve(py)) [ 0 = 0}

Lemma 2.3. For any B € M,,(F,[[t]]) and any non-negative integer
c, put

P(X) = det(I — t°XB) = i P X" € F[[H][X].

Let s1 < s < - < s, be the elementary divisors of B.

(1) ve(pn) = en+ 2" si.
(2) Any slope of the Newton polygon of P(X) is no less than c.
(3) If B is b-glissando, then we have vy(p,) = cn + 2n(n —1).

Proof. First note that, for the characteristic polynomial Q(X) = det(XI—
t°B), we have P(X) = X™Q(X™!) and thus p, is, up to a sign, equal
to the sum of the principal n x n minors of t“B. Since the elementary
divisors of t°B are ¢ + s1,...,c + 8, this shows (1). Since py = 1, the
resulting inequality v;(p,) = cn implies (2). By Lemma 2.2 and (1),
we obtain (3). O
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Now we put
P®(X) = det(I — XU* Z a® x™

and o) = 0 for any n = k. Let N® be the Newton polygon of
P®)(X). For any non-negative rational number o, we denote by d(k, o)
the dimension of the generalized U-eigenspace for the eigenvalues of
normalized t-adic valuation a. Then d(k,«) is equal to the width of
the segment of slope « in the Newton polygon N®).

Lemma 2.4. d(k,0) =1

Proof. By (2.1), we have U(k) = ( 0 ) = 1. On the other hand, since
U®) is 1-glissando, we have vt(U( )) > j and

Z U(k) = —1 mod ¢.

Moreover, from Lemma 2.3 (3) we obtain vt(a%k)) > 0 for any n > 2.
This yields the lemma. 0

Lemma 2.5. Let a and b be non-negative integers. Let m = 1 be an
integer. Then we have

("7")
Here it is understood that (2) =0 if any of ¢,d, c — d is negative.
Proof. This follows from
(X + 1) = (X + D)*(X?" + 1) mod p.

() + () mod p.

b—p

O

Proposition 2.6. Let m = 1 be an integer. Then there exist 1-
glissando matrices C € Mym _1(A) and D € Mym ym_r11(A) satisfying

k
Uk+r™) = ( UC(') tng g ) mod 7"
Here it is understood that the middle blocks are empty if p™ < k — 1.
Proof. Let j be an integer satisfying 0 < j < k+ p™ — 2. By (2.1), the
element U(c; 7)) s equal to

( . t) (k—i—pmj—Q—j)Cngrpm)

. k+p™—2— ‘,h( 71) i+1 (k+p™—2— ‘7h( *1) (k+pm)
— Z {( P —h(qj—l) q ) + (_1)]+ ( P jj q )} Cl 1)
h€eZ,h#0
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Note that both of Ui(’l;er ") and Ul-(j;) are divisible by t*" for j > p™
Since U®+P™) is 1-glissando, what we need to show is
(1) For any j < min{k — 2,p™ — 1} and i € [0,k — 2], we have
Ui(’];erm) = UZEI;), and
(2) If kK < p™, then for any j € [k — 1,p™ — 1] and i € [0, k — 2], we
have Ui(’]fpm) = 0.

First we assume j < min{k —2, p™ —1}. By Lemma 2.5, the element
U (c§k+p ")) equals

({7 + () el

Jj—p™ J

j k—2—j—h(g—1 k—2—j—h(qg—1
o tj Z {( 7}5((]7(1% )) + ( *h(qul)glp""))
heZ,h+0
j+h(g—1)€[0,k—2]

HEIP () (L) bl
-t ) {(“pmi,f(‘q{‘l’;(q‘”)+(—1)j+1(’f+p”—2—,a‘—h<q—1>)}C<k+pm>

J
heZ.h+-0
Jj+h(g—1)zk—1

Hence U (cgkw ")) agrees with

k—2

(k) (k+p™) i (k—2—4\ (k+p™)
ZUi,j C; P +(_t)](j_pmj)cj b
i=0

j k—2—j7—h(qg—1 i+1/k—2—j—h(q—1 (k+p™)
— v Z {( —h(qj—l)(—qpm)) + (_1)]+ ( jj—pm(q ))} CjJth()qfl)
heZ,h+#0
Jj+h(g—1)€[0,k—2]

j k+p™—2—j—h(g—1 j+1 (k+p™—2—j—h(g—1 (k+p™)

) Z {( P 7h(q]71)(q ))+(_1)J+( p j] (¢ ))}Cj+h(q—1)'
heZ,h+-0

Jj+h(g—1)zk—1

Since j < p™, we have (’z.j;f) = 0. For the case of j + h(qg—1) €

[0, k;—‘2], we also have —h(g—1)—p™ < j—p™ < 0 and (%Z(qﬁ’;@;ﬁ) —=
(k_Q_j{;]Zn(q_l)) = 0. This proves (1).

Next we assume k < p™ and j € [k—1,p™ —1]. For any i € [0, k—2],
the element Ui€];+p ") is equal to

4 {(kwm:}zb(;j:li;(qfl)) n (_1)j+1(k+pm—2—.jfh(q71))}

J

j+h(g—1)"
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if we can write i = j + h(¢ — 1) with some h # 0, and zero otherwise.
Since i < k — 2, in the former case we have k —2 —j —h(g—1) = 0
and Lemma 2.5 implies

k—2—j—h(q—1)+p™ k—2—j—h(q—1 k—2—j—h(q—1

( ]—h(éq—l)) ") = —hj(q—(f]) )+ ( —h(qj—l)glpm))’

k—2—j—h(g—1)+p™\ _ (k—2—j—h{qg—1) k—2—j—h(q—1)

( ) )= () ().

Since i = j+h(q—1) € [0,k —2] and j < p™, we have (k:z(_qj__l’)l@;j)) =

(kiij*}f,fq*l)) = ( as is seen above. Since j = k — 1, we also have

(kfzjff(;f(lq)fl)) = (ki?fj;h(qfl)) = 0. This proves (2) and the proposi-

tion follows. 0

Let V € Mj,m_1(A) be the matrix of the right-hand side of Propo-
sition 2.6. Let D’ be the upper (p™ —k + 1) x (p™ — k + 1) block of D
if £ < p™ and D’ = O otherwise. Put

P(X) =det(I — XV) = P®(X)det(I —t" XD

and write P(X) = Y7 71 G, X" We denote by N the Newton poly-
gon of P(X).

Corollary 2.7. Let m and n be integers satisfyingm =1 and 1 < n <
k+p™ —1. Then we have

n—1
v (aP —G,) = Pt Z min{/ — 1, p™}.
=1

Here the sum on the right-hand side is meant to be zero forn = 1.

Proof. Write
V= U®rn)
with some W € M pm_1(A). Let s; < -+ < Sp+pm_1 be the elementary

divisors of U%*+?™)  Since U*+P™) is 1-glissando, by Lemma 2.2 we
obtain s; > [ — 1 for any [. Then [Ked, Theorem 4.4.2] shows

n—1 n—1
v (@ — @) = pm 4 2 min{s;,p™} = p™ + Z min{l — 1,p™}.
=1 =1

U

Lemma 2.8. Let jo = 0 be an integer. Let m and n be positive integers.
Then we have
n—1 .

{ m(n—1) (jo=0)

"4 min{jo+1—1,p"} > :
p ; o "} mn (jo > 0).
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Proof. We denote the left-hand side of the inequality by L. The case
n = 1 follows from L = p™ > m > 0. For n > 2, first we assume
n—2 = p™ — jo. Note that in this case jo+ 1 — 1 < p™ if and only if
I <p™—jo. If p™ < jo, then the minimum in the sum of the lemma is
always p™ and thus L = p™n. Since n > 1 and p™ > m for m > 1, we
have p™n > mn and the lemma follows for this case. If p > jj, then
we have

" —jo
L=p"+ > (ot+1=1)+p"(n—p"+jo—1)
=1
1 m N m . m m .
25(19 —Jo)(P" 4 jo — 1) +p"(n — p™ + jo)
1 . 1., .. .
=§pm(2n—1—(pm—jo))+§]o(p —Jo+1).

Since we are assuming n —2 = p™ — jo > 0, we obtain L > %pm(n +1).
For m > 1, we have %pm > m and

1
L= Epm(nJr 1) = m(n+1) > mn.

Next we assume n — 2 < p"™ — jo. In this case, put € = 0 if jo = 0
and € = 1 otherwise. Then L equals
n—1 n—1
1
"+ o+1—1)=p™+ e+l—-1)=p"+-(n—-1)(n—2+2).
p ;(Jo )= p l;( ) =p" + 5 (n = 1) )
Since €% = ¢, the right-hand side is greater than m(n — 1 + ¢) if and
only if

3\\’ 1
n—|m-e+tg +2pm—m(m+1)—1>0.

Since m,n and ¢ are integers, the first term is no less than i. Since

we can show 2p™ > m(m + 1) for any p and m > 1, the lemma also
follows for this case. (l

Lemma 2.9. The part of the Newton polygon N of IB(X) of slope less
than k — 1 agrees with that of N®.

Proof. For any Q(X) € F,[[t]][X] and any non-negative rational num-
ber a, the Newton polygon of Q(X) has a segment of slope a and width
[ if and only if it has exactly [ roots of normalized t-adic valuation —a.
By Lemma 2.3 (2), every root of the polynomial det(/ —t* !X D’) has
normalized t-adic valuation no more than —(k — 1). Thus, for P(X)
and P%®(X), the sets of roots of normalized t-adic valuation more than
—(k — 1) agree including multiplicities. This shows the lemma. O



DIMENSION VARIATION FOR DRINFELD CUSPFORMS OF LEVEL I'1(t) 9

Theorem 2.10. Let k and m be integers satisfying k = 2 and m = 0.
Let a be a non-negative rational number satisfying a < m and a <
k —1. Then we have d(k + p™, a) = d(k, a).

Proof. As in the proof of [Wan, Lemma 4.1], let {ay, ..., .} be the set
of slopes of the Newton polygons N*+P™) and N®*) which is no more
than m and less than k — 1, and renumber them so that «; < «;,1 for
any 7. It is enough to show d(k + p™, o;) = d(k, «;) for any i.

Suppose the contrary, and take the smallest slope a = «; in this set
satisfying d(k + p™, ) # d(k,a). By Lemma 2.4, we have a; = 0 and
d(k+p™,0) = d(k,0) = 1. Thus we may assume m > 1, r =i > 2 and
a > 0. ~

By Lemma 2.9, the Newton polygons N®) N*+P™) and N agree with
each other on the part of slope less than «. We choose k' € {k, k + p™}
such that the slope a occurs in N*) and let k” be the other.

Let (n,vt(a%kl))) be the right endpoint of the segment of N*) of
slope a, and (@ its left endpoint. Note that () is a common vertex of
the Newton polygons N® | N*+r™) and N. Since the Newton polygon
N®) has a segment of slope zero, we have n > 2 and

v (a)) < a(n—1) <m(n —1).
Then Corollary 2.7 and Lemma 2.8 imply
(2.2) v (a®)) < v (aFP") — G,).

n

If ¥ = k, then Lemma 2.9 shows Ut(a%k,)) = Ut(a%k)) = v(a,) and

from (2.2) we obtain vt(agﬂpm)) = vy(a,) = vt(a%k)). Thus the Newton
polygon N*+P™) has a segment of finite slope 8 with left endpoint Q.
Since « is the smallest, we have § > «. The equality vt(a%kﬂ )) =

vt(a%k)) implies @ = f and d(k,a) < d(k + p™, ). In particular, the
slope « also occurs in N*+7™),

If ¥ =k + p™, then (2.2) gives w(a,) = vt(a,(erpm)). Thus the
Newton polygon N has a segment of finite slope v with left endpoint
. Then this equality implies v < o < kK — 1. By Lemma 2.9, the
Newton polygon N also has a segment of slope v with left endpoint
(. Since « is the smallest, we have 7 = «a, and the equality above also
implies that the width of the segment of slope « in N is no less than
that in N*+P™) Thus Lemma 2.9 again shows d(k,a) = d(k + p™, a).
In particular, the slope « also occurs in N*®). Combining these two
cases, we obtain d(k,«) = d(k + p™, «), which is the contradiction.
This concludes the proof of Theorem 2.10. 0



10 SHIN HATTORI

3. VARIANT FOR ['y(?)

We put

To(t) = {7 € GLy(A) ‘ v = <O ) mod t}.

By a similar argument, we can show a variant of Theorem 2.10 for the
Drinfeld cuspforms of level T'g(), as follows. Let k = 2 be an integer
and w, e € Z/(q — 1)Z. Consider the character

Xe: Fp = C%, de—d-.
A Drinfeld cuspform of level I'y(t), weight k, type w and nebentypus
character y. is a rigid analytic function f : 2 — C, satisfying

f (“Z i b) = xe(d)(ad—bc) ™ (cz+d)* f(z) for any z € Q, <‘CL Z) e To(t)

cz+d

which vanishes at cusps. They form a Cy-subspace Sy ., (I'o(t), xe) of
Si(L'1(t)) which is stable under the U-action. Then Sk ., (To(t), xe) # 0
only if £k mod ¢ —1 = 2w — e. For any non-negative rational number «,
we denote by d(k, w, e, &) the dimension of the generalized U-eigenspace
of Sk.w(Lo(t), xe) for the eigenvalues of normalized ¢-adic valuation a.
Since we have

Sk(rl(t)) = @ Sk,w(FO(t)7Xe)a d(k’a) = Z d(k7w7€aa)7

w,e€Z/(q—1)Z w,e€Z/(q—1)Z

the following theorem gives a refinement of Theorem 1.1.

Theorem 3.1. Let w,e be elements of Z/(q — 1)Z. Let m = 0 be an
integer and « a non-negative rational number satisfying a < m. Then
we have

ki,ke > a+1, ky =kymod p™(q—1) = d(ky,w,e,a) = d(ks,w, e, ).

Proof. 1t is enough to show d(k + p™(q¢ — 1),w,e,a) = d(k,w,e, )
for any integer £ > 2 and non-negative rational number « satisfying
a<mand a < k—1. We may assume k mod g — 1 = 2w — e. Let
Jo € {0, ...,q — 2} be the representative of w — 1. Put

Jk,w:{]EZ|O<]<k_2a]EJOmOdq_l}a dk,w:ﬁ‘]k,uw

Then Sy ., (To(t), Xe) is spanned by {Cgk) | 7 € Jrw} [BV2, §4.3] and

the representing matrix U®*we) = (Ui(yg’w’e))ogz"jgdk,w_l of U acting on

Skaw(To(t), xe) with respect to this basis is the principal submatrix of
U®) given by

(kwe) _ 7 (0)
Ui,j B Ujo+(q—1)i,jo+(q—1)j'
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Thus we can write U**¢) = #90 B with some (¢ — 1)-glissando matrix
B, and by Lemma 2.2 the [-th smallest elementary divisor s; of the
matrix U satisfies
First we consider the case m = 0. By Lemma 2.3 (2), every slope
for Sk, (To(t), Xe) is no less than jo and thus d(k+ p™(q—1),w,e,0) =
d(k,w,e,0) = 0 unless jo = 0. When jy = 0, we see as in the proof of
Lemma 2.4 that d(k,w, e, 0) = 1 for any k > 2 satisfying k mod ¢—1 =
2w — e. Hence the theorem follows for m = 0.
Now we assume m > 1. Since Jiu S Jiq(g—1)pm,w, Proposition 2.6
implies that there exist matrices C, D satisfying
ugkwe | O |0
c |[t*'D|o )
We denote by a9 and a""® the n-th coefficients of
det(I — XU®w))  det(I — XV FEwe)),

respectively. Then the Newton polygon N®®) of the former agrees
with that of the latter on the part of slope less than k& — 1. Moreover,
[Ked, Theorem 4.4.2], (3.1) and Lemma 2.8 yield

[0+ (@=Dane) — rbae) 1od " wm@:(

Ut((lglker (¢—1),w,e) &gﬂwﬁ)) > { Zgﬂ 1) 82 N 8;

This enables us to show the theorem just as in the proof of Theorem
2.10: when j, = 0, the first slope is zero with multiplicity one and
the proof works verbatim. When j, > 0, consider the set of slopes of
Nkwe) and NE+P™(a-1Dwe) which is no more than m and less than
k — 1. Let a be the minimal slope in this set satisfying d(k + p™ (¢ —
1),w,e,a) # d(k,w,e,a). Let k' € {k,k + p™(q — 1)} be such that the
segment of slope « appears in N*-€) and (n,vt(agc,’w’e))) the right
endpoint of this segment. Then we have

/ — ~
Ut(aq(f 7w76)) < an < mn < Ut(a%k+pm(q 1),11),6) J— a/glk’wae))_

With this inequality, the proof works verbatim also for this case. [

Remark 3.2. The space Sk (GLa(A)) of Drinfeld cuspforms of level
GLy(A), weight k and type w admits an action of the operator T} given

by
@) =05+ X ()

BeFy t
It is known that every eigenvalue of T; acting on Sk ,,(GLa(A)) appears
also as an eigenvalue of U acting on Sy, ,,(I'o(t)) (see for example [BV2,
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Proposition 3.3]). Bandini-Valentino [BV2, §3.5] expect that, with our
normalization, the set of all finite slopes for the latter except k—gz is
equal to the set of t-adic valuations of eigenvalues for the former, in-
cluding multiplicities. If this expectation holds true, then Theorem 3.1
will also give a dimension variation of generalized T;-eigenspaces.

4. REMARKS

Computations using (2.1) with Pari/GP indicate that the slopes ap-
pearing in Sg(I'1(t)) have some patterns (see also [BV2, §6]). The
below is a table of the case p = ¢ = 2, where the bold numbers denote
multiplicities.

k slopes k slopes
2 0r 13 01, 3% 41, 1% 4 o
3 0!, +oot 14 0!, 1% 21 51 65 +o0?
4 0%, 11, oot 15 01 21,32,61 134 ood
5 0%, 2% yool 16 0%,1%,33, 75 4o08

1t 2t 2 32 72 156
6 0% 1 §2+°O 17 04,55 5, 5, +0°
T 02N 3" 40?18 01,17 2f 43 85 408
8 ()1,11 33, +00? 19 Ol o1 41 92 g1 176 , 6

2 2 ) Y 72 ) Y 2 b
9 0%, 3% 2%, +o0? 20| 0%,1%,3% 4% 51 8L 97 4 o0b
10| 0f,1%,2%,43 402 91 0t 32 a1 112 81 196 T
2

11 01,2141 9% 4003 22|01, 11,90 51 G181 of 107 4007
1201, 1%, 31,47, 5% o0t 93| 0 21,32,61 8,101, 218 o7

From the table, it seems that only small denominators are allowed for
slopes: In the author’s computation, as is already mentioned in [BV2,
§1], the only case a non-trivial denominator appears is the case of p = 2
and the denominator is at most 2. Moreover, it seems likely that the
finite slopes of Si(I'1(t)) are less than k£ — 1, and that for any n, the
n-th smallest finite slope of Si(I';(t)) is bounded independently of &
(say, by ¢"1). If the latter observations hold in general, then combined
with Theorem 2.10 it follows that for any n, the n-th smallest finite
slopes of Si(T'1(t)) are periodic of p-power period with respect to k
including multiplicities. For example, it seems from the table that the
third smallest finite slopes of S(I'1(¢)) in the case of p = ¢ = 2 are the
repetition of

21’ 32’33’ %2’ 21 41 31 41
This could be thought of as a function field analogue of Emerton’s
theorem [Eme] which asserts that the minimal slopes of Sg(I'9(2)) are

periodic of period 8.
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