HASSE-ARF THEOREM FOR F,-VECTOR SPACE
SCHEMES OF RANK TWO

SHIN HATTORI

1. INTRODUCTION

Let p be an odd prime and f be an elliptic modular form of level N
prime to p and weight £ < p 4+ 1. Let us consider its associated mod
p Galois representation p; : Gg — GLy(F,) and its restriction to the
inertia subgroup I,. The theorem of Deligne and Fontaine asserts that
the tame characters appearing in py|;, are determined by £.

Theorem 1.1 (Deligne, Fontaine).

Vel
% 1) if f s ordinary at p,
ﬁf|lp = gk;1 0
p-l pk—1) | Uf [ is supersingular at p,
0 0,
where x, 1s the mod p cyclotomic character and 04 is the fundamental
character of level d in the sense of [14].

This classification is the basis for the local analysis of py, especially
for the Serre conjecture of mod p modular forms ([14]). We have two
proofs of this theorem for & < p: one uses Raynaud’s full faithful
theorem for finite flat representations ([9, section 6]) and the other uses
p-adic Hodge theory and the Fontaine-Laffaille functor ([8, Proposition
4.1.1]). In both proofs, it is crucial that p is absolutely unramified, and
this is the very obstacle to carry out a similar analysis on the weight of
a modular form and its mod p Galois representation for a totally real
number field F. In this note, we propose a new approach to tackle this
problem which is applicable without any restriction to the ramification
index e of F' at p, at least in the case of parallel weight (2,...,2).
Namely, we prove the following conjecture in the reducible case for
F =TF,.

Conjecture 1.2. Let K be a complete discrete valuation field of mixed
characteristic (0, p) with perfect residue field and I be its inertia sub-
group. Let F be a finite extension of F, and G be a finite flat F-vector
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space scheme of rank 2 over Og. Write ¢ = ¢(G) for the conductor
of G ([2], [3]) and k/l for the prime-to-p part of ¢ mod Z. Then an
I -module g(f() QF IF‘p contains Ql"’ as an I -submodule. Moreover, if
G(K) is reducible, then we have 0F C G(K).

This conjecture can be regarded as the counterpart for finite flat
group schemes of the Hasse-Arf theorem in the classical ramification
theory. In fact, if the Galois group Gk acts trivially on G(K), this is
equivalent to the assertion that, for a complete discrete valuation field
M and an abelian extension L of M whose integer ring is a G-torsor
over Oy, the denominator of the conductor ¢(L/M) is p-power. In
this case, the assertion follows easily from the theorem of Herbrand for
finite flat group schemes ([1, Lemme 2.10]).

To prove the conjecture for F = I, we will firstly show the compat-
ibility of the theory of Breuil ([5]) with respect to a base extension in
Ko = K(m? ™). This makes us possible to describe a defining equa-
tion of G explicitly. By virtue of the full faithful theorem of Breuil
([6, Theorem 3.4.3]), such a base change is harmless to study finite flat
representations. Next we gather some elementary lemmas for the cal-
culation of the conductor. As a corollary, we determine the conductor
of a Raynaud F-vector space scheme, which is independent of the proof
of the main theorem. Then we prove the main theorem by a lengthy
calculation. In the forthcoming paper [12], we prove the conjecture in
general, by a more geometrical method.

2. BASE CHANGE PROPERTY FOR A FILTERED ¢;-MODULE OF
BREUIL

In this section, we briefly recall the theory of a filtered ¢;-module of
Breuil ([5]) and give a proof of its compatibility with the base change
from K to K.

Let K be a complete discrete valuation field of mixed characteristic
(0,p), k be its residue field which we suppose to be perfect in this
section, e be its absolute ramification index, W = W (k) and o be
the Frobenius of W. We fix once and for all an uniformizer = of K.
Let E(u) = u® — pF(u) be the Eisenstein polynomial of = over W
and Set S = S; = (W[u]*P)", where the divided power envelope of
Wu| is taken with respect to an ideal (E(u)) and compatibility with
the natural divided power structure on pWW, and A means the m-adic
completion. The ring S is endowed with a o-semilinear map ¢ : u +— uP,
which we also call Frobenius, and the natural filtration induced by the
divided power structure. We set ¢y = 1/p.¢|pig and ¢ = ¢1(E(u)) €
S*. We define ¢, ¢; and a filtration on S,, = S/p" similarly.
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In [5], following categories of filtered ¢;-modules are defined. Set ' M
be a category consisting of following data;
e an S-module M and its S-submodule Fil' M containing Fil' SM,
o ¢-semilinear map ¢, : Fil' M — M satisfying ¢1(sym) = ¢1(s1)p(m),
where s; € Fil'S, m € M and ¢(m) = ¢~ ¢y (E(u)m).
Let M be a full subcategory of ‘M consisting of M satisfying
e the S;-module M is free of finite rank,
e ¢ (Fil' M) generates M as an S-module.
and M be the minimal full subcategory of "M which contains M; and
stable under extension.

The category M is shown to be categorically anti-equivalent to the
category (p-Gr/Ok) of the finite flat group schemes over O which is
killed by some p-power ([5]). Let us recall the definition of this equiv-
alence. Let Spf(Ok)sm be the category of the p-adic formal schemes
of formally syntomic, endowed with the Grothendieck topology gener-
ated by the surjective families of formally syntomic morphisms. Write
(Ab/Ok) for the category of the abelian sheaves on Spf(Og)sm. The
sheaf O, » and J,, » is defined by the formula

On,ﬂ'(%) = ngys((%n/sn)ﬂy& Oxn/sn)
and
jnﬂr(%) = ngys((%n/sn)crya jxn/sn),

where X,, = X/p™. We also set Oy » = lii>n(9n,7T and Joo.r = lim Jy, 7.
We denote by ¢ : O, — O, the crystalline Frobenius map. We
can define the natural morphism ¢, : J,» — O, » which makes the
following diagram commutative

¢
\77’1,7‘( —1) On,ﬂ'

T lxp

jn—l—lﬂr L} On+1,7r~
Let G € (p-Gr/Ok) and M € M. Define
MOdK(g) = Hom(Ab/oK)(g, Ooo,w)

and
Grg (M) = Homv (M, Oue ).

Then the main theorem of [5] is the following.

Theorem 2.1 (Breuil). The functor Grg defines an anti-equivalence
of categories M — (p-Gr/QOk) and its quasi-inverse is Mod.
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Next we consider the base change theorem of the functor Gr for an
extension K; = K(7'/P) over K. This extension is totally ramified of
degree p. The minimal polynomial of m; = 7/ over W is E;(v) =
E(@P) = v® — pF(vP). Set S" = S,, = (W[v]'P)", where the divided
power envelope is taken with respect to (E;(v)) and compatibility with
the natural divided power structure on pWW. The ring S’ has a o-
semilinear endomorphism ¢ : S’ — S’ defined by v +— o? and a ¢-
semilinear map Fil'S" — ' satisfying ¢ |ppq= pd1. We have a ring
homomorphism S — S” which maps u to vP. This respects the filtration
and ¢1.

Lemma 2.2. The S-module S’ is free of finite rank.

Proof. The Wul-algebra W v] is free of finite rank. We have (E(u))Wv] =
(E1(v)). Therefore W[v]"? = Wu]"P @ Wv] from [4, Proposi-
tion 3.21] and Wu]’? — Ww]PP is also free of finite rank. Thus
(Ww]"P)N = (Wu)"P)" Qpypyro W{v)PP. This concludes the proof.

U

Let us denote the category of filtered ¢;-modules over S’ by ‘M’
and M’. From the lemma above, we can define a filtered ¢;-module
structure on M’ = M ®g S’ for any M € 'M by Fil' M’ = (Fil' M) ®g .5’
and ¢1 = ¢1 @ ¢. If M € M, then we have M' € M'.

For a presheaf F on Spf(Of)syn, we denote by Flo, the restriction
of F to Spf(Ok, )syn- If F is a sheaf on Spf(Ok )syn, then ]—"]@Kl is also
a sheaf on Spf(Ok, )syn.

Define a morphism Wy, : Gr(M)|o,, — Gr(M’) of (Ab/Of,) as fol-
lows. For any X', formally syntomic over Spf(Qg,), we want to set
W - Hom?y (M, O, (%)) — Hom?y, (M ®g ', Oy (X)) by f
(m® s +— s'.prig(f(m))), where priy : Op(X) = HY(X/Sn) —
HY, o (X70/S,,) = O, (X') is the natural pull-back. The map pry, re-
spects the filtration. We have to show the compatibility with ¢;.

Consider X" = Spf(’). We can write A = Og, (X1,..., X))/ (f1,--- fs),
where Ok, (X1,..., X]) = Ok, [X{,..., X/]" and fi,..., fs is a regular
sequence in that ring ([5, Lemme 2.2.1]). Put A, = O (X3P, ..., X/P ) (X}~
71, f1,---, fs) and 91/00 = hi>n2(; The W-algebra Ql; is isomorphic to

Ok[TI/(T7 = ) (X§7 o X V(X =T, frve s f)
= Wlu, T]/(E(u), " - w) (X XY (X =T fry e )
= WXL X V(B fiae fo)
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We also set A = A_/p = /{:[le S X)X e )
Note that the formal scheme Spf () is a coverlng of Spf(‘)l’) in Spf((’)K1 )syn-

— 00 — 00

Lemma 2.3. The following two sequences are exact;

/

0— Orﬂr(%fw) £ OT+877T(9100) - Osnr(%go) -

0= Trn(We) 2 Trpom(Uig) = Tun(ALe) — 0.
In particular, there are exact sequences in (Ab/Ok;)

X p*
O - OT’,T(|0K1 - Or+s,7r|(’)K1 - Os,7r|(’)K1 - 07

and

0.

X p?
0— x7r,7r|OK1 - t.77“+s,7r|OK1 -

Proof. We repeat just the same argument as [5, Lemme 2.3.2].

Note that Op.(AL) = H (A /p"/Ss) is isomorphic to
(Wo(AL) @w, on Walu])"?, where the divided power envelope in the
right hand side is taken with respect to the kernel of a surjection
Wh(AL) ®@w,.on Wyalu] — AL /p™ which sends (xg,...,Tn—1) ® u to
X ! ka:k k, and compatibility with the natural divided power
structure on pW. Here we denote an lifting of xj in A._/p"™ by Z;. In
fact this surjection induces a thickening (W, (A4.,) ®@w, o Walu])"" —

/p of A_/p™ over S, and thus we have the natural projection

HY (AL /0" /Sn) — (Wa(AL) @w,.on Walu PP, Its inverse map
(Wo(AL) @w, on Wylu])"P — HY (AL, /p™/Sn) is defined as follows.
For any affine thickening U — T of A_/p™ over S,, we define a
map (W, (A%) @w, on Walu])"” — T(U,Op) by (x0,. .., Tp_1) @ u
ud i, p’“fin_k, where ;, is a lifting of xy, in ['(T, Or). This is a well-
defined ring homomorphism, patches in a non-affine case and induces
the inverse map of the natural projection.

Let us consider a surjection W,[u][X(F ..., X* "] — A _/p"* =
Wn[X(’)pfoo, LX) (E(XEP), fu, - fs) which sends u to X{P and
XP ' to its image for any k, 1. Let us denote its kernel

(u— X, E(XEP), f1, ..., fs) by I. Taking its divided power envelope
with respect to I and compatibility with the natural divided power
structure on pW, we get a surjection (W, [u][XP ..., X/P "PP -

A /p". This map is S-linear, where A/_/p™ is cons1dered as an S-
algebra by u — X{”. Thus this surjection defines a thickening of 2/ / p"
over S,, and we get the natural projection (W, (AL ) @w, o» W, [u])"P —

(Walul[Xg" ™. X7 )PP,
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oo oo

Conversely, a surjection W, [u] [X(’)If - ,X,_’AV | = Wa(AL)®w, on

W,[u] sending u to 1 ® v and X to [X}” "] makes the following
diagram commutative;

Wi [u] [X(,)p*w’ e 7X7,ﬂp*°°] —— Wa(AL) @w,.on Walu]
Therefore this surjection induces (W,[u][Xi ..., X/* )PP —

(Wo(AL) ®w, on Walu])PP. We see that this map is the inverse to
the natural projection by the definition. Thus we get an identification

oo oo

Ona(A) = (W,u][ X ..., X" )PP respecting the filtration and
the Frobenius. Then [5, Lemme 2.3.2] and [4, 3.20, Remark 8] conclude
the proof.

U

We insert here the next lemma for the sake of references.

Lemma 2.4. Let )y, ... ¢, € k[X)P ..., X7 satisfying 4 = fi.
Then Oy -(AL,) is isomorphic up to a o-twist to

B ALl — X/ (= X0 Yoo (X6 Vo, (101) - -

mo,...,Ms+1€ZL>0

mes (ws),ypms-i—l (u - Xé) N

Proof. The sequence u — X7, X\ fi,...,fs is a regular in
klu][X§P ..., X" "]. Their inverse images in (A’ @y, k[u])F? are
u— X{, X{ n, ... s, respectively. Thus the assertion follows from

the proof of [10, Proposition 1.7].
U

From Lemma 2.3, we have a diagram

¢1 Xp (9
jn+1,7r|(9Kl — jn,fr OKl B n,ﬂ"OKl — n+1,m OKl
¢1 O Xp O
jnJrlJrl — jn,ﬂl B n,m] B n+1,m19

where the vertical arrows are the pull-backs and the left and right
squares are commutative. The compositions of the horizontal maps
are ¢. Thus we see that the middle square is also commutative. In
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other words, the map pr%, is compatible with ¢;. Therefore, we get the
morphism of (Ab/Ok; )

Uy 2 Gr(M)|o,, — Gr(M'),
Theorem 2.5. The canonical map Yy, is an isomorphism.

Proof. The sheaves of both sides come from finite flat group schemes
Gr(M) %o, Ok, and Gr(M'). Thus the bijectivity can be checked after
taking the functor Mod. In other words, it suffices to show that

CI)M M Rg S, — Hom(Ab/OKl)(Hom(SAb/(’)Kl),’M(Mv 017W|0K1), OLM),

defined by m ® s’ — (f +— §.pr*(f(m))) is an isomorphism of 'M’.
Here we denote by pr* the pull-back map (9177r|oK1 — Oir,. We want
by devissage to reduce this to the p-torsion case.

Lemma 2.6. Ext}y g (M,O1xlo,) = 0 for any M € M which is
killed by p.

Proof. Take some Spf(A) € Spf(Ok, )syn and an extension
0— 01,(A,) —E— M —0.

We have to show that syntomic locally a splitting of £ exists. Let
{e1,...,eq} be an adapted basis of M ([5, Proposition 2.1.2.5]) and
é1,...,¢q be their lifts to £. We mimic [5, Proposition 4.1.3] and seek
for a splitting e; — é; by modifying é;’s.

Firstly, we modify é;’s to respect the filtration. Let r; be the minimal
natural number satisfying u’ie; € Fil' M. There exists §; € Oy -(2.)
such that u7é; + 9, € Fil'€. By Lemma 2.4, we can decompose 0;
as §; = d;0 + 01, where 0,9 € A and §;; € J1.(A). We have
ué; +ucT"i6; € Fil'€ and w0, € J1. (). As Ji.(2,) contains
u — X, we get X[ 7d;0 = 0, and in particular X(')p(e_rj)5§0 =0 in

Al_. Take an lift 5j70 of 00 in AL, where Xj = m holds. Then we

have Wef’”ﬂ'gf,o = 7wz, for some z; € A . The ring AL is m-torsion
free and we have 5?0 = n"ix;. As A is perfect, we can take y; € AL
satisfying y7 = ;. Then (d;0 — X;"y;)? = 0 in A_. By the definition
of the divided power structure on (k[u][ X} ,..., X" " ])PP, we see
that 0,0 — X{7y; € J1.(A) and also ;0 — u"y; € J1.(AL).

Now we replace é; by é; + y;. Then, v (é; +y;) = —0; + ;0 =0
mod Fil'€. Thus the map e; — ¢€; + y; respects the filtration.
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C1 u
Next we modify é; to respect ¢1. Set | | = ¢ : -G\ 1,
u’"déd €q

Cd
ue; e1
where G € GL4(S)) satistying ¢, : =g ( :|. We have to find
€d
"1(é1 4 61)

u ey
01 U é1+ 6
€ O, (A,)% such that ¢, =g : , OT
5d urd(éd + 5d) éd + 5d
u" oy 01 C1
01 : =G| :]—=1|:] Decompose c; = cjo+ cj1+ cjo,
u'd, 0q Cq
where ¢;o € AL, ¢j1 € (u— X(§)AL, and ¢;5 € \71[271(2[@0) By linearity,
U0y 01 Clk
it suffices to find the solution for ¢; : =g\ : —
u" g g Od,k Cdk

for £ = 0,1,2. We can resolve these equations, taking an appropriate
syntomic cover of 2’ if necessary, just as the proof of [5, Proposition
4.1.3], if we replace Yy and Xy there by X and X[?, respectively.

O

Lemma 2.7. Ext,lM/Sl(M, Oco.n

ok, ) =0 for any M € M.

Proof. By the Lemma 2.3, the same reasoning as the proof of [5, Lemme
4.1.2] works also in our case and shows that the lemma holds for any
M Xkilled by p. Then the definition of the category M and devissage
conclude the proof.

O

Now consider an exact sequence in M
0— My — My — Ms — 0.
From Lemma 2.7, we get an exact sequence

'M/S
0— Hom(Ab/OKl)(Mg, Ocor

Ok, )

'M/S 'M/S
- Hom(Ab//OKI)(M27 O rlog,) — Hom(Ab//OKl)(Mb Oco,rlok,) — 0.

'M/S
Here we know that Hom(Ab//OKl)(MZ-, Ocoirlog,) = Gr(M;)|o,, - Thus,
from [5, Proposition 4.2.1.5], we have the following commutative dia-
gram whose vertical sequences are exact;
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[} /
M, KRg S’ L Hom(Ab/@Kl)(Hom(ﬁ//%Kl)(Ml, OOO,W|@K1), Ooo,m)

[ ’
M, ®s S’ & Hom(Ab/OKl)(Hom(ﬁ//s(’?Kl)<M27 Ooo,Tr|(’)K1>’ Ooo,m)

P 'M/S
My ®s ' — Homavjoy,)(Hom(yi/ o, (Ms, Oceirlor, ) Oocims)

0 0
Thus, by devissage, to prove the theorem, we may assume that pM = 0.
We have rankg (M ®g ') = rankg, (M) and

’

M/S
I'anksi (Hom(Ab/@Kl) (Hom(Ab//(’)Kl)(Ml’ Ooo,frlokl )7 Ooo,ﬂ'1 ))
= rankg (Modg, (Grg (M) X o, Ok,)) = ranks, (M).

By [5, Lemme 3.3.2], it suffices to show Ker(®,,) C Fil’?S{M".

Take an adapted basis {ej,...,eq} as in the proof of Lemma 2.6.
Let m = Z?:l sie; be an element of Ker(®,,). Consider the affine al-
gebra Ry of Grg(M) and the element f € Homg" (M, Oy (Ry)) =~
Grg(M)(Ry) corresponding to idg,,. Then f(e;) = X0 + uX;1 +
s+ uPTIX; ) mod jl[fi(RM), where X, , ..., Xj,—1 are the canoni-
cal generators of Ry; and X'i,k its image in Ry;/p. Here we regard X’i,k as
an element of Oy (Ryr) by the natural map Ry /p®y o k[u] — O (Rar)
(see the proof of [5, Proposition 3.1.1, Proposition 3.1.5]). Let us write
f1 for the image of f by the natural map Hom (M, Oy .(Ry)) —
HomZ" (M, O, -(R},)), where R}, = Ry ®o, Ok,. As m € Ker(®y),
we have ) s;pr}‘%,M (fi(e;)) = 0.

Let )_({’k be the image of X, by the natural map R};/p ®y.. k[v] —
O1.r (R);). Now we claim that DIy (Xix) = X[, It is sufficient to
show this coincidence on an appropriate syntomic cover of R},. Thus
we may consider pry, O1x(Ry o) = Orn, (R o), Where Ry, is

the perfection of R}, as before. Then the composition

r* rojection
(Rhvtoo/ D@1 ok[u]) P = HY (Riy oo /D) S1) T =" (R oo/ DRk ok [0]) P
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maps 1®u to 1®vP and r® 1 to 7P ® 1, where 7 is a lifting of r by the
canonical surjection (R)y; ./p Qg k[v])"? — R} /p. We may take 7
to be r'/? ® 1. Thus the claim follows.

Therefore we have an equation 3¢ | s/ (X]g+vPX] +- - +0PP DX ) =

=11

0 in OMI(RM)/jl[ﬂl(R’M). This equation also holds in
Oty (Rh )/ T (Ryyo), and its subring Rjy, o /plv]/(v? — X§) =

M.oo/PV]/ (VP — 71) (see [5, Lemme 2.3.2]). As R, is the direct
limit of syntomic covers of R}, R),/p is a subring of R, /p. Thus
the equation Y7, $i(Xlo+vP X[y + - +oP@ DX/ 1) =0 holds in
R, /p[v]/(vP — 7). Let us denote s; mod v € k by §,. Taking mod v,
we have 0, §i X!y =0in Ry/p]/(v,0? —m) = Ry /m = R/
From the proof of [5, Proposition 3.1.1], we know that X g, ..., X4 are
linearly independent over k in Ry, /7. Thus 8, = 0 and s, € vS]+Fil’ S}
for all 7. Take 5’51) € 5] satistying s, — vs’gl) € Fil’S]. Then we have
oSS 8 (K +er X+ o? DX ) = 0in Ry /plo]/ (o7 —m).
However, Ry,/p ~ (O, /p)®N =~ (k[T]/(T%))®N for some N and
K[T/(T)[0]/ (0P — T) = k[v]/(v**"). Thus Ry /plo]/(v? — m) is fi
nite flat over k[v]/(v*"), and we have >, 8/51)()21{’0 +PX] 4+
vPVX! ) € v N (R), /p[v]/(vP — m)). Taking mod v and repeat-
ing this procedure shows s, € v*° S} + Fil?S] = Fil’S}. In other words,
m € Fil’PS]M’. This concludes the theorem.

O

Remark 2.8. In general, let L be a totally ramified extension over
K of degree ¢ whose uniformizer we denote by 7. When we define
Sy = Sy, as above, there exists a morphism S — Sp respecting the
filtration and ¢, if and only if Wi/ =7 ;_1 for some i.

3. RANK ONE CALCULATION

In this section, we calculate the conductor of a Raynaud F-vector
space scheme over Ok. The point is that, as we can see from the
bound of the conductor ([11, Theorem 7]), it is enough to consider the
j-th tubular neighborhood only for 7 < pe/(p — 1) + £ with sufficiently
small € > 0. For such j, we can compute the tubular neighborhood
easily by Lemma 3.4 below.

Let K be a complete discrete valuation field of mixed characteristic
(0,p). We write m = 7 for its uniformizer and e for its absolute
ramification index. We normalize a valuation vk of K as vg(m) =1
and extend it to the algebraic closure K of K. For a € K and j € R,
let D(a, j) denote the closed disc {z € O | vk(z—a) > j}. This is the
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underlying subset of a K(a)-affinoid subdomain of the unit disc over
K(a).

For integers 0 < s1,...,s, <e, let G(s1,...,s,) denote the Raynaud
F,--vector space scheme over Ok defined by the r equations 77 =
T Ty, T8 = 75Ty, ..., TP = 7Ty ([13]). We set ji = (psi + p?sr_1 +
oo Py PP s+ PP s+ o+ 7skp1)/(p7 — 1), Before the
calculation of ¢(G(s1,...,s,)), we gather some elementary lemmas.

Lemma 3.1. Let a € Ok and s = vi(a). Then the affinoid variety
XI(K)={z € Ok | vg(xP —a) > j} is equal to

(i < s pe/lp—1),

LI D(@'7Gj—e—(p=1)s/p) if j>s+pe/(p—1).

Proof. We have vg (2P —a) = >, vg(z — al/pg)). If vg(z — al/pq,) >
v (z — a'/PCY) for any i # i, then vg(z — a'/P()) < vk (a'/PCE (1 —
C;*i/)) =s/p+e/(p—1). Thus we have vk (z — a'/?(}) > sup(j/p,j —
(p—1)s/p—e) and

XI(K) C U D(a''¢}, sup(j/p,j — (p—1)s/p—e)).

Suppose that j/p > j—(p—1)s/p—e. Then we have vK(al/p(l—C;)) =
s/p+e/(p—1) > j/p, D(a'/?,j/p) = D(a'/*(}, j/p) for any i and thus
XI(K) = D(a'", j/p).

When j/p < j—(p—1)s/p—e, we have vk (a'/P(1-=(})) = s/p+e/(p—
1) < j—(p—1)s/p—e. This means that if w € D(a'/?(}, j—(p—1)s/p—e)
for some 4, then vg(w — a*/P¢7) < j — (p — 1)s/p — e for any other 7.
Thus the discs D(a'/?(}, j — (p — 1)s/p — e) are disjoint and

XI(K) = HD(al/”C};,j —(p—1)s/p—e).

These are equalities of the underlying sets of affinoid subdomains
of the unit disc over K (al/p,(’p). By the universality of an affinoid
subdomain, this extends to an isomorphism of affinoid varieties.

O

We can prove the following lemma just in the same way.

Lemma 3.2. The affinoid variety {x € O | vi(z?" — ax) > j} is
equal to

{ D(0,j/p") ifj <pola)/(pr—1),
i D(oi,j —w(a)) if j > pru(a)/ (" — 1),
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where o;’s are the roots of X?" = aX.

Lemma 3.3. For ¢1(Y1,...,Yy),92(Y1,...,Yy) € K[Y1,...,Yy] and

J1 > Jja, the affinoid variety {(x,y1,...,ya) € Og x O% | vg(x —
g1(y1, -, 9a) = g1, v (@—g2(y1, - - - ya)) > Jo} is equal to {(x,y1,...,yq) €
OrxO% | vr(@=g1(y1,- .. ¥a)) = Jr, v (91 (Y1, Ya) =92 (Y1 - - ¥a)) =
Jo}-

Proof. For fixed (x,y), these two conditions are equivalent. The uni-

versality of an affinoid subdomain proves the lemma.
O

Lemma 3.4. Let a € Ok and s = vi(a). If j < pe/(p —1) + s, then
the affinoid variety X7(K) = {(z,y) € Og x O | v (2P — ay?") > j}
is equal to {(z,) € O x O | vl — a7y ") > j/p}.

Proof. Lemma 3.1 shows that the fiber of the second projection X7 (K) —
Of at y is equal to

D(a"Py?" ™" j/p) if j < s+ p"tuk(y) +pe/(p— 1),

12 D(@?Gy™ " j — e — (p— 1)(s +p" "ok (y))/p) otherwise.
Thus we have X7(K) = {(z,y) € O x O | vic(z —a'/Py?" ") > j/p}
for j < pe/(p — 1) + s. This is the underlying set of a K (a'/?)-affinoid
variety. Again this equality extends to an isomorphism over K (a'/ P).

O

Now we proceed to the proof of the main theorem of this section.
Theorem 3.5. ¢(G(s1,...,5,)) = supy, Ji-

Proof. We may assume that j,. is the supremum of j;’s. If 5, = 0, then
G(s1,...,5-) is etale and ¢(G(sy,...,s,)) = 0. Thus we may assume
Jr > 0. Consider the homomorphism of Og-algebras

A= Okl[T,....T.]/(T'? — 7Ty, ..., T,P —7°T}) —
B=O0g[W,Ty,...,T,]) (WP — 75Ty, Ty? — %75, ...,
TP — 7T, TP — W),
defined by T} — W ™", This induces a surjection of K-affinoid vari-
eties

r—1

XL(K) 3 (w,tg, ... t,) — (WP ty,... 1) € X4(K),

where
XUE) ={(t1,.. ., t,) € O% | vg (P — 7°'ty) > j, ...,
v (troa? — 7 1,) > j ok (8P — w7 t) > 5}
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and
X]B(K) = {(’U},tg, c. 7tr) c O% | ,UK(pr . 7T51t2) Z j,

v (tof — m%2t3) > 4, .. vk (6P — P

) >3}
These are affinoid subdomains of the r-dimensional unit polydisc over
K. We calculate a jump of {F7(B)};cq., at first.

Lemma 3.6. If j, < pe/(p — 1), then the first jump of {F?(B)};jcq-,

r

occurs at j = j, and §F"(B) = p".

Note that the base change from K to a finite extension L multiplies
si’s, ji’s and e by the ramification index of L /K. Thus, to prove Lemma
3.6 and Theorem 3.5, we may assume that p"~! divides s;’s and e.

Proof. Consider the K-affinoid variety X ]j3 for j < pe/(p —1). Then
the iterative use of Lemma 3.4 and Lemma 3.3 shows that the affinoid
variety X4(K) is equal to

{UK(wpr _ 7T(STersT_1+...+pr—151)/;m71w) 2 ph(j); UK(tQ — gQ(w)) 2 Uy,

UK(t3 - 93(t27 w)) > Uz, UK(tT - gr(tr—hw)) > UT}7
where [;(7), gi(ti—1,w), g2(w) and u; are defined as follows;
d lT(]) = .]/p)

o li1(j) = inf(j, li(j) + si-1)/p,

[ ] gi(ti—law) = tfil/ﬂsi_l and U; = ] — S;—1 lf] Z ll(]) + Si—1,

o gilti1,w) = A R Tt oY [ L(j) if j <

li(J) + si-1,

* ga(w) = ga(w?
Note that [;(j) is a strictly monotone increasing function of j. This
affinoid variety is isomorphic to the product of the affinoid variety {w €
Og | v(w?” —gertpsettp™" /0" ) > ply ()} and discs. Therefore,
from Lemma 3.2, we see that the first jump of {F7(B)};cq., occurs at
j such that ply(j) = j,, provided this j satisfies 0 < j < pe/(p — 1).
Moreover, then we have fF7(B) = p". Thus the following lemma and
the strict monotonicity of /; terminate the proof of Lemma 3.6. 0

1,w).

Lemma 3.7. [1(j,) = j./p.

Proof. Suppose that there is k such that lx(j,) = j,/p and j,. > L (j,)+
sp for any 1 < k' < k. Then we have [1(j,) = inf(j,, (4, + psk_1 +
p?sp_o + ...+ pFls))/p*71)/p and the assumption j._; < j, implies

ll(jr) :jr/p~ -
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On the other hand, let s = (s, + ps,_1 + ... +p"'s;)/p"~! and
00,.-.,0,_1 be the roots of the equation X?" — 7*X = 0. Then we
see that the images by w — w? ' of the discs D(o;,pli(j) — s) are
disjoint for j > j,. Hence the surjection mo(X%(K)) — mo(X%(K)) is
bijective for 0 < j < pe/(p — 1) and the first (and the last) jump of
{Fi(A)};ecq., also occurs at j,, provided j, < pe/(p —1).

When j, = pe/(p—1), we see that s = e > 0 for any k. Thus we can
use Lemma 3.4 for j < pe/(p—1)+¢ with sufficiently small € > 0. Then,
by the same reasoning as above, we conclude that ¢(A) = pe/(p — 1).

O

4. HASSE-ARF THEOREM FOR F,-RANK TWO CASE

Let K be as in section 1. In this section, we prove Conjecture 1.2 in
the case where F = F, and G(K) is reducible.

Theorem 4.1. Let G be a finite flat group scheme over Ok of rank p2
which is killed by p and reducible. Then the Ix-representation G(K)
contains 0';“, where k/l mod Z is the prime-to-p part of the conductor

c(G).

We prove this theorem by a lengthy calculation of the conductor. The
point is that, on the one hand, to check the assertion on a character, we
may restrict to G by the full faithful theorem of Breuil ([6, Theorem
3.4.3]) and on the other hand, we can describe a defining equation
of Ry explicitly in terms of M after the base change to K. By
abuse of notation, we may write F7(M) for F7(Gr(M)) and ¢(M) for
c(Gr(M)). We fix once and for all a (p — 1)-st root ﬂi/(p_l) of m and

set 7-[-1/(19*1) — 71_117/(19_1)‘

Proof. Tt is sufficient to show the theorem in the case of k = k. Let

M = Modg(G) be the filtered ¢;-module of G. By assumption, we
have an exact sequence in ' M

0— M(s) =M — M(r)—0

for some integers 0 < r,s < e, where M(s) is the filtered ¢;-module
defined by M(s) = Sie, Fil'M(s) = u®Sie and ¢;(u’e) = e. We have
Grg(M(s)) ~ G(e — s) by the notation of Section 3. By [7, Lemma
5.2.2], we may assume that M = M/Fil’SM is of the following type;

o M = Sieq ® Syeq, where S = S/FilPS = k[u]/(u?),

o Fil' M = (ueq,u"e, + fep), where f € uPOr+s—e) G,

o ¢1(uey) = eg and ¢1(u"e; + feg) = €.
Put m = v,(f). Then we can take an adapted basis of M as follows.
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Case A: (e, s), (e1 + (f/u")eg,r) it m >r

Case B: (e, s), (e,r)if s<m<r

Case C: ((f/u™)eg+u""™er,m), (u™/f)er,r+s—m)ifm <r,s
Before starting calculation of the conductor, we show the following
lemma.

Lemma 4.2. For any exact sequences of finite flat group schemes over
Ok
0—G1 — Gy — Gz —0,

we have ¢(G2) > ¢(Gy), c(Gs).
Proof. The inequality ¢(Gy) > ¢(G3) follows from [1, Lemme 2.10]. Let
us show ¢(G2) > ¢(Gy). Taking a sufficiently large base change, we
may assume that Gy acts trivially on G3(K). Let H be the maximal
prolongation of Gs ([13]) and G' = Gy xg, H. The group scheme G’
is also finite flat over Ox. We know H is constant. Thus we have
c(G') = ¢(Gy). However, the natural map G’ — G, is a prolongation.
Therefore ¢(G') < ¢(Ga) (see the proof of [11, Theorem 7]).

O

A. m > r. In this case, we have

o (ur!fs-iofeo) - (2) - ((a e - <f/ur>eo)

~Camn D) (s G

) = pc(Ryr). From Theorem 2.5, it is

(f
We calculate the conductor ¢(R)
) We see that (60,])8), (€1+(f(vp)/UpT)€0,p7“)

equal to ¢(Grg, (M')) = (M’
is an adapted basis of M’ and

o <+f()> - (—f(viw (1)) ( +(f <Z?’>/v”’”>60> |

Consider the surjection Ok, — Ok, /p pe k = k[v]/(v") where the
last map is k-linear and maps 7 to u. The matrix above lifts by this

fo(1771) (1]), where fo(v) = —f° (v)/v". Then, from

[5, Proposition 3.1.2], we see that
v = O [X1, Xl /(X 4+ F (m) 7 Xy, X§+m° 7" F (1) ™ (Xo+ fo(m) X1)).
Let us calculate the affinoid variety
XJJ\‘W(K) ={ (21,72) € Ok, x O, | v, (2} + 7 F (7)) > 4,

vre (@ + 7T (m) T (@2 + fo(mi)an)) > 5}

surjection to
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Note that the second inequality is equivalent to
vie (71 + fo(m) s+ F(m)(fo(m)m™") " ah) > j—ple —r) = (m —7).
We have c(M') > ck,(G(e — s) xo, Ok,) = p*(e —s)/(p — 1) from
Lemma 4.2. Thus we may suppose j > p*(e — s)/(p — 1) and that
the affinoid variety defined by the first inequality in the definition of
X7,/(K) splits. Thus we have
p—1
X3 (K) = [[{ (1.22) € Og, x Og, | vi, (w1 — 041) > j —ple — s),
1=0
Vg, (@) + 7 F (m) g + 7 F(m) 7 fo(m)x) > g,
0 (l=0)
W(G_S?/(p_l)g,fl (l=1,....,p—1).
th component by X 1~ We have a surjection of G x-modules Fi(M'") —
FI(M(s)) ([1, Lemme 2.10]) and the inverse image of o,; € (M (s))
by this surjection is equal to mo(X3, ;) g. Thus X3, splits if and only

where 05, = { Let us denote its [-

if X{Q,,O splits.
If s > r, we have v, (7" F(m) ™! fo(m1)x1) > j and
Xipo(K) = {(21,32) € O, x Ok, |
vi (1) 2 j — ple = 5), v, (@h + 7" F(m) " lan) > j 1
Thus ¢(M") = sup(p*(e—s)/(p—1),p*(e=7)/(p—1)) = p*(e—7)/(p—1).
If s <rand m > p(r — s) +r, Lemma 3.3 shows that X3, ((K) is

the same as the case above and we have ¢(M') = p*(e — s)/(p — 1).
Suppose s < r and m < p(r — s) + r. Then we have

Xipo(K) = {(21,72) € O, x Ok, |
Ve, (25 + 7 F (1) e + fo(m)z1) >,
i, (xh + 7T F (1) ) > j — (p(r —s) — (m — 1)) }.

This affinoid variety splits if and only if j > p*(e—7)/(p—1)+p(r—s)—
(m —r). The conductor equals sup(p*(e —r)/(p—1) +p(r —s) — (m —
P),1%(e—5)/(p—1)). We see that p2(e—r)/(p—1)+p(r—s) — (m—r) >
p?(e — s)/(p — 1) if and only if (ps —r)/(p — 1) > m. This does not
occur, since we have s <r < m and (ps —r)/(p — 1) < s < m. Thus
we have c(M') = p*(e — s)/(p — 1).

To terminate the proof of the theorem in Case A, we must show
that G(K) contains 05 >, if ¢(M) = p(e —s)/(p — 1) mod 1/p>Z.
Note that, if p(e —7)/(p—1) =p(e —s)/(p—1) mod 1/p>Z, then we
have pM(e —r) = pM(e — s) mod (p — 1)Z for some integer M and
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0% p-1 = 0% p—1- Thus we may restrict our attention to the case s <r.
By virtue of the full faithful theorem of Breuil, it suffices to show that
the G,-module Gr(M')(K) contains 0%, 1-

We identify the finite G, -set Gr(M')(K) with the solution (X,Y)
of the equation

XP 4+ 7T F(r) "X = 0
YP + 7 F (7)Y 4+ 7" fo(m) F(m) ' X = 0.

Consider the equation Y? + 7¢ " F (7)Y + 7" fo(m ) F (7)) los, =
0. Its Newton polygon has an internal vertex if and only if (p —
)/pm —r +ple —71) +ple —s)/(p— 1)) — ple —r) > 0, which
is equivalent to » > s. Thus there is one and only one root Y; of
this equation which satisfies v, (Y})) = m —r + p(e — s)/(p — 1) for
each [ > 0. Define « € OF by V| = a7'm|"” rp(e=s)/=l) - hep
a is the root of the equation 7P~! + 7?2 + b = 0, where a,b €
Ok, with vk, (a) = 0 and vk, (b) > 0. Hensels lemma shows that
a € KI™. Thus we have g(V}) = Yg(a?¢™V/ =1y jzpe=s)/o=1) g1 any
g € Ig,. Denote by P (resp. @) an element (X, Y) (0,0,1) (resp.
(X,Y) = (041,Y1)) of V = Gr(M')(K). From [5, Lemme 3.1.7], we
see that the subspace G(p(e — r))(K) C V can be identified with a
subset {(0,0),(0,0,1),...,(0,0,,-1)}. Thus P and @ form a basis of
V. For the Galois extension L = Kl(ﬂ/(p_l)) of degree p — 1 over
Ky, we see that I, acts trivially on P and (). This shows that the
image of Ix, — Aut(V) has an order prime to p. Therefore we have
Vi =0%"° 1 ® 0%, 1 as an I,-module. This concludes the proof in
the case A.

B. s <m < r. We have

u’e u’e
” <“ 60) o <(“’"€1 + feo) —O(f/u5>useo)

- <61 - (f”(esz)/ups)eo) = (—f”(ip)/ups (1)> <2> .

Set go(u) = —f(u)/u®. Then a matrix ( ) maps to the matrix

1
klu]/(u®). Then we see

above by the surjection O, — Ok, ®,w o~
that

Ry = Ok[X1, Xo]/(XP4ne* F(m) ' Xy, X847 "F(n)  (Xa+go(m) X1)).
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An affinoid variety X ]JV[ we must calculate is
{ (21,22) € Og x O | v (2} + 7 F(m)"'a1) > j,
Vi (1 + go(m) " + F(m) (go(m)m* ") Ha) 2 j — (e =) — (m —s) }

Again it is sufficient to suppose j > p(e — s)/(p — 1) and consider an
affinoid variety

{ (z1,22) € O x O | vg(x1) > j— (e —3),
vk (z1 + go(m) " wy + F(m)(go(m)m® ") 'ah) > j— (e —r) — (m — ) }.

By the assumption m < r and Lemma 3.3, this is equal to an affinoid
variety

{ (z1,22) € O x Og | vi(ah + 7" F(n) twy) > 5 — (r —m),
ore(1 + go(m) s + F(m) (golm)a*)a8) > § — (e — 1) — (m —5) }.

which splits if and only if 7 > r — m + p(e — r)/(p — 1). Therefore
we get (M) =r—m+ple—r)/(p—1)if m < (ps—r)/(p—1) and
ple —s)/(p—1)if (ps —7r)/(p —1) < m < r. In the latter case, the
verbatim arguments as in Case A shows that G (l_( ) = 9?’;_1 D 0?{7;_1
as an I-module.

C. r,s > m. In this case,

o (Gt fer) = (erpianes - Feoy - e
) ((up&/f“(zi»el - ) _
= (s et ) (7).

Again we consider M’ = M ®g S’. Then the last matrix is equal to
( 0 fP) form )
=P f(P) - (f(WP) [P (0 (0F) + (0P f(0P))P) )
s . . 0 c
as a lifting of this matrix (—1/0 N (Wf‘m/c)p))
with ¢ = f7 ' (m)/7*. Thus we get
v = O [ X1, Xo] /(X e F(m) ™1 Xa,
XD 4 petm=H) pmy == X, 4 dXy)),

We can take

€ GLy(Ok;,)

where d = c(m]™" /e + (777" /c)?). As in Section 3, we firstly calculate
the conductor of R}, = Ry, [W]/(WP — X,).
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Consider an affinoid variety
YA]‘J,(I_() ={ (z,w) € O x O | v, (2P + 7™ F (7)) ew?) > j,
vie, (W 7T P T (el 4 dwP)) > G )
From the bound of the conductor [11, Theorem 7], we may suppose
j < p?e/(p — 1) + & with ¢ > 0 sufficiently small. Now we have
e > m, and Lemma 3.4 shows that the first inequality in the defi-
nition of Y7, is equivalent to vy, (z + 7§ ™c/PF(7)~YPw) > j/p. On
the other hand, the second inequality can be written also as vk, (x
cF(m)mm s mur® — cduP) > j = ple +m — (r + 8)) Put A =
7rEp+1)e+(p*l)m*lo(f*s)/(F( YD /pep-D/pY and A\, = dn? pletm—(r+s)) JF(m).
Using Lemma 3.3, we see that this affinoid variety is equal to
Yip(K) = { (z,w) € Og x Og | vg, (& + 7{ P F(m)~Pw) > j/p,
v, (WP + Mw? + Aow) > j }
if j <p*e+m—(r+s))/(p* —1) and
Vi (K) = { (z,w) € Og x O |
e, (WP 4 O P T (e 4 du?)) >
Vi (W + Mw” + dow) > j/p+ple +m—(r+5)) }
if j >p*e+m—(r+s))/(p?—1).
Lemma 4.3. Put P(W) = W7 + \\WP + \JW. Then an affinoid
variety { w € O | vk, (P(w)) > j } splits if and only if
p(e—r)/(p—1) = (p(s —m) — (r —m))
j> ifm<(ps—r)/(p—1)
p’e=s)/(p—1) = p(r—m) if m > (ps—r)/(p— 1)
Proof. Set p = vk, (Ar). Consider the Newton polygon of the polyno-

mial P(W). We have uo(p?> —p)/(p*> —1) — 1 = p(r —m+s—m)/(p+
1) — vk, (d) and

r—m itm<(ps—7r)/(p—1)
Vi, (d) =< r—m+vg, (c+c) ifm=(ps—r)/(p—1)
p(s —m) ifm>(ps—1)/(p—1).

In the first and third case, P(W) has p — 1 roots of valuation (uo —
p1)/(p — 1) and p? — p roots of valuation yu;/(p* — p). Let w be one of
these roots and V = W —w. Then P(V 4+ w) = V7 + (,2Cou?”" 7 +
AM)VP+(p? w?” 1+p)‘1wp 1+)‘0)V+Ek 2,.p—1p+1,..., pLMQCkprka""
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Pvie (W) > ep+ 1 >, vig (PP 1) — v (phwP ™) = ep + (p* —
vk, (w)—po > 0 and v, (pAwP™ ) —po = ep+p+(p—1) vk, (w)—po >
— (o —p1(p+1)/p) > 0. As for the former summation in the expan-
sion above of P(V +w), v, (,2Crw?” =) — (p? — k)v(w) > 0. As for the
latter summation, the valuation of the coefficient of V¥ is v, (, Ckwp_k)
and v, (,Ciw?*) — (i + (o — 1) (p— k) (0—1)) > ep+pua (p— )/
p) = (4 (o —p1)(p—k)/(p—1)) = ep+ (k(ppo — (p+ 1) 1) + 2ppa —
p*uo)/(p? —p) > ep + (2u1 — puo)/(p — 1) > 0. Thus P(V + w) has
the same Newton polygon as P(W). Then [11, Theorem 4] shows that
the affinoid variety splits if and only if 7 > (puo — p1)/(p — 1) and the
lemma follows.

In the second case, the Newton polygon of P(WW) has no internal
vertex. Thus the nonzero roots of P(W) has valuation pg/(p* — 1).
Take one of these roots w and consider the polynomial P(V + w) and
its expansion as above. We have v, (pAywP ™) — g = ep+py —ppo/ (p+
1) > 0 and vy, (p?w?”” ') — g = 2ep > 0. Thus the valuation of the
coefficient of V' in P(V +w) is pp. Let us show that the valuation of the
coefficient of V* is larger than vg, ((p? —k)po/(p*—1)) = (p* —k)vg, (w)
for any k < p?. For k = p, we have u; > (p* — p)uo/(p* — 1) and
Vi, (2 Cpw? P) > (p? — p)pio/(p* — 1). As for the former summation in
the expansion above, vk, (,2Crw? %) — (p* — k)v(w) > 0. As for the
latter summaton, vg, (,Cxw?=*)—(p*—k)vg, (w) = ep—ppo/(p+1) > 0.
Again we see that the Newton polygon of P(V +w) is the same as that
of P(W) and the affinoid variety splits if and only if j > p?ue/(p* —1).
This concludes the lemma.

O

From this lemma, we see that the affinoid variety Y]\il’ does not split
for j < p*(e+m — (r +s))/(p? — 1) and splits if and only if j =
ple+m — (r+s)) + j/p satisfies the inequality of the lemma. Thus we
have

moy_ [ Pie—r)/(p—1) +p(r—m) ifm<(ps—1)/(p-
C(RM)_{pQ(e—S)/(p—l) if m > (ps —r)/(p -

Now we consider the affinoid variety

\_/\_/

ng,(l_() ={ (z1,22) € O x O | vg, (] + 7" F(m)” cm2) > 7,
VK, (9(:2 +7Te+m*(r+s)F(7r)’ (—c’ r1+dzy)) > 7}

The map R}, — R}, induces the affinoid map f : Y7, — X7,. Note
that f sends (x,w) to (z,w?) and is surjective. From the proof of [11,
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Theorem 4], we see that

p*—1
Y]@,(I_():H{(x w) € O x D(wg, j' ZvKl wg))
k=0 wk;é()

v, (WP A+ T P (= 4 dwP)) > )

for j > ¢(R},), where j' = p(e+m — (r+s))+j/p and wy’s is the roots
of the polynomial P(W). Let us denote its k-th component by Y;. We
claim that f(Yx) N f(Y;) = 0 for k # I. Suppose that (z,w) € Y, and
(x, wCZ) € Y,. Then UK1<IUC; wy) = vKl((w—wk)(;+(C;—1)wk+(wk—
wy)). Now we have vg, ((w — wi)() > ' — > vk, (wy) > sup vg, (wy)
and thus vg, (w — wi)¢) + (wr — wy)) = v, (W — wy). m = (ps —
r)/(p—1), we have vk, (wy) = vk, (wy —w;) for any k # [ and therefore
v, (wC, — wy) = v, (W) < j' — D vk, (wy), which is a contradiction.
Suppose m # (ps —r)/(p — 1). Then, by the notation in the previous

lemma, we have vy, (wr—w;) —vk, (wk) (po—p1)/(p—1)—p1/(p*—p),
which equals

{ (p(s —=m) = (r—=m))/(p* = p) ifm<(ps—7)/(p—1)
((r=m)=p(s=m))/(p—1) ifm>(ps—r)/(p—1).

We see that these values are strictly smaller than vg, (1—(}) = pe/(p—
1) and v, (wCli —wy) = vk, (Wi —wy) < sup vk, (wg) < j = vk, (wi).
Again this is a contradiction. Therefore we get #mo(X7, )z = p?. For
j < ¢(R),), we have #mo(X7, )z < p? by the surjectivity of f. Thus
co(M') = c(Rjy).

Next we prove the assertion on a character. For m = (ps—r)/(p—1),
we have s = r mod p — 1 and the Ix-module V = G(K) contains
0%, 1 = 0k, - Thus we may suppose that m > (ps —r)/(p — 1).
By the full falthful theorem of Breuil, it suffices to show that V' con-
tains 07 > ; as an Ir,-module. The G K,-set V' is identified with the
roots of the polynomial Q(X3) = (X% 4+ M X2)? + M X, € Ok, [Xa].
Consider the Newton polygon of Q(Xg) For 1 < k < p—1, the coef-
ficient of XZTPF in Q(X,) is ,Cp A and v, (,Co AP ™) — ppa (p? —
(p+ (- 1)k))/(p —p) = ep > 0. Thus Q(X2) has p — 1 roots of
valuation p(uo — pu)/(p — 1) = p(e — s)/(p — 1) — p(s —m). Put
Xy = Tflﬂf(e_s)/(p_l)_p(s_m) Then Q(X;) = 0 if and only if T7°~! +
ag (a TP=1 + 7o~ — 0 where aj, = A /7y 5 M) By Hensel’s
lemma, there exists a polynomlal R(T) € Ok,[T] of degree p—1,
satisfying R(T) = TP~' + ¢ mod m; where t # 0 € k and with the

property that R(a) = 0 if and only if « 17T1f(e D/ ==plsmm) g g
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root of Q(X3) with valuation p(e — s)/(p — 1) — p(s — m). Take

such a root w. Then we see that w /72 "/@=D=pl=m) o genr 4nq

3.1.7], we can identify the subspace G(p(e — r))(K) of V with the set

{0, C—lﬂzlo(e—r)/(p—l)’ C—17r117(6—7")/(p—1)<«p_1’ . ,C_lﬁf(e_r)/(p_l)Cg:f}- From

the shape of the Newton polygon of Q(X3), we see that w is not con-
tained in this subspace. Therefore the Ik, -action on V' is tame and
thus V. =03 ° @& 0% .

O

In the proof of the theorem, we have shown the following.

Corollary 4.4. If s,m > r, then ¢(G) = p(e —r)/(p — 1). Otherwise,

(g) = { sup(p(e —7)/(p = 1),p(e = 5)/(p = 1)) if m = (ps =) /(p —
ple=r)/(p=1)+ (r—m) if m < (ps —7)/(p—1).

REFERENCES

[1] A. Abbes and A. Mokrane: Sous-groupes canoniques et cycles évanescents p-
adiques pour les variétés abéliennes, Publ. Math. THES 99 (2004), 117-162

[2] A. Abbes and T. Saito: Ramification of local fields with imperfect residue fields
I, Amer. J. Math. 124 (2002), 879-920

[3] A. Abbes and T. Saito: Ramification of local fields with imperfect residue fields
II, Documenta Math. Extra volume: Kazuya Kato’s Fiftieth Birthday (2003),
5-72

[4] P. Berthelot and A. Ogus: Notes on crystalline cohomology, Princeton Univ.
Press and Univ. of Tokyo Press, (1978)

[5] C. Breuil: Groupes p-divisibles, groupes finis et modules filtrés, Ann. of Math.
(2) 152 (2000), 489-549

[6] C. Breuil: Integral p-adic Hodge theory, Advanced Studies in Pure Math. 36
(2002), pp.51-80

[7] C. Breuil, B. Conrad, F. Diamond and R. Taylor: On the modularity of elliptic
curves over Q: wild 3-adic exercises, J. Amer. Math. Soc., 14 (2001), 843-939

[8] C. Breuil and A. Mézard: Multiplicités modulaires et représentations de
GL2(Z,) et de Gal(Q,/Q,) en | = p, Duke Math. J. 115 (2002), 205-310

[9] B. Edixhoven: The weight in Serre’s conjectures on modular forms, Invent.
Math. 109 (1992), 563-594

[10] J.-M. Fontaine and W. Messing: p-adic periods and p-adic etale cohomology,
Comtemp. Math, 67 (1987), 179-207

[11] S. Hattori: Ramification of a finite flat group scheme over a local field, J. of
Number Theory 118 (2006), 145-154

[12] S. Hattori: Tame characters and ramification of finite flat group schemes,
preprint

[13] M. Raynaud: Schémas en groupes de type (p,...,p), Bull. Soc. Math. France
102 (1974), 241-280



HASSE-ARF THEOREM FOR F,-VECTOR SPACE SCHEMES OF RANK TW®3

[14] J.-P. Serre: Sur les representations modulaires de degré 2 de Gal(Q/Q), Duke
Math. J. 54 (1987), 179-230

E-mail address: shin-h@math.sci.hokudai.ac.jp



