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1. Introduction

Let p be an odd prime and f be an elliptic modular form of level N
prime to p and weight k ≤ p + 1. Let us consider its associated mod
p Galois representation ρ̄f : GQ → GL2(F̄p) and its restriction to the
inertia subgroup Ip. The theorem of Deligne and Fontaine asserts that
the tame characters appearing in ρ̄f |Ip are determined by k.

Theorem 1.1 (Deligne, Fontaine).

ρ̄f |Ip =





(
χk−1

p ∗
0 1

)
if f is ordinary at p,

(
θk−1

p2−1 0

0 θ
p(k−1)

p2−1

)
if f is supersingular at p,

where χp is the mod p cyclotomic character and θd is the fundamental
character of level d in the sense of [14].

This classification is the basis for the local analysis of ρ̄f , especially
for the Serre conjecture of mod p modular forms ([14]). We have two
proofs of this theorem for k < p: one uses Raynaud’s full faithful
theorem for finite flat representations ([9, section 6]) and the other uses
p-adic Hodge theory and the Fontaine-Laffaille functor ([8, Proposition
4.1.1]). In both proofs, it is crucial that p is absolutely unramified, and
this is the very obstacle to carry out a similar analysis on the weight of
a modular form and its mod p Galois representation for a totally real
number field F . In this note, we propose a new approach to tackle this
problem which is applicable without any restriction to the ramification
index e of F at p, at least in the case of parallel weight (2, . . . , 2).
Namely, we prove the following conjecture in the reducible case for
F = Fp.

Conjecture 1.2. Let K be a complete discrete valuation field of mixed
characteristic (0, p) with perfect residue field and IK be its inertia sub-
group. Let F be a finite extension of Fp and G be a finite flat F-vector
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space scheme of rank 2 over OK. Write c = c(G) for the conductor
of G ([2], [3]) and k/l for the prime-to-p part of c mod Z. Then an
IK-module G(K̄) ⊗F F̄p contains θk

l as an IK-submodule. Moreover, if
G(K̄) is reducible, then we have θk

l ⊆ G(K̄).

This conjecture can be regarded as the counterpart for finite flat
group schemes of the Hasse-Arf theorem in the classical ramification
theory. In fact, if the Galois group GK acts trivially on G(K̄), this is
equivalent to the assertion that, for a complete discrete valuation field
M and an abelian extension L of M whose integer ring is a G-torsor
over OM , the denominator of the conductor c(L/M) is p-power. In
this case, the assertion follows easily from the theorem of Herbrand for
finite flat group schemes ([1, Lemme 2.10]).

To prove the conjecture for F = Fp, we will firstly show the compat-
ibility of the theory of Breuil ([5]) with respect to a base extension in
K∞ = K(πp−∞

). This makes us possible to describe a defining equa-
tion of G explicitly. By virtue of the full faithful theorem of Breuil
([6, Theorem 3.4.3]), such a base change is harmless to study finite flat
representations. Next we gather some elementary lemmas for the cal-
culation of the conductor. As a corollary, we determine the conductor
of a Raynaud F-vector space scheme, which is independent of the proof
of the main theorem. Then we prove the main theorem by a lengthy
calculation. In the forthcoming paper [12], we prove the conjecture in
general, by a more geometrical method.

2. Base change property for a filtered φ1-module of
Breuil

In this section, we briefly recall the theory of a filtered φ1-module of
Breuil ([5]) and give a proof of its compatibility with the base change
from K to K∞.

Let K be a complete discrete valuation field of mixed characteristic
(0, p), k be its residue field which we suppose to be perfect in this
section, e be its absolute ramification index, W = W (k) and σ be
the Frobenius of W . We fix once and for all an uniformizer π of K.
Let E(u) = ue − pF (u) be the Eisenstein polynomial of π over W
and Set S = Sπ = (W [u]PD)∧, where the divided power envelope of
W [u] is taken with respect to an ideal (E(u)) and compatibility with
the natural divided power structure on pW , and ∧ means the π-adic
completion. The ring S is endowed with a σ-semilinear map φ : u 7→ up,
which we also call Frobenius, and the natural filtration induced by the
divided power structure. We set φ1 = 1/p.φ|Fil1S and c = φ1(E(u)) ∈
S×. We define φ, φ1 and a filtration on Sn = S/pn similarly.
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In [5], following categories of filtered φ1-modules are defined. Set ′M
be a category consisting of following data;

• an S-module M and its S-submodule Fil1M containing Fil1SM ,
• φ-semilinear map φ1 : Fil1M → M satisfying φ1(s1m) = φ1(s1)φ(m),

where s1 ∈ Fil1S, m ∈ M and φ(m) = c−1φ1(E(u)m).

Let M1 be a full subcategory of ′M consisting of M satisfying

• the S1-module M is free of finite rank,
• φ1(Fil1M) generates M as an S-module.

and M be the minimal full subcategory of ′M which contains M1 and
stable under extension.

The category M is shown to be categorically anti-equivalent to the
category (p-Gr/OK) of the finite flat group schemes over OK which is
killed by some p-power ([5]). Let us recall the definition of this equiv-
alence. Let Spf(OK)syn be the category of the p-adic formal schemes
of formally syntomic, endowed with the Grothendieck topology gener-
ated by the surjective families of formally syntomic morphisms. Write
(Ab/OK) for the category of the abelian sheaves on Spf(OK)syn. The
sheaf On,π and Jn,π is defined by the formula

On,π(X) = H0
crys((Xn/Sn)crys,OXn/Sn)

and

Jn,π(X) = H0
crys((Xn/Sn)crys,JXn/Sn),

where Xn = X/pn. We also set O∞,π = lim−→On,π and J∞,π = lim−→Jn,π.
We denote by φ : On,π → On,π the crystalline Frobenius map. We
can define the natural morphism φ1 : Jn,π → On,π which makes the
following diagram commutative

Jn,π
φ1−−−→ On,πx

y×p

Jn+1,π
φ−−−→ On+1,π.

Let G ∈ (p-Gr/OK) and M ∈ M. Define

ModK(G) = Hom(Ab/OK)(G,O∞,π)

and

GrK(M) = Hom′M(M,O∞,π).

Then the main theorem of [5] is the following.

Theorem 2.1 (Breuil). The functor GrK defines an anti-equivalence
of categories M → (p-Gr/OK) and its quasi-inverse is ModK.
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Next we consider the base change theorem of the functor Gr for an
extension K1 = K(π1/p) over K. This extension is totally ramified of
degree p. The minimal polynomial of π1 = π1/p over W is E1(v) =
E(vp) = vep − pF (vp). Set S ′ = Sπ1 = (W [v]PD)∧, where the divided
power envelope is taken with respect to (E1(v)) and compatibility with
the natural divided power structure on pW . The ring S ′ has a σ-
semilinear endomorphism φ : S ′ → S ′ defined by v 7→ vp and a φ-
semilinear map Fil1S ′ → S ′ satisfying φ |Fil1S′= pφ1. We have a ring
homomorphism S → S ′ which maps u to vp. This respects the filtration
and φ1.

Lemma 2.2. The S-module S ′ is free of finite rank.

Proof. The W [u]-algebra W [v] is free of finite rank. We have (E(u))W [v] =
(E1(v)). Therefore W [v]PD = W [u]PD ⊗W [u] W [v] from [4, Proposi-
tion 3.21] and W [u]PD → W [v]PD is also free of finite rank. Thus
(W [v]PD)∧ = (W [u]PD)∧ ⊗W [u]PD W [v]PD. This concludes the proof.

¤

Let us denote the category of filtered φ1-modules over S ′ by ′M′

and M′. From the lemma above, we can define a filtered φ1-module
structure on M ′ = M⊗S S ′ for any M ∈ ′M by Fil1M ′ = (Fil1M)⊗S S ′

and φ1,M ′ = φ1 ⊗ φ. If M ∈ M, then we have M ′ ∈ M′.
For a presheaf F on Spf(OK)syn, we denote by F|OK1

the restriction
of F to Spf(OK1)syn. If F is a sheaf on Spf(OK)syn, then F|OK1

is also
a sheaf on Spf(OK1)syn.

Define a morphism ΨM : Gr(M)|OK1
→ Gr(M ′) of (Ab/OK1) as fol-

lows. For any X′, formally syntomic over Spf(OK1), we want to set

ΨM,X′ : HomS
′M(M,On,π(X′)) → HomS′

′M′(M ⊗S S ′,On,π1(X
′)) by f 7→

(m ⊗ s′ 7→ s′.pr∗X′(f(m))), where pr∗X′ : On,π(X′) = H0
crys(X

′
n/Sn) →

H0
crys(X

′
n/S

′
n) = On,π1(X

′) is the natural pull-back. The map pr∗X′ re-
spects the filtration. We have to show the compatibility with φ1.

Consider X′ = Spf(A′). We can write A′ = OK1〈X ′
1, . . . , X

′
r〉/(f1, . . . , fs),

where OK1〈X ′
1, . . . , X

′
r〉 = OK1 [X

′
1, . . . , X

′
r]
∧ and f1, . . . , fs is a regular

sequence in that ring ([5, Lemme 2.2.1]). Put A
′
i = OK1〈X ′

0
p−i

, . . . , X ′
r
p−i

〉/(X ′
0−

π1, f1, . . . , fs) and A
′
∞ = lim−→A

′
i. The W -algebra A

′
i is isomorphic to

OK [T ]/(T p − π)〈X ′
0
p−i

, . . . , X ′
r
p−i

〉/(X ′
0 − T, f1, . . . , fs)

= W [u, T ]/(E(u), T p − u)〈X ′
0
p−i

, . . . , X ′
r
p−i

〉/(X ′
0 − T, f1, . . . , fs)

= W 〈X ′
0
p−i

, . . . , X ′
r
p−i

〉/(E(X ′
0
p
), f1, . . . , fs).
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We also set A
′
∞ = A

′
∞/p = k[X ′

0
p−∞

, . . . , X ′
r
p−∞

]/(X ′
0
ep, f̄1, . . . , f̄s).

Note that the formal scheme Spf(A
′
i) is a covering of Spf(A′) in Spf(OK1)syn.

Lemma 2.3. The following two sequences are exact;

0 → Or,π(A′
∞)

×ps

→ Or+s,π(A
′

∞) → Os,π(A′
∞) → 0

0 → Jr,π(A′
∞)

×ps

→ Jr+s,π(A
′

∞) → Js,π(A′
∞) → 0.

In particular, there are exact sequences in (Ab/OK1)

0 → Or,π|OK1

×ps

→ Or+s,π|OK1
→ Os,π|OK1

→ 0,

and

0 → Jr,π|OK1

×ps

→ Jr+s,π|OK1
→ Js,π|OK1

→ 0.

Proof. We repeat just the same argument as [5, Lemme 2.3.2].
Note that On,π(A′

∞) = H0
crys(A

′
∞/pn/Sn) is isomorphic to

(Wn(A′
∞) ⊗Wn,σn Wn[u])PD, where the divided power envelope in the

right hand side is taken with respect to the kernel of a surjection
Wn(A′

∞) ⊗Wn,σn Wn[u] → A′
∞/pn which sends (x0, . . . , xn−1) ⊗ u to

X ′
0
p ∑n−1

k=0 pkx̂pn−k

k , and compatibility with the natural divided power
structure on pW . Here we denote an lifting of xk in A′

∞/pn by x̂k. In

fact, this surjection induces a thickening (Wn(A′
∞) ⊗Wn,σn Wn[u])PD →

A′
∞/pn of A′

∞/pn over Sn and thus we have the natural projection

H0
crys(A

′
∞/pn/Sn) → (Wn(A′

∞) ⊗Wn,σn Wn[u])PD. Its inverse map

(Wn(A′
∞) ⊗Wn,σn Wn[u])PD → H0

crys(A
′
∞/pn/Sn) is defined as follows.

For any affine thickening U → T of A′
∞/pn over Sn, we define a

map (Wn(A′
∞) ⊗Wn,σn Wn[u])PD → Γ(U,OU) by (x0, . . . , xn−1) ⊗ u 7→

u
∑n−1

k=0 pk t̂p
n−k

k , where t̂k is a lifting of xk in Γ(T,OT ). This is a well-
defined ring homomorphism, patches in a non-affine case and induces
the inverse map of the natural projection.

Let us consider a surjection Wn[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

] → A′
∞/pn =

Wn[X ′
0
p−∞

, . . . , X ′
r
p−∞

]/(E(X ′
0
p), f1, . . . , fs) which sends u to X ′

0
p and

X ′
k
p−i

to its image for any k, i. Let us denote its kernel
(u − X ′

0
p, E(X ′

0
p), f1, . . . , fs) by I. Taking its divided power envelope

with respect to I and compatibility with the natural divided power

structure on pW , we get a surjection (Wn[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

])PD →
A′

∞/pn. This map is S-linear, where A′
∞/pn is considered as an S-

algebra by u 7→ X ′
0
p. Thus this surjection defines a thickening of A′

∞/pn

over Sn and we get the natural projection (Wn(A′
∞)⊗Wn,σn Wn[u])PD →

(Wn[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

])PD.
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Conversely, a surjection Wn[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

] → Wn(A′
∞)⊗Wn,σn

Wn[u] sending u to 1 ⊗ u and X ′
k
p−i

to [X ′
k
p−i−n

] makes the following
diagram commutative;

Wn[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

] −−−→ Wn(A′
∞) ⊗Wn,σn Wn[u]y

y
A′

∞/pn A′
∞/pn.

Therefore this surjection induces (Wn[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

])PD →
(Wn(A′

∞) ⊗Wn,σn Wn[u])PD. We see that this map is the inverse to
the natural projection by the definition. Thus we get an identification

On,π(A′
∞) = (Wn[u][X ′

0
p−∞

, . . . , X ′
r
p−∞

])PD respecting the filtration and
the Frobenius. Then [5, Lemme 2.3.2] and [4, 3.20, Remark 8] conclude
the proof.

¤

We insert here the next lemma for the sake of references.

Lemma 2.4. Let ψ1, . . . , ψs ∈ k[X ′
0
p−∞

, . . . , X ′
r
p−∞

] satisfying ψp
k = f̄k.

Then O1,π(A′
∞) is isomorphic up to a σ-twist to

⊕

m0,...,ms+1∈Z≥0

A′
∞[u − X ′

0]/(u − X ′
0)

pγpm0(X
′
0
e
)γpm1(ψ1) · · ·

γpms(ψs)γpms+1(u − X ′
0).

Proof. The sequence u − X ′
0
p, X ′

0
ep, f̄1, . . . , f̄s is a regular in

k[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

]. Their inverse images in (A′
∞ ⊗k,σ k[u])PD are

u − X ′
0, X

′
0
e, ψ1, . . . , ψs, respectively. Thus the assertion follows from

the proof of [10, Proposition 1.7].
¤

From Lemma 2.3, we have a diagram

Jn+1,π|OK1
−−−→ Jn,π|OK1

φ1−−−→ On,π|OK1

×p−−−→ On+1,π|OK1y
y

y
y

Jn+1,π1 −−−→ Jn,π1

φ1−−−→ On,π1

×p−−−→ On+1,π1 ,

where the vertical arrows are the pull-backs and the left and right
squares are commutative. The compositions of the horizontal maps
are φ. Thus we see that the middle square is also commutative. In
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other words, the map pr∗X′ is compatible with φ1. Therefore, we get the
morphism of (Ab/OK1)

ΨM : Gr(M)|OK1
→ Gr(M ′).

Theorem 2.5. The canonical map ΨM is an isomorphism.

Proof. The sheaves of both sides come from finite flat group schemes
Gr(M)×OK

OK1 and Gr(M ′). Thus the bijectivity can be checked after
taking the functor Mod. In other words, it suffices to show that

ΦM : M ⊗S S ′ → Hom(Ab/OK1
)(HomS

(Ab/OK1
),′M(M,O1,π|OK1

),O1,π1),

defined by m ⊗ s′ 7→ (f 7→ s′.pr∗(f(m))) is an isomorphism of ′M′.
Here we denote by pr∗ the pull-back map O1,π|OK1

→ O1,π1 . We want
by devissage to reduce this to the p-torsion case.

Lemma 2.6. Ext1′M/S1
(M,O1,π|OK1

) = 0 for any M ∈ M which is
killed by p.

Proof. Take some Spf(A) ∈ Spf(OK1)syn and an extension

0 → O1,π(A′
∞) → E → M → 0.

We have to show that syntomic locally a splitting of E exists. Let
{e1, . . . , ed} be an adapted basis of M ([5, Proposition 2.1.2.5]) and
ê1, . . . , êd be their lifts to E . We mimic [5, Proposition 4.1.3] and seek
for a splitting ei 7→ êi by modifying êi’s.

Firstly, we modify êi’s to respect the filtration. Let rj be the minimal
natural number satisfying urjej ∈ Fil1M . There exists δj ∈ O1,π(A′

∞)
such that urj êj + δj ∈ Fil1E . By Lemma 2.4, we can decompose δj

as δj = δj,0 + δj,1, where δj,0 ∈ A′
∞ and δj,1 ∈ J1,π(A′

∞). We have
ueêj + ue−rjδj ∈ Fil1E and ue−rjδj,0 ∈ J1,π(A′

∞). As J1,π(A′
∞) contains

u − X ′
0, we get X ′

0
e−rjδj,0 = 0, and in particular X ′

0
p(e−rj)δp

j,0 = 0 in

A′
∞. Take an lift δ̂j,0 of δj,0 in A′

∞, where X ′
0 = π1 holds. Then we

have πe−rj δ̂p
j,0 = πexj for some xj ∈ A′

∞. The ring A′
∞ is π-torsion

free and we have δ̂p
j,0 = πrjxj. As A′

∞ is perfect, we can take yj ∈ A′
∞

satisfying yp
j = xj. Then (δj,0 − X ′

0
rjyj)

p = 0 in A′
∞. By the definition

of the divided power structure on (k[u][X ′
0
p−∞

, . . . , X ′
r
p−∞

])PD, we see
that δj,0 − X ′

0
rjyj ∈ J1,π(A′

∞) and also δj,0 − urjyj ∈ J1,π(A′
∞).

Now we replace êj by êj + yj. Then, urj(êj + yj) ≡ −δj + δj,0 ≡ 0
mod Fil1E . Thus the map ej 7→ êj + yj respects the filtration.
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Next we modify êj to respect φ1. Set




c1
...
cd


 = φ1




ur1 ê1
...

urd êd


−G




ê1
...
êd


,

where G ∈ GLd(S1) satisfying φ1




ur1e1
...

urded


 = G




e1
...
ed


. We have to find




δ1
...
δd


 ∈ O1,π(A′

∞)⊕d such that φ1




ur1(ê1 + δ1)
...

urd(êd + δd)


 = G




ê1 + δ1
...

êd + δd


, or

φ1




ur1δ1
...

urdδd


 = G




δ1
...
δd


 −




c1
...
cd


. Decompose cj = cj,0 + cj,1 + cj,2,

where cj,0 ∈ A′
∞, cj,1 ∈ (u − X ′

0)A
′
∞ and cj,2 ∈ J [2]

1,π(A′
∞). By linearity,

it suffices to find the solution for φ1




ur1δ1,k
...

urdδd,k


 = G




δ1,k
...

δd,k


 −




c1,k
...

cd,k




for k = 0, 1, 2. We can resolve these equations, taking an appropriate
syntomic cover of A′

∞ if necessary, just as the proof of [5, Proposition
4.1.3], if we replace Y0 and X0 there by X ′

0 and X ′
0
p, respectively.

¤

Lemma 2.7. Ext1′M/S1
(M,O∞,π|OK1

) = 0 for any M ∈ M.

Proof. By the Lemma 2.3, the same reasoning as the proof of [5, Lemme
4.1.2] works also in our case and shows that the lemma holds for any
M killed by p. Then the definition of the category M and devissage
conclude the proof.

¤

Now consider an exact sequence in M

0 → M1 → M2 → M3 → 0.

From Lemma 2.7, we get an exact sequence

0 → Hom
′M/S
(Ab/OK1

)(M3,O∞,π|OK1
)

→ Hom
′M/S
(Ab/OK1

)(M2,O∞,π|OK1
) → Hom

′M/S
(Ab/OK1

)(M1,O∞,π|OK1
) → 0.

Here we know that Hom
′M/S
(Ab/OK1

)(Mi,O∞,π|OK1
) = Gr(Mi)|OK1

. Thus,

from [5, Proposition 4.2.1.5], we have the following commutative dia-
gram whose vertical sequences are exact;
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0 0y
y

M1 ⊗S S ′ ΦM1−−−→ Hom(Ab/OK1
)(Hom

′M/S
(Ab/OK1

)(M1,O∞,π|OK1
),O∞,π1)y

y

M2 ⊗S S ′ ΦM2−−−→ Hom(Ab/OK1
)(Hom

′M/S
(Ab/OK1

)(M2,O∞,π|OK1
),O∞,π1)y

y

M3 ⊗S S ′ ΦM3−−−→ Hom(Ab/OK1
)(Hom

′M/S
(Ab/OK1

)(M3,O∞,π|OK1
),O∞,π1)y

y
0 0

Thus, by devissage, to prove the theorem, we may assume that pM = 0.
We have rankS′

1
(M ⊗S S ′) = rankS1(M) and

rankS′
1
(Hom(Ab/OK1

)(Hom
′M/S
(Ab/OK1

)(M1,O∞,π|OK1
),O∞,π1))

= rankS′
1
(ModK1(GrK(M) ×OK

OK1)) = rankS1(M).

By [5, Lemme 3.3.2], it suffices to show Ker(ΦM) ⊆ FilpS ′
1M

′.
Take an adapted basis {e1, . . . , ed} as in the proof of Lemma 2.6.

Let m =
∑d

i=1 s′iei be an element of Ker(ΦM). Consider the affine al-

gebra RM of GrK(M) and the element f ∈ Hom
′M
S (M,O1,π(RM)) '

GrK(M)(RM) corresponding to idRM
. Then f(ei) ≡ X̄i,0 + uX̄i,1 +

· · ·+ up−1X̄i,p−1 mod J [p]
1,π(RM), where Xi,0, . . . , Xi,p−1 are the canoni-

cal generators of RM and X̄i,k its image in RM/p. Here we regard X̄i,k as
an element of O1,π(RM) by the natural map RM/p⊗k,σk[u] → O1,π(RM)
(see the proof of [5, Proposition 3.1.1, Proposition 3.1.5]). Let us write

f1 for the image of f by the natural map Hom
′M
S (M,O1,π(RM)) →

Hom
′M
S (M,O1,π(R′

M)), where R′
M = RM ⊗OK

OK1 . As m ∈ Ker(ΦM),
we have

∑
s′ipr∗R′

M
(f1(ei)) = 0.

Let X̄ ′
i,k be the image of X̄i,k by the natural map R′

M/p ⊗k,σ k[v] →
O1,π1(R

′
M). Now we claim that pr∗R′

M
(X̄i,k) = X̄ ′

i,k. It is sufficient to

show this coincidence on an appropriate syntomic cover of R′
M . Thus

we may consider pr∗R′
M,∞

: O1,π(R′
M,∞) → O1,π1(R

′
M,∞), where R′

M,∞ is

the perfection of R′
M as before. Then the composition

(R′
M,∞/p⊗k,σk[u])PD pr∗→ H0

crys(R
′
M,∞/p/S′

1)
projection→ (R′

M,∞/p⊗k,σk[v])PD
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maps 1⊗u to 1⊗ vp and r⊗ 1 to r̂p ⊗ 1, where r̂ is a lifting of r by the
canonical surjection (R′

M,∞/p ⊗k,φ k[v])PD → R′
M,∞/p. We may take r̂

to be r1/p ⊗ 1. Thus the claim follows.
Therefore we have an equation

∑d
i=1 s′i(X̄

′
i,0+vpX̄ ′

i,1+· · ·+vp(p−1)X̄ ′
i,p−1) =

0 in O1,π1(R
′
M)/J [p]

1,π1
(R′

M). This equation also holds in

O1,π1(R
′
M,∞)/J [p]

1,π1
(R′

M,∞), and its subring R′
M,∞/p[v]/(vp − X ′

0) =
R′

M,∞/p[v]/(vp − π1) (see [5, Lemme 2.3.2]). As R′
M,∞ is the direct

limit of syntomic covers of R′
M , R′

M/p is a subring of R′
M,∞/p. Thus

the equation
∑d

i=1 s′i(X̄
′
i,0 + vpX̄ ′

i,1 + · · · + vp(p−1)X̄ ′
i,p−1) = 0 holds in

R′
M/p[v]/(vp − π1). Let us denote s′i mod v ∈ k by s̄′i. Taking mod v,

we have
∑d

i=1 s̄′iX̄
′
i,0 = 0 in R′

M/p[v]/(v, vp − π1) = R′
M/π1 = RM/π.

From the proof of [5, Proposition 3.1.1], we know that X1,0, . . . , Xd,0 are
linearly independent over k in RM/π. Thus s̄′i = 0 and s′i ∈ vS ′

1+FilpS ′
1

for all i. Take s′
(1)
i ∈ S ′

1 satisfying s′i − vs′
(1)
i ∈ FilpS ′

1. Then we have

v
∑d

i=1 s′
(1)
i (X̄ ′

i,0+vpX̄ ′
i,1+ · · ·+vp(p−1)X̄ ′

i,p−1) = 0 in R′
M/p[v]/(vp−π1).

However, R′
M/p ' (OK1/p)⊕N ' (k[T ]/(T ep))⊕N for some N and

k[T ]/(T ep)[v]/(vp − T ) ' k[v]/(vep2
). Thus R′

M/p[v]/(vp − π1) is fi-

nite flat over k[v]/(vep2
), and we have

∑d
i=1 s′

(1)
i (X̄ ′

i,0 + vpX̄ ′
i,1 + · · · +

vp(p−1)X̄ ′
i,p−1) ∈ vep2−1(R′

M/p[v]/(vp − π1)). Taking mod v and repeat-

ing this procedure shows s′i ∈ vep2
S ′

1 +FilpS ′
1 = FilpS ′

1. In other words,
m ∈ FilpS ′

1M
′. This concludes the theorem.

¤
Remark 2.8. In general, let L be a totally ramified extension over
K of degree e′ whose uniformizer we denote by πL. When we define
SL = SπL

as above, there exists a morphism S → SL respecting the
filtration and φ1 if and only if πe′

L = πζ i
p−1 for some i.

3. Rank one calculation

In this section, we calculate the conductor of a Raynaud F-vector
space scheme over OK . The point is that, as we can see from the
bound of the conductor ([11, Theorem 7]), it is enough to consider the
j-th tubular neighborhood only for j ≤ pe/(p− 1) + ε with sufficiently
small ε > 0. For such j, we can compute the tubular neighborhood
easily by Lemma 3.4 below.

Let K be a complete discrete valuation field of mixed characteristic
(0, p). We write π = πK for its uniformizer and e for its absolute
ramification index. We normalize a valuation vK of K as vK(π) = 1
and extend it to the algebraic closure K̄ of K. For a ∈ K̄ and j ∈ R,
let D(a, j) denote the closed disc {z ∈ OK̄ | vK(z−a) ≥ j}. This is the
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underlying subset of a K(a)-affinoid subdomain of the unit disc over
K(a).

For integers 0 ≤ s1, . . . , sr ≤ e, let G(s1, . . . , sr) denote the Raynaud
Fpr -vector space scheme over OK defined by the r equations T p

1 =
πs1T2, T

p
2 = πs1T3, . . . , T

p
r = πsrT1 ([13]). We set jk = (psk + p2sk−1 +

. . . + pks1 + pk+1sr + pk+2sr−1 + · · · + prsk+1)/(p
r − 1). Before the

calculation of c(G(s1, . . . , sr)), we gather some elementary lemmas.

Lemma 3.1. Let a ∈ OK and s = vK(a). Then the affinoid variety
Xj(K̄) = {x ∈ OK̄ | vK(xp − a) ≥ j} is equal to

{
D(a1/p, j/p) if j ≤ s + pe/(p − 1),∐p−1

i=0 D(a1/pζ i
p, j − e − (p − 1)s/p) if j > s + pe/(p − 1).

Proof. We have vK(xp − a) =
∑

i vK(x − a1/pζ i
p). If vK(x − a1/pζ i

p) ≥
vK(x − a1/pζ i′

p ) for any i′ 6= i, then vK(x − a1/pζ i′
p ) ≤ vK(a1/pζ i′

p (1 −
ζ i−i′
p )) = s/p + e/(p − 1). Thus we have vK(x − a1/pζ i

p) ≥ sup(j/p, j −
(p − 1)s/p − e) and

Xj(K̄) ⊆
⋃

i

D(a1/pζ i
p, sup(j/p, j − (p − 1)s/p − e)).

Suppose that j/p ≥ j−(p−1)s/p−e. Then we have vK(a1/p(1−ζ i
p)) =

s/p + e/(p− 1) ≥ j/p, D(a1/p, j/p) = D(a1/pζ i
p, j/p) for any i and thus

Xj(K̄) = D(a1/p, j/p).

When j/p < j−(p−1)s/p−e, we have vK(a1/p(1−ζ i
p)) = s/p+e/(p−

1) < j−(p−1)s/p−e. This means that if w ∈ D(a1/pζ i
p, j−(p−1)s/p−e)

for some i, then vK(w − a1/pζ i′
p ) < j − (p − 1)s/p − e for any other i′.

Thus the discs D(a1/pζ i
p, j − (p − 1)s/p − e) are disjoint and

Xj(K̄) =
∐

i

D(a1/pζ i
p, j − (p − 1)s/p − e).

These are equalities of the underlying sets of affinoid subdomains
of the unit disc over K(a1/p, ζp). By the universality of an affinoid
subdomain, this extends to an isomorphism of affinoid varieties.

¤
We can prove the following lemma just in the same way.

Lemma 3.2. The affinoid variety {x ∈ OK̄ | vK(xpr − ax) ≥ j} is
equal to

{
D(0, j/pr) if j ≤ prv(a)/(pr − 1),∐pr−1

i=0 D(σi, j − v(a)) if j > prv(a)/(pr − 1),
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where σi’s are the roots of Xpr
= aX.

Lemma 3.3. For g1(Y1, . . . , Yd), g2(Y1, . . . , Yd) ∈ K[Y1, . . . , Yd] and
j1 ≥ j2, the affinoid variety {(x, y1, . . . , yd) ∈ OK̄ × Od

K̄
| vK(x −

g1(y1, . . . , yd)) ≥ j1, vK(x−g2(y1, . . . , yd)) ≥ j2} is equal to {(x, y1, . . . , yd) ∈
OK̄×Od

K̄
| vK(x−g1(y1, . . . , yd)) ≥ j1, vK(g1(y1, . . . , yd)−g2(y1, . . . , yd)) ≥

j2}.
Proof. For fixed (x, y), these two conditions are equivalent. The uni-
versality of an affinoid subdomain proves the lemma.

¤
Lemma 3.4. Let a ∈ OK and s = vK(a). If j ≤ pe/(p − 1) + s, then
the affinoid variety Xj(K̄) = {(x, y) ∈ OK̄ ×OK̄ | vK(xp − aypn

) ≥ j}
is equal to {(x, y) ∈ OK̄ ×OK̄ | vK(x − a1/pypn−1

) ≥ j/p}.
Proof. Lemma 3.1 shows that the fiber of the second projection Xj(K̄) →
OK̄ at y is equal to
{

D(a1/pypn−1
, j/p) if j ≤ s + pn−1vK(y) + pe/(p − 1),∐p−1

i=0 D(a1/pζ i
py

pn−1
, j − e − (p − 1)(s + pn−1vK(y))/p) otherwise.

Thus we have Xj(K̄) = {(x, y) ∈ OK̄ ×OK̄ | vK(x− a1/pypn−1
) ≥ j/p}

for j ≤ pe/(p − 1) + s. This is the underlying set of a K(a1/p)-affinoid
variety. Again this equality extends to an isomorphism over K(a1/p).

¤
Now we proceed to the proof of the main theorem of this section.

Theorem 3.5. c(G(s1, . . . , sr)) = supk jk.

Proof. We may assume that jr is the supremum of jk’s. If jr = 0, then
G(s1, . . . , sr) is etale and c(G(s1, . . . , sr)) = 0. Thus we may assume
jr > 0. Consider the homomorphism of OK-algebras

A = OK [T1, . . . , Tr]/(T1
p − πs1T2, . . . , Tr

p − πsrT1) →
B = OK [W,T2, . . . , Tr]/(W

pr − πs1T2, T2
p − πs2T3, . . . ,

Tr−1
p − πsr−1Tr, Tr

p − πsrW pr−1

),

defined by T1 7→ W pr−1
. This induces a surjection of K-affinoid vari-

eties

Xj
B(K̄) 3 (w, t2, . . . , tr) 7→ (wpr−1

, t2, . . . , tr) ∈ Xj
A(K̄),

where

Xj
A(K̄) = {(t1, . . . , tr) ∈ Or

K̄ | vK(t1
p − πs1t2) ≥ j, . . . ,

vK(tr−1
p − πsr−1tr) ≥ j, vK(tr

p − πsrt1) ≥ j}
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and

Xj
B(K̄) = {(w, t2, . . . , tr) ∈ Or

K̄ | vK(wpr − πs1t2) ≥ j,

vK(t2
p − πs2t3) ≥ j, . . . , vK(tr

p − πsrwpr−1

) ≥ j}.

These are affinoid subdomains of the r-dimensional unit polydisc over
K. We calculate a jump of {F j(B)}j∈Q>0 at first.

Lemma 3.6. If jr < pe/(p − 1), then the first jump of {F j(B)}j∈Q>0

occurs at j = jr and ]F jr(B) = pr.

Note that the base change from K to a finite extension L multiplies
si’s, ji’s and e by the ramification index of L/K. Thus, to prove Lemma
3.6 and Theorem 3.5, we may assume that pr−1 divides si’s and e.

Proof. Consider the K-affinoid variety Xj
B for j ≤ pe/(p − 1). Then

the iterative use of Lemma 3.4 and Lemma 3.3 shows that the affinoid
variety Xj

B(K̄) is equal to

{vK(wpr − π(sr+psr−1+...+pr−1s1)/pr−1

w) ≥ pl1(j), vK(t2 − g2(w)) ≥ u2,

vK(t3 − g3(t2, w)) ≥ u3, . . . , vK(tr − gr(tr−1, w)) ≥ ur},

where li(j), gi(ti−1, w), g2(w) and ui are defined as follows;

• lr(j) = j/p,
• li−1(j) = inf(j, li(j) + si−1)/p,
• gi(ti−1, w) = tpi−1/π

si−1 and ui = j − si−1 if j ≥ li(j) + si−1,

• gi(ti−1, w) = πsr+psr−1+...+pr−isi/pr−i+1
wpi−2

and ui = li(j) if j <
li(j) + si−1,

• g2(w) = g2(w
pr−1

, w).

Note that li(j) is a strictly monotone increasing function of j. This
affinoid variety is isomorphic to the product of the affinoid variety {w ∈
OK̄ | v(wpr −π(sr+psr−1+...+pr−1s1)/pr−1

w) ≥ pl1(j)} and discs. Therefore,
from Lemma 3.2, we see that the first jump of {F j(B)}j∈Q>0 occurs at
j such that pl1(j) = jr, provided this j satisfies 0 < j < pe/(p − 1).
Moreover, then we have ]F j(B) = pr. Thus the following lemma and
the strict monotonicity of l1 terminate the proof of Lemma 3.6. ¤
Lemma 3.7. l1(jr) = jr/p.

Proof. Suppose that there is k such that lk(jr) = jr/p and jr ≥ lk′(jr)+
sk′ for any 1 < k′ ≤ k. Then we have l1(jr) = inf(jr, (jr + psk−1 +
p2sk−2 + . . . + pk−1s1)/p

k−1)/p and the assumption jk−1 ≤ jr implies
l1(jr) = jr/p.

¤
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On the other hand, let s = (sr + psr−1 + . . . + pr−1s1)/p
r−1 and

σ0, . . . , σpr−1 be the roots of the equation Xpr − πsX = 0. Then we

see that the images by w 7→ wpr−1
of the discs D(σi, pl1(j) − s) are

disjoint for j > jr. Hence the surjection π0(X
j
B(K̄)) → π0(X

j
A(K̄)) is

bijective for 0 < j ≤ pe/(p − 1) and the first (and the last) jump of
{F j(A)}j∈Q>0 also occurs at jr, provided jr < pe/(p − 1).

When jr = pe/(p−1), we see that sk = e > 0 for any k. Thus we can
use Lemma 3.4 for j < pe/(p−1)+ε with sufficiently small ε > 0. Then,
by the same reasoning as above, we conclude that c(A) = pe/(p − 1).

¤

4. Hasse-Arf theorem for Fp-rank two case

Let K be as in section 1. In this section, we prove Conjecture 1.2 in
the case where F = Fp and G(K̄) is reducible.

Theorem 4.1. Let G be a finite flat group scheme over OK of rank p2

which is killed by p and reducible. Then the IK-representation G(K̄)
contains θk

K,l, where k/l mod Z is the prime-to-p part of the conductor
c(G).

We prove this theorem by a lengthy calculation of the conductor. The
point is that, on the one hand, to check the assertion on a character, we
may restrict to GK∞ by the full faithful theorem of Breuil ([6, Theorem
3.4.3]) and on the other hand, we can describe a defining equation
of RM explicitly in terms of M after the base change to K∞. By
abuse of notation, we may write F j(M) for F j(Gr(M)) and c(M) for

c(Gr(M)). We fix once and for all a (p − 1)-st root π
1/(p−1)
1 of π1 and

set π1/(p−1) = π
p/(p−1)
1 .

Proof. It is sufficient to show the theorem in the case of k = k̄. Let
M = ModK(G) be the filtered φ1-module of G. By assumption, we
have an exact sequence in ′M

0 → M(s) → M → M(r) → 0

for some integers 0 ≤ r, s ≤ e, where M(s) is the filtered φ1-module
defined by M(s) = S1e, Fil1M(s) = usS1e and φ1(u

se) = e. We have
GrK(M(s)) ' G(e − s) by the notation of Section 3. By [7, Lemma
5.2.2], we may assume that M̃ = M/FilpSM is of the following type;

• M̃ = S̃1e0 ⊕ S̃1e1, where S̃ = S/FilpS = k[u]/(uep),
• Fil1M̃ = 〈use0, u

re1 + fe0〉, where f ∈ usup(0,r+s−e)S̃1

• φ1(u
se0) = e0 and φ1(u

re1 + fe0) = e1.

Put m = vu(f). Then we can take an adapted basis of M̃ as follows.
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Case A: (e0, s), (e1 + (f/ur)e0, r) if m ≥ r
Case B: (e0, s), (e1, r) if s ≤ m < r
Case C: ((f/um)e0+ur−me1,m), ((um/f)e1, r+s−m) if m < r, s

Before starting calculation of the conductor, we show the following
lemma.

Lemma 4.2. For any exact sequences of finite flat group schemes over
OK

0 → G1 → G2 → G3 → 0,

we have c(G2) ≥ c(G1), c(G3).

Proof. The inequality c(G2) ≥ c(G3) follows from [1, Lemme 2.10]. Let
us show c(G2) ≥ c(G1). Taking a sufficiently large base change, we
may assume that GK acts trivially on G3(K̄). Let H be the maximal
prolongation of G3 ([13]) and G ′ = G2 ×G3 H. The group scheme G ′

is also finite flat over OK . We know H is constant. Thus we have
c(G ′) = c(G1). However, the natural map G ′ → G2 is a prolongation.
Therefore c(G ′) ≤ c(G2) (see the proof of [11, Theorem 7]).

¤

A. m ≥ r. In this case, we have

φ1

(
use0

ure1 + fe0

)
=

(
e0

e1

)
=

(
use0

(e1 + (f/ur)e0) − (f/ur)e0

)

=

(
1 0

−(f/ur) 1

)(
e0

e1 + (f/ur)e0

)
.

We calculate the conductor c(R′
M) = pc(RM). From Theorem 2.5, it is

equal to c(GrK1(M
′)) = c(M ′). We see that (e0, ps), (e1+(f(vp)/vpr)e0, pr)

is an adapted basis of M̃ ′ and

φ1

(
vpse0

vpre1 + f(vp)e0

)
=

(
1 0

−f(vp)/vpr 1

)(
e0

e1 + (f(vp)/vpr)e0

)
.

Consider the surjection OK2 → OK2/p ⊗k,φ k ' k[v]/(vep2
) where the

last map is k-linear and maps π1 to u. The matrix above lifts by this

surjection to

(
1 0

f0(π1) 1

)
, where f0(v) = −fσ−1

(v)/vr. Then, from

[5, Proposition 3.1.2], we see that

R′
M = OK1 [X1, X2]/(X

p
1+πe−sF (π)−1X1, X

p
2+πe−rF (π)−1(X2+f0(π1)X1)).

Let us calculate the affinoid variety

Xj
M ′(K̄) ={ (x1, x2) ∈ OK̄1

×OK̄1
| vK1(x

p
1 + πe−sF (π)−1x1) ≥ j,

vK1(x
p
2 + πe−rF (π)−1(x2 + f0(π1)x1)) ≥ j }.
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Note that the second inequality is equivalent to

vK1(x1 + f0(π1)
−1x2 + F (π)(f0(π1)π

e−r)−1xp
2) ≥ j − p(e− r)− (m− r).

We have c(M ′) ≥ cK1(G(e − s) ×OK
OK1) = p2(e − s)/(p − 1) from

Lemma 4.2. Thus we may suppose j > p2(e − s)/(p − 1) and that
the affinoid variety defined by the first inequality in the definition of
Xj

M ′(K̄) splits. Thus we have

Xj
M ′(K̄) =

p−1∐

l=0

{ (x1, x2) ∈ OK̄1
×OK̄1

| vK1(x1 − σs,l) ≥ j − p(e − s),

vK1(x
p
2 + πe−rF (π)−1x2 + πe−rF (π)−1f0(π1)x1) ≥ j},

where σs,l =

{
0 (l = 0)

π(e−s)/(p−1)ζ l
p−1 (l = 1, . . . , p − 1).

Let us denote its l-

th component by Xj
M ′,l. We have a surjection of GK-modules F j(M ′) →

F j(M(s)) ([1, Lemme 2.10]) and the inverse image of σs,l ∈ F j(M(s))

by this surjection is equal to π0(X
j
M ′,l)K̄ . Thus Xj

M ′ splits if and only

if Xj
M ′,0 splits.

If s ≥ r, we have vK1(π
e−rF (π)−1f0(π1)x1) ≥ j and

Xj
M ′,0(K̄) = {(x1, x2) ∈ OK̄1

×OK̄1
|

vK1(x1) ≥ j − p(e − s), vK1(x
p
2 + πe−rF (π)−1x2) ≥ j }.

Thus c(M ′) = sup(p2(e−s)/(p−1), p2(e−r)/(p−1)) = p2(e−r)/(p−1).
If s < r and m ≥ p(r − s) + r, Lemma 3.3 shows that Xj

M ′,0(K̄) is

the same as the case above and we have c(M ′) = p2(e − s)/(p − 1).
Suppose s < r and m < p(r − s) + r. Then we have

Xj
M ′,0(K̄) = {(x1, x2) ∈ OK̄1

×OK̄1
|

vK1(x
p
2 + πe−rF (π)−1(x2 + f0(π1)x1) ≥ j,

vK1(x
p
2 + πe−rF (π)−1x2) ≥ j − (p(r − s) − (m − r)) }.

This affinoid variety splits if and only if j > p2(e−r)/(p−1)+p(r−s)−
(m− r). The conductor equals sup(p2(e− r)/(p− 1) + p(r− s)− (m−
r), p2(e−s)/(p−1)). We see that p2(e−r)/(p−1)+p(r−s)−(m−r) ≥
p2(e − s)/(p − 1) if and only if (ps − r)/(p − 1) ≥ m. This does not
occur, since we have s < r ≤ m and (ps − r)/(p − 1) ≤ s < m. Thus
we have c(M ′) = p2(e − s)/(p − 1).

To terminate the proof of the theorem in Case A, we must show
that G(K̄) contains θe−s

K,p−1 if c(M) ≡ p(e − s)/(p − 1) mod 1/p∞Z.
Note that, if p(e− r)/(p− 1) ≡ p(e− s)/(p− 1) mod 1/p∞Z, then we
have pM(e − r) ≡ pM(e − s) mod (p − 1)Z for some integer M and
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θe−r
K,p−1 = θe−s

K,p−1. Thus we may restrict our attention to the case s < r.
By virtue of the full faithful theorem of Breuil, it suffices to show that
the GK1-module Gr(M ′)(K̄) contains θe−s

K1,p−1.

We identify the finite GK1-set Gr(M ′)(K̄) with the solution (X, Y )
of the equation

{
Xp + πe−rF (π)−1X = 0
Y p + πe−rF (π)−1Y + πe−rf0(π1)F (π)−1X = 0.

Consider the equation Y p + πe−rF (π)−1Y + πe−rf0(π1)F (π)−1σs,l =
0. Its Newton polygon has an internal vertex if and only if (p −
1)/p(m − r + p(e − r) + p(e − s)/(p − 1)) − p(e − r) > 0, which
is equivalent to r > s. Thus there is one and only one root Yl of
this equation which satisfies vK1(Yl) = m − r + p(e − s)/(p − 1) for

each l > 0. Define α ∈ O×
K̄

by Yl = α−1π
m−r+p(e−s)/(p−1)
1 . Then

α is the root of the equation T p−1 + aT p−2 + b = 0, where a, b ∈
OK1 with vK1(a) = 0 and vK1(b) > 0. Hensel’s lemma shows that

α ∈ Knr
1 . Thus we have g(Yl) = Ylg(π

p(e−s)/(p−1)
1 )/π

p(e−s)/(p−1)
1 for any

g ∈ IK1 . Denote by P (resp. Q) an element (X, Y ) = (0, σr,1) (resp.
(X, Y ) = (σs,1, Y1)) of V = Gr(M ′)(K̄). From [5, Lemme 3.1.7], we
see that the subspace G(p(e − r))(K̄) ⊆ V can be identified with a
subset {(0, 0), (0, σr,1), . . . , (0, σr,p−1)}. Thus P and Q form a basis of

V . For the Galois extension L = K1(π
1/(p−1)
1 ) of degree p − 1 over

K1, we see that IL acts trivially on P and Q. This shows that the
image of IK1 → Aut(V ) has an order prime to p. Therefore we have
V = θe−s

K1,p−1 ⊕ θe−r
K1,p−1 as an IK1-module. This concludes the proof in

the case A.

B. s ≤ m < r. We have

φ1

(
use0

ure1

)
= φ1

(
use0

(ure1 + fe0) − (f/us)use0

)

=

(
e0

e1 − (fσ(up)/ups)e0

)
=

(
1 0

−fσ(up)/ups 1

)(
e0

e1

)
.

Set g0(u) = −f(u)/us. Then a matrix

(
1 0

g0(π) 1

)
maps to the matrix

above by the surjection OK1 → OK1 ⊗k,σ k ' k[u]/(uep). Then we see
that

RM = OK [X1, X2]/(X
p
1+πe−sF (π)−1X1, Xp

2+πe−rF (π)−1(X2+g0(π)X1)).
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An affinoid variety Xj
M we must calculate is

{ (x1, x2) ∈ OK̄ ×OK̄ | vK(xp
1 + πe−sF (π)−1x1) ≥ j,

vK(x1 + g0(π)−1x2 + F (π)(g0(π)πe−r)−1xp
2) ≥ j − (e − r) − (m − s) }

Again it is sufficient to suppose j > p(e − s)/(p − 1) and consider an
affinoid variety

{ (x1, x2) ∈ OK̄ ×OK̄ | vK(x1) ≥ j − (e − s),

vK(x1 + g0(π)−1x2 + F (π)(g0(π)πe−r)−1xp
2) ≥ j − (e − r) − (m − s) }.

By the assumption m < r and Lemma 3.3, this is equal to an affinoid
variety

{ (x1, x2) ∈ OK̄ ×OK̄ | vK(xp
2 + πe−rF (π)−1x2) ≥ j − (r − m),

vK(x1 + g0(π)−1x2 + F (π)(g0(π)πe−r)−1xp
2) ≥ j − (e − r) − (m − s) },

which splits if and only if j > r − m + p(e − r)/(p − 1). Therefore
we get c(M) = r − m + p(e − r)/(p − 1) if m ≤ (ps − r)/(p − 1) and
p(e − s)/(p − 1) if (ps − r)/(p − 1) < m < r. In the latter case, the
verbatim arguments as in Case A shows that G(K̄) = θe−s

K,p−1 ⊕ θe−r
K,p−1

as an IK-module.

C. r, s > m. In this case,

φ1

(
ure1 + fe0

(ur+s/f)e1

)
= φ1

(
ure1 + fe0

(us/f)(ure1 + fe0) − use0

)

=

(
e1

(ups/fσ(up))e1 − e0

)

=

(
0 f/um

−um/f (f/um)(ur/f + (us/f)p)

)(
(f/um)e0 + ur−me1

(um/f)e1

)
.

Again we consider M ′ = M ⊗S S ′. Then the last matrix is equal to(
0 f(vp)/vpm

−vpm/f(vp) (f(vp)/vpm)(vpr/f(vp) + (vps/f(vp))p)

)
. We can take

as a lifting of this matrix

(
0 c

−1/c c(πr−m
1 /c + (πs−m

1 /c)p)

)
∈ GL2(OK1)

with c = fσ−1
(π1)/π

m
1 . Thus we get

R′
M = OK1 [X1, X2]/(X

p
1+cπe−mF (π)−1X2,

Xp
2 + πe+m−(r+s)F (π)−1(−c−1X1 + dX2)),

where d = c(πr−m
1 /c + (πs−m

1 /c)p). As in Section 3, we firstly calculate
the conductor of R̃′

M = R′
M [W ]/(W p − X2).
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Consider an affinoid variety

Y j
M ′(K̄) = { (x, w) ∈ OK̄ ×OK̄ | vK1(x

p + πe−mF (π)−1cwp) ≥ j,

vK1(w
p2

+ πe+m−(r+s)F (π)−1(−c−1x + dwp)) ≥ j }.
From the bound of the conductor [11, Theorem 7], we may suppose
j ≤ p2e/(p − 1) + ε with ε > 0 sufficiently small. Now we have
e > m, and Lemma 3.4 shows that the first inequality in the defi-
nition of Y j

M ′ is equivalent to vK1(x + πe−m
1 c1/pF (π)−1/pw) ≥ j/p. On

the other hand, the second inequality can be written also as vK1(x −
cF (π)πr+s−e−mwp2 − cdwp) ≥ j − p(e + m − (r + s)). Put λ0 =

π
(p+1)e+(p−1)m−p(r+s)
1 /(F (π)(p+1)/pc(p−1)/p) and λ1 = dπ

p(e+m−(r+s))
1 /F (π).

Using Lemma 3.3, we see that this affinoid variety is equal to

Y j
M ′(K̄) = { (x,w) ∈ OK̄ ×OK̄ | vK1(x + πe−m

1 c1/pF (π)−1/pw) ≥ j/p,

vK1(w
p2

+ λ1w
p + λ0w) ≥ j }

if j ≤ p2(e + m − (r + s))/(p2 − 1) and

Y j
M ′(K̄) = { (x,w) ∈ OK̄ ×OK̄ |

vK1(w
p2

+ πe+m−(r+s)F (π)−1(−c−1x + dwp)) ≥ j,

vK1(w
p2

+ λ1w
p + λ0w) ≥ j/p + p(e + m − (r + s)) }

if j > p2(e + m − (r + s))/(p2 − 1).

Lemma 4.3. Put P (W ) = W p2
+ λ1W

p + λ0W . Then an affinoid
variety { w ∈ OK̄ | vK1(P (w)) ≥ j } splits if and only if

j >





p2(e − r)/(p − 1) − (p(s − m) − (r − m))

if m < (ps − r)/(p − 1)
p2(e − s)/(p − 1) − p(r − m) if m ≥ (ps − r)/(p − 1).

Proof. Set µk = vK1(λk). Consider the Newton polygon of the polyno-
mial P (W ). We have µ0(p

2 − p)/(p2 − 1)−µ1 = p(r−m+ s−m)/(p+
1) − vK1(d) and

vK1(d) =





r − m if m < (ps − r)/(p − 1)
r − m + vK1(c + cp) if m = (ps − r)/(p − 1)
p(s − m) if m > (ps − r)/(p − 1).

In the first and third case, P (W ) has p − 1 roots of valuation (µ0 −
µ1)/(p − 1) and p2 − p roots of valuation µ1/(p

2 − p). Let w be one of

these roots and V = W − w. Then P (V + w) = V p2
+ (p2Cpw

p2−p +

λ1)V
p+(p2wp2−1+pλ1w

p−1+λ0)V +
∑

k=2,...,p−1,p+1,...,p2−1 p2Ckw
p2−kV k+∑

k=2,...,p−1 pCkw
p−kV k. We see that vK1(p2Cpw

p2−p) = ep + (p2 −
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p)vK1(w) ≥ ep + µ1 > µ1, vK1(p
2wp2−1) − vK1(pλ1w

p−1) = ep + (p2 −
p)vK1(w)−µ0 > 0 and vK1(pλ1w

p−1)−µ0 = ep+µ1+(p−1)vK1(w)−µ0 ≥
ep−(µ0−µ1(p+1)/p) > 0. As for the former summation in the expan-

sion above of P (V +w), vK1(p2Ckw
p2−k)− (p2 −k)v(w) > 0. As for the

latter summation, the valuation of the coefficient of V k is vK1(pCkw
p−k)

and vK1(pCkw
p−k)−(µ1+(µ0−µ1)(p−k)/(p−1)) ≥ ep+µ1(p−k)/(p2−

p)− (µ1 +(µ0 −µ1)(p−k)/(p− 1)) = ep+(k(pµ0 − (p+1)µ1)+2pµ1 −
p2µ0)/(p

2 − p) > ep + (2µ1 − pµ0)/(p − 1) > 0. Thus P (V + w) has
the same Newton polygon as P (W ). Then [11, Theorem 4] shows that
the affinoid variety splits if and only if j > (pµ0 − µ1)/(p − 1) and the
lemma follows.

In the second case, the Newton polygon of P (W ) has no internal
vertex. Thus the nonzero roots of P (W ) has valuation µ0/(p

2 − 1).
Take one of these roots w and consider the polynomial P (V + w) and
its expansion as above. We have vK1(pλ1w

p−1)−µ0 = ep+µ1−pµ0/(p+

1) > 0 and vK1(p
2wp2−1) − µ0 = 2ep > 0. Thus the valuation of the

coefficient of V in P (V +w) is µ0. Let us show that the valuation of the
coefficient of V k is larger than vK1((p

2−k)µ0/(p
2−1)) = (p2−k)vK1(w)

for any k < p2. For k = p, we have µ1 ≥ (p2 − p)µ0/(p
2 − 1) and

vK1(p2Cpw
p2−p) > (p2 − p)µ0/(p

2 − 1). As for the former summation in

the expansion above, vK1(p2Ckw
p2−k) − (p2 − k)v(w) > 0. As for the

latter summaton, vK1(pCkw
p−k)−(p2−k)vK1(w) = ep−pµ0/(p+1) > 0.

Again we see that the Newton polygon of P (V +w) is the same as that
of P (W ) and the affinoid variety splits if and only if j > p2µ0/(p

2 − 1).
This concludes the lemma.

¤

From this lemma, we see that the affinoid variety Y j
M ′ does not split

for j ≤ p2(e + m − (r + s))/(p2 − 1) and splits if and only if j′ =
p(e + m− (r + s)) + j/p satisfies the inequality of the lemma. Thus we
have

c(R̃′
M) =

{
p2(e − r)/(p − 1) + p(r − m) if m < (ps − r)/(p − 1)
p2(e − s)/(p − 1) if m ≥ (ps − r)/(p − 1).

Now we consider the affinoid variety

Xj
M ′(K̄) = { (x1, x2) ∈ OK̄ ×OK̄ | vK1(x

p
1 + πe−mF (π)−1cx2) ≥ j,

vK1(x
p2

2 + πe+m−(r+s)F (π)−1(−c−1x1 + dx2)) ≥ j }.

The map R′
M → R̃′

M induces the affinoid map f : Y j
M ′ → Xj

M ′ . Note
that f sends (x,w) to (x, wp) and is surjective. From the proof of [11,
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Theorem 4], we see that

Y j
M ′(K̄) =

p2−1∐

k=0

{ (x,w) ∈ OK̄ × D(wk, j
′ −

∑

wk 6=0

vK1(wk)) |

vK1(w
p2

+ πe+m−(r+s)F (π)−1(−c−1x + dwp)) ≥ j}

for j > c(R̃′
M), where j′ = p(e+m− (r+s))+ j/p and wk’s is the roots

of the polynomial P (W ). Let us denote its k-th component by Yk. We
claim that f(Yk) ∩ f(Yl) = ∅ for k 6= l. Suppose that (x, w) ∈ Yk and
(x, wζ i

p) ∈ Yl. Then vK1(wζ i
p−wl) = vK1((w−wk)ζ

i
p+(ζ i

p−1)wk+(wk−
wl)). Now we have vK1((w − wk)ζ

i
p) ≥ j′ −

∑
vK1(wk) > sup vK1(wk)

and thus vK1((w − wk)ζ
i
p + (wk − wl)) = vK1(wk − wl). If m = (ps −

r)/(p−1), we have vK1(wk) = vK1(wk −wl) for any k 6= l and therefore
vK1(wζ i

p − wl) = vK1(wk) < j′ −
∑

vK1(wk), which is a contradiction.
Suppose m 6= (ps − r)/(p − 1). Then, by the notation in the previous
lemma, we have vK1(wk−wl)−vK1(wk) ≤ (µ0−µ1)/(p−1)−µ1/(p

2−p),
which equals

{
(p(s − m) − (r − m))/(p2 − p) if m < (ps − r)/(p − 1)
((r − m) − p(s − m))/(p − 1) if m > (ps − r)/(p − 1).

We see that these values are strictly smaller than vK1(1−ζ i
p) = pe/(p−

1) and vK1(wζ i
p −wl) = vK1(wk −wl) ≤ sup vK1(wk) < j′ −

∑
vK1(wk).

Again this is a contradiction. Therefore we get ]π0(X
j
M ′)K̄ = p2. For

j ≤ c(R̃′
M), we have ]π0(X

j
M ′)K̄ < p2 by the surjectivity of f . Thus

c(M ′) = c(R̃′
M).

Next we prove the assertion on a character. For m = (ps−r)/(p−1),
we have s ≡ r mod p − 1 and the IK-module V = G(K̄) contains
θe−s

K,p−1 = θe−r
K,p−1. Thus we may suppose that m > (ps − r)/(p − 1).

By the full faithful theorem of Breuil, it suffices to show that V con-
tains θe−s

K,p−1 as an IK1-module. The GK1-set V is identified with the
roots of the polynomial Q(X2) = (Xp

2 + λ1X2)
p + λp

0X2 ∈ OK1 [X2].
Consider the Newton polygon of Q(X2). For 1 ≤ k ≤ p − 1, the coef-

ficient of X
p+(p−1)k
2 in Q(X2) is pCkλ

p−k
1 and vK1(pCkλ

p−k
1 ) − pµ1(p

2 −
(p + (p − 1)k))/(p2 − p) = ep > 0. Thus Q(X2) has p − 1 roots of
valuation p(µ0 − µ1)/(p − 1) = p(e − s)/(p − 1) − p(s − m). Put

X2 = T−1π
p(e−s)/(p−1)−p(s−m)
1 . Then Q(X2) = 0 if and only if T p2−1 +

a−1
0 (a1T

p−1 + π
pµ0−(p+1)µ1

1 )p = 0, where ak = λk/π
vK1

(λk)

1 . By Hensel’s
lemma, there exists a polynomial R(T ) ∈ OK1 [T ] of degree p − 1,
satisfying R(T ) ≡ T p−1 + t mod π1 where t 6= 0 ∈ k and with the

property that R(α) = 0 if and only if α−1π
p(e−s)/(p−1)−p(s−m)
1 is a
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root of Q(X2) with valuation p(e − s)/(p − 1) − p(s − m). Take

such a root w. Then we see that w/π
p(e−s)/(p−1)−p(s−m)
1 ∈ Knr

1 and

g(w) = wg(π
p(e−s)/(p−1)
1 )/π

p(e−s)/(p−1)
1 for any g ∈ IK1 . By [5, Lemme

3.1.7], we can identify the subspace G(p(e − r))(K̄) of V with the set

{0, c−1π
p(e−r)/(p−1)
1 , c−1π

p(e−r)/(p−1)
1 ζp−1, . . . , c

−1π
p(e−r)/(p−1)
1 ζp−2

p−1}. From
the shape of the Newton polygon of Q(X2), we see that w is not con-
tained in this subspace. Therefore the IK1-action on V is tame and
thus V = θe−s

K1,p−1 ⊕ θe−r
K1,p−1.

¤

In the proof of the theorem, we have shown the following.

Corollary 4.4. If s,m ≥ r, then c(G) = p(e − r)/(p − 1). Otherwise,

c(G) =

{
sup(p(e − r)/(p − 1), p(e − s)/(p − 1)) if m ≥ (ps − r)/(p − 1),
p(e − r)/(p − 1) + (r − m) if m < (ps − r)/(p − 1).
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