DUALITY OF DRINFELD MODULES AND ¢-ADIC
PROPERTIES OF DRINFELD MODULAR FORMS

SHIN HATTORI

ABSTRACT. Let p be a rational prime and ¢ a power of p. Let p be
a monic irreducible polynomial of degree d in F,[t]. In this paper,
we define an analogue of the Hodge-Tate map which is suitable
for the study of Drinfeld modules over F,[t] and, using it, de-
velop a geometric theory of p-adic Drinfeld modular forms similar
to Katz’s theory in the case of elliptic modular forms. In par-
ticular, we show that for Drinfeld modular forms with congruent
Fourier coefficients at oo modulo ™, their weights are also con-
gruent modulo (¢% — 1)])“0gp(”)]7 and that Drinfeld modular forms
of level T'1(n) n To(gp), weight k and type m are p-adic Drinfeld
modular forms for any tame level n with a prime factor of degree
prime to ¢ — 1.
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1. INTRODUCTION

Let p be a rational prime and ¢ a power of p. The theory of p-adic
modular forms, which originated from the work of Serre [Ser]|, has been
highly developed, and now we have various p-adic families of eigenforms
which play important roles in modern number theory. At the early
stage of its development, Katz [Kat| initiated a geometric treatment of
p-adic modular forms, and from the work of Katz to recent works on
geometric study of p-adic modular forms including [AIS, AIP, Pil], one
of the key ingredients is the theory of canonical subgroups of abelian
varieties and Hodge-Tate maps for finite locally free (commutative)
group schemes.

Let us briefly recall the definition. For a finite locally free group
scheme G over a scheme S, we denote by wg the sheaf of invariant
differentials of G and by Car(G) the Cartier dual of G. Then the Hodge-
Tate map for G is by definition

Car(G) = #oms(G,Gy,) — wg, z— x* (g) :
It can be considered as a comparison map between the etale side and the
de Rham side; in fact, for any abelian scheme A with ordinary reduction
over a complete discrete valuation ring O of mixed characteristic (0, p),
the Cartier dual Car(A[p"]°) of the unit component of A[p"]° is etale,
and the Hodge-Tate map gives an isomorphism of O/(p")-modules

Car(A[p"]°) ®z O — w4 ®o Spec(O/(p™)).

Moreover, if A is close enough to having ordinary reduction, then there
exists a canonical subgroup of A which has a similar comparison prop-
erty via the Hodge-Tate map, instead of A[p"]°.

On the other hand, an analogue of the theory of p-adic modular forms
in the function field case—the theory of v-adic modular forms—has also
been actively investigated in this decade (see for example [Gos2, Pet,
Vin]). A Drinfeld modular form is a rigid analytic function on the
Drinfeld upper half plane over F,((1/t)), and it can be viewed as a
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section of an automorphic line bundle over a Drinfeld modular curve.
The latter is a moduli space over F,(t) classifying Drinfeld modules (of
rank two), which are analogues of elliptic curves. It is widely believed
that, for each finite place v of IF,(¢), Drinfeld modular forms have deep
v-adic structures comparable to the p-adic theory of modular forms.
However, we do not fully understand what it is like yet.

What is lacking is a geometric description of v-adic modular forms
as in [Kat]. For this, the problem is that the usual Cartier duality does
not work in the Drinfeld case: Since Drinfeld modules are additive
group schemes, the Cartier dual of any non-trivial finite locally free
closed subgroup scheme of a Drinfeld module is never etale and we
cannot obtain an etale-to-de Rham comparison isomorphism via the
Hodge-Tate map.

In this paper, we resolve this and develop a geometric theory of
v-adic Drinfeld modular forms. In particular, we show the following
theorems.

Theorem 1.1 (Corollary to Theorem 5.9). Let n be a monic polynomial
in A =TF,[t] and o a monic irreducible polynomial in A which is prime
ton. Fori = 1,2, let f; be a Drinfeld modular form of level I';(n),
weight k; and type m;. Suppose that their Fourier expansions (fi)w(z)
at 0 in the sense of Gekeler [Gek3] have coefficients in the localization
Ay of A at (p) and satisfy the congruence

(f1)e(z) = (f2)o0(2) # 0 mod ©".

Then we have
ki = ko mod (¢¢ — 1)p™,  1,(n) = min{N e Z | p" = n}.

Theorem 1.2 (Theorem 5.11). Suppose that n has a prime factor
of degree prime to q — 1. Let f be a Drinfeld modular form of level
[i(n) nTo(p), weight k and type m such that Gekeler’s Fourier expan-
sion fo(x) at 00 has coefficients in A,y. Then f is a p-adic Drinfeld
modular form. Namely, f(x) is the p-adic limit of Fourier expansions
of Drinfeld modular forms of level T'1(n), type m and some weights.

Note that Theorem 1.1 generalizes [Gek3, Corollary (12.5)] of the
case n = 1, and Theorem 1.2 is a variant of [Vin, Theorem 4.1] with
non-trivial tame level n.

The novelty of this paper lies in the systematic use of the duality
theory of Taguchi [Tag] for Drinfeld modules and a certain class of finite
locally free group schemes called finite v-modules. Using Taguchi’s
duality, we define an analogue of the Hodge-Tate map, which we refer
to as the Hodge-Tate-Taguchi map. For a Drinfeld module F with
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ordinary reduction, we construct canonical subgroups of E such that
their Taguchi duals are etale and the Hodge-Tate-Taguchi maps for
them give isomorphisms between the etale and de Rham sides similar to
the case of elliptic curves. This enables us to prove the above theorems
by almost verbatim arguments as in [Kat].

The organization of this paper is as follows. In §2, we review Taguchi’s
duality theory. Here we need a description of the duality for Drinfeld
modules in terms of biderivations [Gek4], which is done by Papanikolas-
Ramachandran [PR] in the case over fields. For this reason, we follow
the exposition of [PR] and generalize their results to general bases.

In §3, we develop the theory of canonical subgroups of Drinfeld mod-
ules with ordinary reduction and Hodge-Tate-Taguchi maps. In our
case, the role of p,» for elliptic curves is played by the p"-torsion part
Clp"] of the Carlitz module C, where the dual of C[p"] in the sense
of Taguchi is the constant A-module scheme A/(p").

84 is devoted to a study of Drinfeld modular curves and their com-
pactifications via Tate-Drinfeld modules in a similar way to [KM].
Though it may be classical, we give necessary details due to the lack
of appropriate references. The main differences from [KM] are three-
fold: First, the j-invariant of the usual Tate-Drinfeld module does not
give (the inverse of) a uniformizer of the j-line at the infinity, con-
trary to the case of the Tate curve. For this, we use a descent of the
Tate-Drinfeld module by an F-action on the coefficients to obtain a
right j-invariant (see (4.8)). The author learned this idea from a work
of Armana [Arm]. Second, a Drinfeld module is not dual to itself in
general, while every elliptic curve has autoduality. Instead, we have a
weak version of autoduality for Drinfeld modules (Remark 2.20), which
is enough to show that the square of the Hodge bundle in our case is
base point free. Third, since we are in the positive characteristic sit-
uation, we cannot use Abhyankar’s lemma to study the structure of
Drinfeld modular curves around cusps. This is bypassed by a direct
computation of the formal completion along each cusp (Corollary 4.15).

Then in §5 we prove the main theorems in a similar way to [Kat,
Chapter 4], the point being the fact that the Riemann-Hilbert corre-
spondence of Katz over the truncated Witt ring W,,(F,) [Kat, Propo-
sition 4.1.1] can be suitably generalized to the case over A/(p").

Acknowledgments. The author would like to thank Yuichiro Taguchi
for directing the author’s attention to arithmetic of function fields, and
also for answering many questions on his duality theory. The author
also would like to thank Gebhard Bockle and Rudolph Perkins for en-
lightening discussions on Drinfeld modules and Drinfeld modular forms.
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2. TAGUCHI DUALITY

In this section, we review the duality theory for Drinfeld modules
of rank two and an analogue of Cartier duality for this context, which
are both due to Taguchi [Tag]. Let p be a rational prime, ¢ a p-
power and F, the finite field with ¢ elements. We put A = [ [t]. For
any scheme S over IF,, we denote the g-th power Frobenius map on
S by Fg : S — S. For any S-scheme T and Og-module L, we put
TW =T xgp, Sand L9 = F#(L). Note that for any Og-algebra A,
the ¢-th power Frobenius map induces an Og-algebra homomorphism
fa: A9 — A For any A-scheme S, the image of ¢t € A by the
structure map A — Og(S) is denoted by 6.

2.1. Line bundles and Drinfeld modules. For any scheme S over
F, and any invertible Og-module £, we write the associated covariant
and contravariant line bundles to £ as

V. (L) = Specg(Symey (£271)), V(L) = Specg(Syme, (L))

with £L&871 = LY = Homo, (L, Os). Note that they represent functors
over S defined by

T — L|p(T), T L2 (T),

where £|r and £27 1|7 denote the pull-backs to T. The additive group
G, acts on the group schemes V(L) and V*(L£) through the natural
actions of Op(T) on L|r(T) and L7 (T), respectively. We often
identify £ with V,(L£). We have the ¢-th power Frobenius map

T L— L% [ %
This map induces a homomorphism of group schemes over S
7: V(L) — V,(LP9).

Note that 7 also induces an Og-linear isomorphism £ — £®9 by
which we identify V. (£®9) with V,(£)@. Then the relative g-th Frobe-
nius map V,(£) — V,(£)@ = V,(£#) is induced by the natural in-
clusion

(2.1) Sym(£LZ77) — Sym(L®™).
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For S = Spec(B) and L = Og, we have V,(Og) = G, and 7 induces
the endomorphism of G, = Spec(B[X]) over B defined by X — X¢.
This gives the equality

EndFmS(Ga) = B{r},

where B{7} is the skew polynomial ring over B whose multiplication
is defined by at®- b/ = ab? 7' for any a,b € B.

Definition 2.1 ([Lau], Remark (1.2.2)). Let S be a scheme over A and
r a positive integer. A (standard) Drinfeld (A-)module of rank r over
S'is a pair E = (£, ®¥) of an invertible sheaf £ on S and an F -algebra
homomorphism
®F . A — Endg(V4 (L))
satisfying the following conditions for any a € A\{0}:
e the image ®F of a by ®F is written as
rdeg(a) .
or = Z ai(a)’,  ai(a) e LO7T(S)
i=0
With @y qeg(e)(@) nowhere vanishing.
e ap(a) is equal to the image of a by the structure map A —
Os(9).
We often refer to the underlying A-module scheme V(L) as E. A
morphism (£, ®) — (L', ®’) of Drinfeld modules over S is defined to
be a morphism of A-module schemes V,(L£) — V,(L') over S. The
category of Drinfeld modules over S is denoted by DMg.

We denote the Carlitz module over S by C': it is the Drinfeld module
(Og,®%) of rank one over S defined by ®¢ = 6 + 7. We identify
the underlying group scheme of C' with G, = Specg(Os[Z]) using

le 05(5)

2.2. y-modules and v-modules. Let S be a scheme over A. Let G
be an F,-module scheme G over S whose structure map 7 : G — S
is affine. Note that the additive group G, over S is endowed with a
natural action of F,. Put

5g = %”oqu,S(Q, Ga),

the Og-module of F,-linear homomorphisms G — G, over S. The
Zariski sheaf & is naturally considered as an Og-submodule of 7, (Og).

On the other hand, if the formation of £ commutes with any base
change, then the relative ¢g-th Frobenius map Fg/g : G — G defines
an Og-linear map

o 1 Eg = EF — &
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which commutes with [Fy-actions.

Definition 2.2. We say an F,-module scheme G over S is a ¢-module
over S if the following conditions hold:

e the structure morphism 7 : G — S is affine,

e the Og-module &; is locally free (not necessarily of finite rank)
and its formation commutes with any base change,

o the induced F,-action on the sheaf of invariant differentials wg
agrees with the action via the structure map F, — Og(S),

e the natural Og-algebra homomorphism S := Symg (&) —
7+ (Og) induces an isomorphism

S/((fs ®1 — pg)(ES)) — me(Og).

A morphism of ¢-modules over S is defined as a morphism of [F,-module

schemes over S. The category of ¢-modules over S is denoted by
QO—MOdS.

The last condition of Definition 2.2 yields a natural isomorphism
Coker(pg) — wg.

We also note that for any p-module G over S, the natural map Sym, (£g) —
7+(Og) defines a closed immersion of F,-module schemes

ig . g - V*(gg>

Definition 2.3. A p-sheaf over S is a pair (€, p¢) of a locally free
Og-module £ and an Og-linear homomorphism ¢ : EWD - £ We
abusively denote the pair (€, p¢) by €. A morphism of p-sheaves is
defined as a morphism of Og-modules compatible with ¢g’s. A se-
quence of p-sheaves is said to be exact if the underlying sequence of
Og-modules is exact. The exact category of p-sheaves over S is denoted
by (p—ShV S-

We have a contravariant functor
Sh : ¢-Modg — ¢-Shvg, G +— (&g, ¢g).
On the other hand, for any object (£, p¢) of the category ¢-Shvg, put
Se = Syme, (€) and
Gr(&) = Specs(Se/((fs: ® 1 = we)(E19))).
Then the diagonal map £ — & @ £ and the natural [y -action on &
define on Gr(€) a structure of an affine F,-module scheme over S. The

formation of Gr(&) is compatible with any base change. We also have
a natural identification

(2.2) Gr(&)(T) = Homy, 04 (€, m:(Or))
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for any morphism 7 : ' — S, where we consider on m,(Or) the natural
e-structure induced by the g-th power Frobenius map [Tag, Proposition
(1.8)]. Since we have a natural isomorphism & — Eg,(¢), we obtain a
contravariant functor

Gr : ¢-Shvg — p-Modg, & — Gr(€),

which gives an anti-equivalence of categories with quasi-inverse Sh.

A sequence of p-modules is said to be Shv-exact if the correspond-
ing sequence in the category p-Shvg via the functor Sh is exact. We
consider p-Modg as an exact category by this notion of exactness.
The author does not know if it is equivalent to the exactness as group
schemes.

The commutativity of £ with any base change in Definition 2.2 holds
in the case where G is a line bundle over S. From this we can show
that any Drinfeld module is a ¢-module. Another case it holds is that
of finite ¢p-modules, which is defined as follows.

Definition 2.4 ([Tag], Definition (1.3)). We say an F;-module scheme
G over S is a finite p-module over S if the following conditions hold:

e the structure morphism 7 : G — S is affine,

e the induced [Fj-action on wg agrees with the action via the struc-
ture map [, — Og(5),

e the Og-modules 7,(Og) and &g are locally free of finite rank
with

rankog (m.(Og)) = g0 ),
e &g generates the Og-algebra m,(Og).

A morphism of finite ¢p-modules over S is defined as a morphism of
F,-module schemes over S.

Definition 2.5. A finite @-sheaf over S is a y-sheaf such that its un-
derlying Og-module is locally free of finite rank. The full subcategory
of ¢-Shvg consisting of finite p-sheaves is denoted by @—Shvg.

Let G be a finite p-module over S. Then we also have the natural
closed immersion ig : G — V*(&g), which implies that the Cartier dual
Car(G) of G is of height < 1 in the sense of [Gabr, §4.1.3]. Then,
by [Gabr, Théoréme 7.4, footnote|, the sheaf of invariant differentials
Wear(g) 1s a locally free Og-module of finite rank, and thus the formation
of the Lie algebra

Lie(Car(G)) ~ H#omgs(G,G,)
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commutes with any base change. Since g — 1 is invertible in Og(S), the
Og-module &; is the image of the projector

Lie(Car(G)) — Lie(Car(G)), z+— — a(a) M (z),

where o : A — Og(5) is the structure map and 1), is the action of a on
Lie(Car(G)) induced by the F,-action on G. Since the formation of this
projector commutes with any base change, so does that of £&;. From this
we see that any finite ¢-module is a ¢-module. We denote by gp—Modé
the full subcategory of p-Modg consisting of finite p-modules. Then the
functor Gr gives an anti-equivalence of categories go—Shvg — gp—Modé
with quasi-inverse given by Sh.

On the category @—Modé, the Shv-exactness agrees with the usual
exactness of group schemes. Indeed, from (2.2) and comparing ranks
we see that the Shv-exactness implies the usual exactness, and the
converse also follows by using the compatibility of Sh with any base
change and reducing to the case over a field by Nakayama’s lemma.

Lemma 2.6. Let E be a line bundle over S. Let G be a finite locally
free closed F,-submodule scheme of E over S. Suppose that the rank of
G is a g-power. Then G is a finite p-module.

Proof. We may assume that S = Spec(B) is affine, the underlying in-
vertible sheaf of E is trivial and G = Spec(Byg) is free of rank ¢" over
S. We write as E = Spec(B[X]). We have a surjection B[X]| — Bg
of Hopf algebras over B. Let P(X) € B[X] be the characteristic poly-
nomial of the action of X on Bg. Since deg(P(X)) = ¢", the Cayley-
Hamilton theorem implies that this surjection induces an isomorphism
BIX/(P(X)) ~ Bg.

Since P(X) is monic, we can see that P(X) is an additive polynomial
as in [Wat, §8, Exercise 7]. Since G is stable under the F,-action on
G., we have the equality of ideals (P(AX)) = (P(X)) of B[X] for any
A e FxX. From this we see that P(X) is Fy-linear and

n—1 )
& = P BXY,
i=0
from which the lemma follows. O

Corollary 2.7. Let m: ' — F be an Fy-linear isogeny of line bundles
over S. Then the group scheme G = Ker(m) is a finite p-module over
S, and we have a natural exact sequence of @-sheaves

(2.3) 0 Ep Ex & 0.
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Proof. The first assertion follows from Lemma 2.6. For the second one,
it is enough to show the surjectivity of the natural map i* : £ — &g.
By Nakayama’s lemma, we may assume S = Spec(k) for some field k.
Then 7 is defined by an F,-linear additive polynomial as

X PX)=aX +a X9+ - +a, X", a,#0

and the map ¢* is identified with the natural map

= P kXY - & = PEXT
iEZ;O i=0
of taking modulo ®,., kP(X)?. Hence i* is surjective. O

Lemma 2.8. (1) Let E be a line bundle over S. Let G and H be
finite locally free closed F,-submodule schemes of E over S sat-
isfying H < G. Suppose that the ranks of G and H are constant
q-powers. Then E/H is a line bundle over S and G/H is a finite
w-module over S.

(2) Let E be a Drinfeld module of rank r. Let H be a finite locally
free closed A-submodule scheme of E of constant q-power rank
over S. Suppose either

o H is etale over S, or
e S is reduced and for any mazimal point n of S, the fiber
H, of H overn is etale.
Then E/H is a Drinfeld module of rank r with the induced A-

action.

Proof. For (1), [Leh, Ch. 1, Proposition 3.2 implies that F/H is a line
bundle over S. Moreover, applying Lemma 2.6 to the natural closed
immersion G/H — E/H, we see that G/H is a finite p-module over S.

For (2), we may assume that S = Spec(B) is affine, the underlying
invertible sheaves of E and E/H are trivial and H is free of rank ¢"
over S. We write the t-multiplication maps of E and E/H as

OF(X) = 0X+ar1 X+ +a, X7, (X)) = b X+b, X9+ 4+, X7

with bs # 0. From the proof of [Leh, Ch. 1, Proposition 3.2, we may
also assume that the map E' — E/H is defined by an F,-linear monic
additive polynomial

X PX)=p X+ +p X7 + X7

From the equality 7/ (P(X)) = P(®F(X)), we obtain r = s, b, = a?"
and py(bg—0) = 0. If H is etale over B, then we have p; € B* and thus
by = 0. If the latter assumption in the lemma holds, then p; € B is a
non-zero divisor in the ring B/p for any minimal prime ideal p. Since
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B is reduced, it is a subring of [ [ B/p, where the product is taken over
the set of minimal prime ideals p of B. This also yields by = 6, and
thus E/H is a Drinfeld module of rank r in both cases. t

Definition 2.9 ([Tag], Definition (2.1)). We say an A-module scheme
G over S is a t-module over S' if the following conditions hold:

e the induced A-action on wg agrees with the action via the struc-
ture map A — Og(S),
e the underlying [F,-module scheme of G is a p-module over S.

We say G is a finite t-module if in addition the underlying [F,-module
scheme of G is a finite p-module over S.

Note that the former condition in Definition 2.9 is automatically
satisfied if G is etale.

Lemma 2.10. Let E be a line bundle over S. Let G and H be finite
locally free closed F,-submodule schemes of E over S satisfying H < G.
Suppose that G is endowed with a t-action which makes it a finite t-
module, H is stable under the A-action on G and the ranks of G and
‘H are constant q-powers.

(1) The A-module scheme H is a finite t-module over S.

(2) Suppose moreover that aG = 0 for some Og-reqular element
a € A. Then the A-module scheme G/H is a finite t-module
over S.

Proof. From Lemma 2.6 and Lemma 2.8 (1), we see that H and G/H
are finite p-modules. We have an exact sequence of Og-modules

o
U.Jg JH WQ Wy 0

which is compatible with A-actions. Since the t-action on wg is equal
to the multiplication by 6, so is that on wy and (1) follows. For (2),
using co-Lie complexes we can deduce from the assumption that the
map 7* is injective. This yields (2). O

Definition 2.11 ([Tag], Definition (3.1)). A v-module over S is a pair
(G, vg) of a t-module G and an Og-linear map vg : &g — Séq) such that
the map 1Y : & — &g induced by the t-action on G satisfies

W =0+pgovg, (U ®1)ovg =1gouy.

We refer to such vg as a v-structure on G and denote the pair (G, vg)
abusively by G. A morphism ¢ : G — H of v-modules over S is defined
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as a morphism of A-module schemes over S which commutes with v-
structures, in the sense that the following diagram is commutative.

En 2 £

g*l lg*®1

A sequence of v-modules over S is said to be exact if the underlying
sequence of p-modules is Shv-exact. The category of v-modules over S
is denoted by v-Modg.

A v-module over S is said to be a finite v-module if the underlying ¢-
module is a finite ¢o-module. The full subcategory of v-Modg consisting
of finite v-modules is denoted by 'U—Modé.

Definition 2.12 ([Tag], Definition (3.2)). A v-sheaf over S is a quadru-
ple (€, ¢s, e+, ve), which we abusively write as &, consisting of the
following data:

o (&,p¢) is a p-sheaf over 9,

o Vg : & — &€ is an Og-linear map which commutes with ¢,

o vz : £ — £9 is an Og-linear map which commutes with Vet
and satisfies Vg, = 0 4 @g 0 vg.

A morphism of v-sheaves is defined as a morphism of underlying Og-
modules which is compatible with the other data, and we say that a
sequence of v-sheaves is exact if the underlying sequence of Og-modules
is exact. The exact category of v-sheaves over S is denoted by v-Shvg.

A wv-sheaf is said to be a finite v-sheaf if the underlying Og-module
is locally free of finite rank. The full subcategory of v-Shvg consisting
of finite v-sheaves is denoted by v—Shvg.

Then the functor Gr induces anti-equivalences of categories
v-Shvg — v-Modg, v-Shvl — v-Modf

with quasi-inverses given by Sh.

Note that for any v-module (resp. finite v-module) G over S and any
S-scheme T, the base change G|r = G xg T has a natural structure of
a v-module (resp. finite v-module) over T'. For any Drinfeld module £
over S, the map pg : 51(;) — &g is injective and Coker(pg) is killed by
Y — . Then E has a unique v-structure

vp = g o (V7 —0)
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and any morphism of Drinfeld modules is compatible with the unique
v-structures. Thus we may consider the category DMg as a full sub-
category of v-Modg. Moreover, for any isogeny 7 : £ — F' of Drin-
feld modules over S, Corollary 2.7 implies that Ker(r) has a unique
structure of a finite v-module such that the exact sequence (2.3) is
compatible with v-structures. Note that a v-structure of Ker(r) is not
necessarily unique without this compatibility condition. On the other
hand, in some cases a finite t-module over S has a unique v-structure,
as follows.

Lemma 2.13 ([Tag|, Proposition 3.5). Let G be a finite t-module over
S. Suppose either

(1) G is etale over S, or
(2) S is reduced and for any maximal point n of S, the fiber G, of
G over n s etale.

Then the map ¢g : Eg) — &g 1s injective. In particular, there exists
a unique v-structure on G, and for any v-module H, any morphism
G — H of t-modules over S is compatible with v-structures.

Corollary 2.14. Let S be a reduced scheme which is flat over A and
E a Drinfeld module of rank r over S. Let a € A be a non-zero element
and G a finite locally free closed A-submodule scheme of the a-torsion
part Ela] of E over S of constant q-power rank. Then E/G has a
natural structure of a Drinfeld module of rank r. Moreover, G has
a unique structure of a finite v-module induced from that of E and,
for any v-module H, any morphism G — H of t-modules over S is
compatible with v-structures.

Proof. The going-down theorem implies that a is invertible in the residue
field of every maximal point 1 of S, and thus E[a] is etale over . Then
the first assertion follows from Lemma 2.8 (2). Moreover, Lemma 2.10
(1) implies that G is a finite t-module. Since G is the kernel of an
isogeny of Drinfeld modules, the v-structure on E induces that on G.
The other assertions follow from Lemma 2.13 (2). O

Remark 2.15. The notation here is slightly different from the lit-
erature including [Tag]. Finite ¢-sheaves are usually referred to as -
sheaves. In [Tag], finite t-modules, finite v-modules and finite v-sheaves
are assumed to be killed by some nonzero element of A.

2.3. Duality for finite v-modules. Let S be a scheme over A. We
denote by C the Carlitz module over S, as before. We have

Ec = Homg, 5(C,G,) = @ 0527

iEZ;O
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with its unique v-structure given by

1—1

vo: e —EY, 77— 270" -0)+ 27 @ 1.
Note that ve is surjective. We have
UE(2)i= (W) (2) = 07 4+ 4 27

and thus the set {¢/7(Z)};>0 forms a basis of &-. For any scheme T
over S and any v-module H over T, we denote by Hom, r(H, C|r) the
A-module of morphisms ‘H — C'|r in the category v-Modr.

The following theorem, due to Taguchi, gives a duality for finite v-
modules over S which is more suitable to analyze Drinfeld modules and

Drinfeld modular forms than usual Cartier duality for finite locally free
group schemes.

Theorem 2.16 ([Tag|, §4). (1) Let G be a finite v-module over S.
Then the big Zariski sheaf

Jom, 5(G,C) = (S-schemes) — (A-modules)

gwen by T — Hom, r(G|r,C|r) is represented by a finite v-
module GP over S. We refer to GP as the Taguchi dual of G.
(2) rank(G) = rank(GP).
(3) The functor

U—Modg — U—Modé, Gw—GP

is exact (in the usual sense) and commutes with any base change.
(4) There exists a natural isomorphism of v-modules G — (GP)P.

Proof. For the convenience of the reader, we give a simpler proof than
in [Tag, §4]. Consider the linear dual

gg = %mos(gg, 05)
and the dual maps
W) 185 = &Y, vy (END - &Y, &) — (£3)@

of Y, vg and g, respectively. We define a finite v-module G over S
by GV = Gr(€Y,vy) with t-action (1) and v-structure ¢y.

To see that it represents the functor in the theorem, let 7 : 7" — §
be any morphism. Since v is surjective, to give a map of v-sheaves
g : Ec|lr — Eg|r is the same as to give an Op-linear map which is com-
patible with ¢-actions and v-structures. Since ¢S,,(2) = ¢ (¢S (2)),
to give an Op-linear map ¢ : Ec|r — &g|r compatible with t-actions
is the same as to give an element = = ¢g(Z) of &|r(T). As for the
compatibility with v-structures, we see that if g is compatible with ¢-
actions, then the relation (¢ ® 1)(ve(¥5(2))) = vg(g(¥5(Z))) implies
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a similar relation for ¢G.,(Z) = ¢ (¥5(Z)). Thus we only need to
impose on x the condition for ¢ = 0. Namely, we have

(2.4) Hom, 1(Glr, C|r) = {z € &r(T) | v ® 1 = vg(z)},

where 2 ® 1 € (&g|7) @ (T) is the pull-back of 2 by the Frobenius map

Fr. On the other hand, by (2.2) the set Gr(£5, vy )(T") can be identified
with the set of Op-linear homomorphisms x : £F |r — Op satisfying

xovg = for o (Fr(x))-
Via the natural isomorphisms
Homo, (£ |r, Or) ~ Elr,  fo, : OF = F}(Or) = Or,

we can easily show that it agrees with (2.4). Thus we obtain a natural
isomorphism

Homv,T(g|T7 C|T) = Gr(ggv ) Ug)(T)

and we can check that it is compatible with A-actions. The assertion
on the exactness follows from the agreement of the exactness and the
Shv-exactness for the category U—Modf;. The other assertions follow
from the construction. 0

Lemma 2.17. Let S be any scheme over A. Let a € A be any monic
polynomial. Consider the finite t-module Cla] endowed with the natural
v-structure as the kernel of the isogeny a : C' — C'. Then the Taguchi
dual Cla]? of Cla] is isomorphic as a v-module to the constant A-
module scheme A/(a) endowed with the unique v-structure of Lemma

2.13 (1).

Proof. Let ¢« : Cla] — C be the natural closed immersion. From the
definition of the v-structure on C|a], it is compatible with v-structures.
Thus we have a morphism of t-modules over .S

A/(a) — Cla)? = Hom,s(Cla],C), 1+ .

We claim that it is a closed immersion. Indeed, by Nakayama’s lemma
we may assume S = Spec(k) for some field k. Suppose that br = 0 for
some b € A. Write as b = sa+r with s, € A satisfying deg(r) < deg(a).
Then we have ®¢(Z) | ®¢(Z), which is a contradiction unless 7 = 0.
This implies that the kernel of the above morphism is zero and the
claim follows. Since both sides have the same rank over S, it is an
isomorphism. Since both sides are etale, it is compatible with unique
v-structures. U
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2.4. Duality for Drinfeld modules of rank two. Let S be a scheme
over A. Recall that for any S-scheme T', both of the categories DMy of
Drinfeld modules over T' and v-Mod?, of finite v-modules over T are full
subcategories of v-Modr, and v-Modr is anti-equivalent to v-Shvy. For
any v-modules H, ' over T, we denote by Ext,, ;.(H, ') the A-module
of isomorphism classes of Yoneda extensions of H by H' in the category
v-Modr with Shv-exactness. We identify this A-module with the A-
module Ext, (£, Ex) of isomorphism classes of Yoneda extensions
of &y = Sh(H') by & = Sh(H) in the exact category v-Shvy. We
also define a big Zariski sheaf &ut, o(#,H') as the sheafification of
T — Exty o (H|r, H'|7).

Let E be a Drinfeld module over S and put G = G, or C' over S.
We write as G = Specg(Os[Z]). Let us describe the isomorphism class
of any extension

0 G L E 0

in the category v-Modg. Consider the associated exact sequence

0 Er &L Ea 0

in the category v-Shvg. Since &g is a free Og-module, this sequence
splits as Og-modules if S is affine. In this case, using ¢g(Z29) = 27,
we can show that there exists a splitting s : £ — &1 of the above
sequence which is compatible with ¢-structures.

We assume that S is affine and fix such a p-compatible splitting s

for a while. Then the a-action on L for any a € A is given by
®y = (O, @y +0,)
with some [Fy-linear homomorphism
d: A— Homp, 5(E,G), a— 6,

Here 6, is associated to the map ¢l os—soy¥ : E5 — Ep and satisfies
(i) 6x =0 for any A e F,
(ii) Oqp = ®C 0 0y + 0, 0 ®F for any a,b € A.

Since ¢y, 557) — & is injective and by Definition 2.9 the map ¥l — 6

kills Coker(yr), the v-structure on L is uniquely determined by the
data d;.

Definition 2.18 ([Gek4], §3 and [PR], §2). Let S be an affine scheme
over A, E a Drinfeld module over S and G = G, or C as above.

(1) An (E, G)-biderivation is an Fg-linear homomorphism § : A —
Homp, s(F,G), a — 0, satisfying the above conditions (i) and
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(ii). The module of (F, G)-biderivations is denoted by Der(E, G),
which admits two natural A-module structures defined by
(6%C)g =0, 00F  (cx0)y = DY 04, for any c e A.
Note that we have a natural isomorphism
(2.5) evy : Der(E,G) — Homg, 5(E,G), 06— 6.

(2) An (E, G)-biderivation 0 is said to be inner if there exists f €
Homp, s(E, () satisfying § = 07, where the (£, G)-biderivation
dy is defined by

5f,a=focl>f—cl>acofforanyaeA.

The submodule of Der(E, G) consisting of inner (E, G)-biderivations

is denoted by Der;, (E, G), which is stable under two natural A-
actions.

(3) We denote by Derg(E, G) the submodule of Der(E, G) consist-
ing of (F,G)-biderivations 0 such that the induced map on
sheaves of invariant differentials

Cot(&y) : wg — wg
is the zero map. We have Der;, (E,G) < Dery(E, G).
(4) An inner (E,G)-biderivation d; is said to be strictly inner if
Cot(f) = 0. We denote by Derg(E, G) the submodule of Der(E, G)
consisting of strictly inner (£, G)-biderivations.

Then the two natural A-actions on Der(E, G) agree with each other
on the quotient Der(F, G)/Dery,(E,G) [PR, p. 412] and we have nat-
ural isomorphisms of A-modules

Ext, ¢(E,G) — Der(E, G)/Der,(E, G)

= Homy, (B, G)/evi(Dery (E, G)).
We define an A-submodule
Ext, ¢(E, G)"

of Extivs(E, () as the inverse image of Dero(F, G)/Dery,(E, G) by the
above isomorphism. Since another choice of a p-compatible splitting
gives the same biderivation modulo inner ones, the first map of (2.6)
is independent of the choice of a ¢-compatible splitting, and so is the
the A-submodule Ext, 4(E, G)°.

Suppose that E = V,(£) is a Drinfeld module of rank two over the
affine scheme S. We have a natural isomorphism

@ £ — Homp, s(E,G), b— (Z+—b),

m=0

(2.6)



18 SHIN HATTORI

by which we identify both sides. Then Der(E,G), Der(E,G)? and
Der;, (E, G) are locally free Og(.S)-modules, and we can show that

T Extyp(Elr,Glr), T = Ext,;(E|r,Glr)°
satisfy the axiom of sheaves on affine open subsets of S. This implies
that, for the case where S is not necessarily affine, we have a subsheaf
of A-modules
&uty o(E,G)° < éut), 4(E,G)
such that, for any affine scheme T" over S and e € {(F, 0}, we have
&uty o(E,G)*(T) = Ext, (E|r,Glr)*.
Moreover, we have a natural isomorphism of big Zariski sheaves
(2.7) L — &uty o(E,G)°

sending, for any affine scheme T over S, any element b € £®9(T)
to the unique extension class such that, for the associated (E|r, G|r)-
biderivation §, the map d; : E|r — G|r is given by

0f : Or[Z] — Sym(L% 1), Z —b.
Thus, taking G = C', we have the following theorem, which is due to
Taguchi [Tag, §5]. The interpretation of his duality using biderivations

obtained here is a generalization of [PR, Theorem 1.1] to general base
schemes.

Theorem 2.19. Let S be any scheme over A.
(1) Let E = (L, ®F) be any Drinfeld module of rank two over S
with
OF =0+ a7+ aor?, a; e L9 (9).
Then the functor
Euty 5(B,C)" - (S-schemes) — (A-modules)

is represented by a Drinfeld module EP of rank two over S

defined by
EP =V, (L£%79), @tED —0—a, ®d¥ ' +dS7Ir

(2) The formation of EP commutes with any base change.

(3) Let F = (M, ®F) be any Drinfeld module of rank two over S.
Then any morphism f : E — F of the category DMg induces a
morphism fP : FP — EP of this category. If f is induced by
an Og-linear map f : L — M, then the dual map fP : FP —
EP is given by the q-th tensor power (f¥)®? of the linear dual
YoMy - LY.
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(4) If f is an isogeny, then fP is also an isogeny of the same degree
as f, Ker(f) has a natural structure of a finite v-module over
S and there exists a natural isomorphism of A-module schemes
over S

(Ker(f))” — Ker(f").

Proof. The assertions (1) and (2) follow easily from the construction.
The assertion (3) follows from the functoriality of &ut) ¢(—, C)° and
the isomorphism (2.7).

Let us show the assertion (4). Put G = Ker(f). Corollary 2.7 implies
that the exact sequence of group schemes

0 G joay 0

is also Shv-exact and thus G has a natural structure of a finite v-module
such that this sequence is compatible with v-structures. Since £ and
C have different ranks, the long exact sequence of #om, s yields an
exact sequence

From a description of the connecting homomorphism using Yoneda ex-
tension, we can show that it factors through the subsheaf &ut; (F, C)°.
Therefore we have an exact sequence of A-module schemes over S

D p I°
0 g F

ED

from which we obtain a natural isomorphism GP — Ker(fP). To see
that fP is faithfully flat, by a base change we may assume S = Spec(k)
for some field k. Then the group schemes F'” and E are isomorphic to
G, and f? is defined by an additive polynomial. Since Ker(f”) =GP is
finite over S, this polynomial is non-zero and thus f? is faithfully flat.
Since the ranks of G and GP are the same, the assertion on deg(f”)
also follows. U

Remark 2.20. Suppose that there exists a section h € L£LO~(@1(3)
satisfying h®~! = —a,. Then the map h : £ — £L®79 gives an autod-
uality for Drinfeld modules of rank two. In the classical setting on the
Drinfeld upper half plane, this is the case because of the existence of
Gekeler’s h-function [Gek3, Theorem 9.1 (¢)]. In general, we only have
a weaker version of autoduality: the map

L1 _, E@—q(q—1)7 [ — | ® as

is an isomorphism of invertible sheaves. This is enough for our purpose.



20 SHIN HATTORI

For a Drinfeld module E over S, we have analogues of the first de
Rham cohomology group and the Hodge filtration for an abelian variety
[Gek4, §5]. First we show the following lemma.

Lemma 2.21. For any Drinfeld module E of rank two over an affine
scheme S, we have natural isomorphisms

Lie(E”) — Ext, 4(E,G,)", Derin(E, G,)/Dery(E,G,) — Lie(E)".

Proof. For the former one, we put S. = Specg(Osle]/(?)). Then we
have

Lie(E”) = Ker(E”(S.) — EP(S)).
For any Fg-linear homomorphism ¢ : A — Homg,_ g, (E|s.,C|s.), we can
write as A

0 = 52 + 85;, (5; € HOIII]Fws(E, C)
Then 0 € Derg(E|s,,C|s.) if and only if

8" € Derg(E, C), 0" € Derg(E,G,).
On the other hand, for any g = ¢° + e¢* € Homg, . (E|s., C|s.), the
associated inner biderivation ¢, is written as

b, =640 + (g 0o ®F — %= 0 g1).

From this, we see that the map sending ¢ to the class of ' gives a
natural isomorphism Lie(E”) — Ext, 4(F,G,)". The latter one is
given by the natural map

Deri,(E,G,) — Home, (Lie(E), Lie(G,)), &f — Lie(f).

For any Drinfeld module F over an affine scheme S, we put
DR(FE,G,) = Dery(E,G,)/Derg(E,G,).
From the proof of [PR, p. 412], we see that the two natural A-actions

on Dery(E,G,) define the same A-action on DR(E,G,). If E is of rank
two, then Lemma 2.21 yields an exact sequence of A-modules

(28)  0—= Lie(E)" — DR(E,G,) — Lie(EP) — 0,

which is functorial on FE.

Finally, we recall the construction of the Kodaira-Spencer map for
a Drinfeld module E over an A-scheme S [Gek4, §6]. We only treat
the case where S = Spec(B) is affine and the underlying invertible
sheaf of E is trivial. Write as £ = Spec(B[X]) so that we identify
as Homp, s(E,G,) = B{r}. We define an action of D € Dery(B) on
B{r} by acting on coefficients. Then, via the isomorphism (2.5), the
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derivation D induces a map Vp : Derg(E,G,) — Dery(E, G,), which
in turn defines

7p : Lie(E)¥ — DR(E, G,) X8 DR(E, G,) — Lie(EP),

where the first and the last arrows are those of (2.8). Then the Kodaira-
Spencer map for E over S is by definition

KS : Dera(B) — Homp(Lie(E)", Lie(E®)), D~ mp.
Hence we also have the dual map

KSY : wg ®og wgp — QE/A.

3. CANONICAL SUBGROUPS OF ORDINARY DRINFELD MODULES

Let p be a monic irreducible polynomial of degree d in A = F[t]. We
denote by O the complete local ring of A at the prime ideal (), which
is a complete discrete valuation ring with uniformizer p. We consider
Ok naturally as an A-algebra. The fraction field and the residue field
of Ok are denoted by K and k(p) = Fa, respectively. We denote by
v, the p-adic (additive) valuation on K normalized as v,(p) = 1. For
any Og-algebra B and any scheme X over B, we put B = B/pB and
X = X x g Spec(B).

We say an Og-algebra B is a p-adic ring if it is complete with respect
to the p-adic topology. A g-adic ring B is said to be flat if it is flat
over Op.

3.1. Ordinary Drinfeld modules. Let S be an A-scheme of charac-
teristic p. Let E = (£, ®¥) be a Drinfeld module of rank two over S.
By [Sha, Proposition 2.7], we can write as

(3.1) OF = (ag+ -+ axr)r?,  a;e LOT(S).

We put
Fd’E:TdIE—)E(qd), V;LE:Oéd-i-"'—l-OéQdeiE'(qd)—>E’.

We also denote them by Fy and Vj if no confusion may occur. We also
define a homomorphism F? : E — E@™) by

Fj=Fi, Fp=(F )0k,

dn)

We define V. B
_ — (. dn
modules satisfying V' o F} = ®F, and Fj oV = @gﬁq " [Sha, §2.8].

— E similarly. They are isogenies of Drinfeld
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We also have exact sequences of A-module schemes over S
0 — Ker(F}) —= E[p"] — Kex(Vj)) —0,
0 — Ker(Fy) — Ker(F}) — Ker(Fr1)@) —0,
0 — Ker(V 14" — Ker(V}) — Ker (V) — 0.

Definition 3.1. We say E is ordinary if ag € £8179"(S5) of (3.1) is
nowhere vanishing, and supersingular if oy = 0.

By [Sha, Proposition 2.14], E is ordinary if and only if Ker(Vj) is
etale if and only if Ker(V") is etale for any n.

We need a relation of the isogenies Fy and V; with duality. For this,
we first prove the following lemma.

Lemma 3.2. Let C' be the Carlitz module over A. Then the polynomial
CIDS(Z) is a monic Eisenstein polynomial in Ok|Z]. In particular, we
have

(3.2) o¢(Z) = 2" mod .

Proof. Let L be a splitting field of the polynomial (IDS(Z ) over K. Since
the ring A acts on C[p](L) transitively, any non-zero root 5 € L of
E(Z) satisfies vy(f) = 1/(¢* — 1) and thus the monic polynomial
®E(Z) is Eisenstein over O. O

Lemma 3.3.
D _ D _
Fyg=Vagr, Vig=Fapp.

Proof. First we prove the former equality. Since F; zp is an isogeny;, it is

enough to show F fE oFypp = @gD. Let £ be the underlying invertible

sheaf of E. Take any section [ of £&79. We have F; zo(l) = 127 From

(2.1), we see that the map FdDE sends it to the class of the biderivation
0 such that d; agrees with the homomorphism

E — C = Specs(05(Z]), Z — 1" € Sym(LE7).

By (3.2), this is equal to the class of @ - (Z = [) with respect to the

A-module structure of &ut) o(E,C)°. Since [ is a section of L&, the
isomorphism (2.7) implies the assertion.

_ qd

For the latter equality, it is enough to show VdDE oVygp = <I>§JED)( '
By the former equality of the lemma, we have

(gl
Vd,DE oVypp = V;l,DE oFfE = (Fypo Vd,E)D _ ((I)g(q >)D.
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By the definition of the A-module structure on &t} (B, C), it is
_ d

equal to q)éjED)(q : and we obtain the latter equality of the lemma. [

Proposition 3.4. Let S be an A-scheme of characteristic p and E a

Drinfeld module of rank two over S. Consider the maps
Lie(V, 5) : Lie(E")) — Lie(E), Lie(V,zp) : Lie((EP)1)) — Lie(EP)

and the linear dual Lie(Vy )" of the former map. Then we have a
natural isomorphism of Og-modules

Coker(Lie(V, z)") ~ Coker(Lie(V, zp)).
In particular, E is ordinary if and only if EP is ordinary.
Proof. We follow the proof of [Con, Theorem 2.3.6]. By gluing, we

may assume that S is affine. By the exact sequence (2.8), we have a
commutative diagram of A-modules

0 — Lie(EW")Y —~ DR(EY", G,) — Lie((EP)@)) —= 0

Lie(Fy ) l iF:’E \LLie(FfE)
0 —— Lie( DR(E,G,) Lie(ED) 0
Lie(Vy, ) l lvdﬂjE \LLie(le?E)

0 — Lie(EW")Y — DR(EY"),G,) — Lie((EP)")) — 0,

where rows are exact and columns are complexes. Since Lie(Fy p) =
Lie(F; zp) = 0, Lemma 3.3 implies that the middle column of the
diagram induces the complex
= d F* Vd*E —(d
0 — Lie((E2)@)) 25 DR(E, G,) —= Lie(E@))Y — 0.
If it is exact, then as in the proof of [Con, Theorem 2.3.6], by using
[Con, Lemma 2.3.7] and Lemma 3.3 we obtain

Coker(Lie(Vy 5)") ~ Coker(Lie(F(fE)) = Coker(Lie(V, gp)).

Let us show the exactness. Since it is a complex of locally free
Og-modules of finite rank and its formation commutes with any base
change of affine schemes, we may assume S = Spec(k) for some field k.
By comparing dimensions, it is enough to show that, for any Drinfeld
module E of rank two over k, the maps

F} 5 : Derg(EY), G,)/Deryy(E“), G,) — Dery(E, G,)/Derg(E, G,)
Vi Derg(E, G,)/Derg(E, G,) — Der;, (B4, G,)/Derg(EY), G,)
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are non-zero.

For the assertion on F*

o We write as

¢§:0+a17+a27—27 ®§:<ad+"'+0é2de)Td

with as, a9y # 0. Let § be the element of Dero(E(qdl7 G.) satisfying
d6; = 7 and suppose that F} -(0) is an element of Derg(E, G,). Namely,
we have

(3.3) T = fodf —@fao f

for some f € Homg, (F,G,) satisfying Cot(f) = 0. We write f as
f =071+ -4 by® with some b; € k and 1 < r < s satisfying
b.,bs # 0. Then we have s = d — 1 and the coefficient of 7" in the
right-hand side of (3.3) is (7 — )b,. Since 1 < 7 < d — 1 and the
element 6 generates k(p) = F,« over Fy, this term does not vanish and
thus we have r = d + 1, which is a contradiction.

Let us consider the assertion on Vd*E If ay # 0, then the map
Lie(V, g) is an isomorphism and the claim follows from the above dia-
gram. Otherwise, [Sha, Lemma 2.5] yields «; = 0 unless i = 2d. Let
§ be the element of Dero(E,G,) satisfying 6, = 7 and suppose that
V;5(6) is an element of Derg(E“",G,). We have

0%

T(azr®) = go @ — Bt og

for some g € Hoqu7k(E(qd), G.) satisfying Cot(g) = 0. Then we obtain
a contradiction as in the above case. ]

3.2. Canonical subgroups. Let B be an Og-algebra and F a Drin-
feld module of rank two over B. We say E has ordinary reduction if
E = E x g Spec(B) is ordinary.

Lemma 3.5. Let B be a @-adic ring and E a Drinfeld module of rank
two over B with ordinary reduction. Then, for any positive integer
n, there exists a unique finite locally free closed A-submodule scheme
Cn(E) of E[p"] over B satisfying Co(E) = Ker(Fj ). The formation
of Co(E) commutes with any base change of p-adic rings. We refer to
it as the canonical subgroup of level n of the Drinfeld module E with
ordinary reduction.

Proof. First note that, since (B, pB) is a Henselian pair, the functor
X +— X gives an equivalence between the categories of finite etale
schemes over B and those over B [Gabb, §1].

Let us show the existence. The finite etale A-module scheme H =
Ker(V}';) can be lifted to a finite etale A-module scheme H over B.
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By the etaleness and [Grol, Proposition (17.7.10)], we can lift the map
E[p"] — H to a finite locally free morphism of A-module schemes
7 : E[p"] — H over B. Then C,(E) = Ker(n) is a lift of Ker(F7 ).
For the uniqueness, suppose that we have two subgroup schemes
Cn1,Cro of E[p"] as in the lemma. Put H; = E[p"]/C,.;. Since they
are lifts of 7, there exists an isomorphism 6 : H; — Hy over B re-
ducing to idy over B. Then the etaleness implies that 6 is compatible
with the quotient maps E[p"] — H;. Therefore, C,1 and C, o agree
as A-submodule schemes of E[p"]. Since the formation of Ker(F ;)
commutes with any base change, the commutativity of C,(E) with any
base change follows from its uniqueness. O

We refer to the natural isogeny
Ten: B — E/C,(E)

as the canonical isogeny of level n for E. We have 7g,, mod o = F}.
On the other hand, since E[p"]/C,(E) is etale both over B and
B ®o, K, it is etale over B and we have a natural isomorphism

Moreover, the map

P E[Cu(E) — (E/Ca(E))/(E[p"]/Ca(E) % E
is an etale isogeny satisfying

E E/Cn(E)
PEnCTEn = (I)pnv TEn © PEn = (I)p” " .

In particular, we have pg, mod p = V'. We refer to pg, as the
canonical etale isogeny of level n for E. The formation of 7y, and pg.,
also commutes with any base change of gp-adic rings.

Suppose that the p-adic ring B is reduced and flat. Then by Corol-
lary 2.14 the quotient E/C,(E) has a natural structure of a Drinfeld
module of rank two. Moreover, Lemma 2.10 implies that E[p"], C,(E)
and E[p"]/C.(F) are finite t-modules, and by Lemma 2.13 (2) they
have unique structures of finite v-modules, which make the natural
exact sequence

(3.4) 0 —Cu(E) — Elp"] — E[p"]/Ca(E) —=0

compatible with v-structures. We also see that the formation of the
v-structure on C,(F) also commutes with any base change of reduced
flat p-adic rings.

Lemma 3.6. Let B be a reduced flat p-adic ring. Let E be a Drinfeld
module of rank two over B with ordinary reduction. Then the Taguchi
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dual C,,(E)P of the canonical subgroup C,,(E) is etale over B. Moreover,
it 1s etale locally isomorphic as a finite v-module to the constant A-
module scheme A/(p") over B.

Proof. By Proposition 3.4, the dual E” also has ordinary reduction.
We claim that EP[p"]/C,(EP) is not killed by ¢"!'. Indeed, if it is
killed by "', then we have E”[p]| < C,(EP), which contradicts the
fact that EP[p] has an etale quotient. Since EP[p"]/C.(EP) is etale,
the claim implies that it is etale locally isomorphic to A/(p"). Note
that this identification is compatible with v-structures by Lemma 2.13
(1).

Since Taguchi duality is exact, the exact sequence (3.4) for E yields
an exact sequence of finite v-modules over B

0 —— (EP[p"]/C(EP))P —= EP[p"]” —— Co(EP)” —0.

By Theorem 2.19 (4), we also have a natural isomorphism of A-module
schemes E[p"] ~ EP[p"]7?, by which we identify both sides. Hence we
reduce ourselves to showing the equality

Cu(E) = (E7["]/Ca(E7))".

For this, by the uniqueness of the canonical subgroup it is enough to
show that the reduction of (EP[p"]/C.(EP))P is killed by EF7. Since
it can be checked after passing to a finite etale cover of Spec(B), we
reduce ourselves to showing that the Taguchi dual (A/(p"))? of the
constant A-module scheme A/(p") over B is killed by F. This follows
from Lemma 2.17 and (3.2). O

3.3. Hodge-Tate-Taguchi maps. For any positive integer n, any A-
algebra B and any scheme X over A, we put B,, = B/(p") and X,, =
X x4 Spec(A,,). We identify a quasi-coherent module on the big fppf
site of X with a quasi-coherent O yx-module by descent.

Let S be a scheme over A and G a finite v-module over S. For any
scheme T over S, Taguchi duality gives a natural homomorphism of
A-modules

G”(T) ~ Hom,r(G|r, Clr) — wgly (T)
(9:Glr = Clr) — g*(d2),
which defines a natural homomorphism of big fppf sheaves of A-modules
over S
HTTg : G — wg.
We refer to it as the Hodge-Tate-Taguchi map for the finite v-module
G over S, and also denote it by HTT if no confusion may occur. The
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formation of the Hodge-Tate-Taguchi map commutes with any base
change.

Suppose that the A-module scheme G is killed by p™. Then the
Hodge-Tate-Taguchi map defines a natural A-linear homomorphism of
big fppf sheaves on S,

HTT : Q’D|Sn ®A7n Osn — Wg,, -

Note that, if G is etale locally isomorphic to the constant A-module
scheme A, over S, then the Og, -module GP|s, ®a, Os, is invertible.
By Lemma 3.6, this is the case if G = C,,(E) for any Drinfeld module E
of rank two over a reduced flat p-adic ring B with ordinary reduction.

Lemma 3.7. Let S be any scheme over A. We give the finite t-module
Cle™] the v-structure induced from that of C'. Then the Hodge-Tate-
Taguchi map for C[p"]

HTT : A, ®a, Os, = Clp"]"|s, ®a, Os, = weppn), = Os,dZ
is an isomorphism satisfying HTT(1) = dZ.

Proof. Let ¢« : C[p"] — C be the natural closed immersion, as in the
proof of Lemma 2.17. The definition of the Hodge-Tate-Taguchi map
gives HTT(1) = +*(dZ), which yields the lemma. O

Proposition 3.8. Let B be a reduced flat p-adic ring. Let E be a
Drinfeld module of rank two over B with ordinary reduction. Then the
Hodge-Tate-Taguchi map

HTT : Co(E)”|5, ®a4, Ospec(Br) — Wen(r) @ By = wp ®p B
s an isomorphism of invertible sheaves over B,,.

Proof. 1t is enough to show that HT'T is an isomorphism after passing
to a finite etale cover Spec(B’) of Spec(B). We may assume that the
A-module scheme C,,(E)P|p = (C,(E)|p)P over B’ is constant. In this
case, the proposition follows from Lemma 3.7. O

4. DRINFELD MODULAR CURVES AND TATE-DRINFELD MODULES

4.1. Drinfeld modular curves. Let n be a non-constant monic poly-
nomial in A = [F,[¢t] which is prime to p. Put A, = A[1/n]. For any
Drinfeld module E of rank two over an A-scheme S and a non-constant
monic polynomial m € A, a I'(m)-structure on E is an A-linear ho-
momorphism « : (A/(m))? — E(S) inducing the equality of effective
Cartier divisors of E
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If m is invertible in S, then it is the same as an isomorphism of A-
module schemes « : (A/(m))?> — E[m] over S. If m has at least two
different prime factors, then the functor over A sending S to the set
of isomorphism classes of such pairs (E, «) over S is represented by a
regular affine scheme Y (m) of dimension two which is flat and of finite
type over A. Over A[l/m], this functor is always representable by an
affine scheme Y (m) which is smooth of relative dimension one over
A[1/m]. The natural left action of GLy(A/(m)) on (A/(m))? induces a
right action of this group on Y (m).

For any Drinfeld module F of rank two over an A,-scheme S, we de-
fine a I'; (n)-structure on E as a closed immersion of A-module schemes
A Cn] — E over S. Since C[n] is etale over S, we see that over a
finite etale cover of A, a I';(n)-structure on F is identified with a closed
immersion of A-module schemes A/(n) — E. Then [Fli, Proposition

4.2 (2)] implies that E has no non-trivial automorphism fixing A. Note
that the quotient E[n]/Im(\) is a finite etale A-module scheme over S

which is etale locally isomorphic to A/(n), and thus the functor

Fsoma s(A/(n), E[n]/Im(X))

is represented by a finite etale (A/(n))*-torsor I(p,y) over S.

Consider the functor over A, sending an A,-scheme S to the set
of isomorphism classes [(E, A)] of pairs (E, A) consisting of a Drinfeld
module E of rank two over S and a I';(n)-structure A on E. Then we
can show that this functor is representable by an affine scheme Y;(n)
which is smooth over A, of relative dimension one.

Suppose that there exists a prime factor ¢ of n such that its residue
extension k(q)/F, is of degree prime to ¢—1. In this case, the inclusion
FxX — k(q)* splits and we can choose a subgroup A < (A4/(n))* such
that the natural map A — (A/(n))*/F is an isomorphism. For such
A, we define a I'?(n)-structure on E as a pair (\,[u]) of a T'y(n)-
structure A on £ and an element [p] € (I(g)/A)(S). We have a fine
moduli scheme Y;*(n) of the isomorphism classes of triples (E, A, [u]),
which is finite etale over Yj(n). The universal Drinfeld module over
Y2 (n) is denoted by E2 = V,(£4) and put

wfn = wEuAn = (‘CuAn)v

For any Drinfeld module E over an A,-scheme S, a I'g(gp)-structure
on F is a finite locally free closed A-submodule scheme G of E[p| of
rank ¢? over S. Then we have a fine moduli scheme Y2 (n, p) classifying
tuples (E, A, [1], G) consisting of a Drinfeld module E of rank two over
an Ay-scheme S, a I'f(n)-structure (), [¢]) and a To(p)-structure G on
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E. From the theory of Hilbert schemes, we see that the natural map
Y2, p) — Y2(n) is finite, and it is also etale over A,[1/p]. For any
Ay-algebra R, we write as Y2 (n)r = Y2(n) x 4, Spec(R) and similarly
for other Drinfeld modular curves.

Lemma 4.1. Y2(n, p) is smooth over A, outside finitely many super-
singular points on the fiber over ().

Proof. Let B be an Artinian local A,-algebra of characteristic p and J
an ideal of B satisfying J? = 0. Let E be an ordinary Drinfeld module
of rank two over B/J and G a I'y(p)-structure on E. Since B is local,
the underlying invertible sheaf of F is trivial. It is enough to show that
the isomorphism class of the pair (F, G) lifts to B.

Since F is ordinary and B/J is Artinian local, we have either G =
Ker(F, g) or the composite G — E[p] — Ker(V,, E) is an isomorphism.
In the former case, write as <I>E =0+ a7 + as7?. For any lift a; € B
of a;, we can deﬁne a structure of a Drinfeld module of rank two over
B on E = Spec(B[X]) by putting ® = 0 + a,7 + ay72, which is also
ordinary. Then G lifts to Ker(F, ). In the latter case G is etale and,
by Lemma 2.8 (2), E/G has a structure of a Drinfeld module of rank
two. Moreover, it is also ordinary since (E/G)[p] has the etale quotient
G. Thus we have isomorphisms

Fy E/g

(B/G)")
sending Ker(Vy g/g) to G. Since the above argument shows that £/G

~— (E/G)/Ker(Fyp) -’ FE

also lifts to an ordinary Drinfeld module F' of rank two over B, the
pair (E,G) lifts to the pair (F@), Ker(V, 7)) over B. O

Let Ky be the completion of F,(t) with respect to the (1/t)-adic
valuation and C,, the (1/t)-adic completion of an algebraic closure of
K. Let Ay be the ring of finite adeles and A its subring of elements

which are integral at all finite places. Let 2 be the Drinfeld upper half
plane over C,,. Put

K&n) = {ge GL,(A ’ gmodnA e (ﬁ A/l(“))},

I'(n) = {g € GLy(A ‘ g mod (n ((1) (1))}

and T'f(n) = GLy(A) n K{*(n). Since A* = Fy, we have I'f(n) <
SLy(A). This yields

2 (n) — {g & SLy(A) ‘ g mod (n) e ((1) A/f”))}.
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In particular, the group I'®(n) is independent of the choice of A. Note
that the natural right action of g € GLy(A/(n)) on Y (n)c,, corresponds
to the left action of ‘g on I'(n)\Q via the Mobius transformation. Since
F det(K2(n)) = A*, [Dri, Proposition 6.6] implies that the analytifi-
cation of Y2 (n)c,, is identified with

GLy(F, (1)\Q2 x GLa(A)/KR(n) = TR )\,

and thus the fiber Y2 (n)x  is geometrically connected. Similarly, we
see that Y2 (n, o)k, is also geometrically connected.

For any Drinfeld module E of rank two over S, we write the t¢-
multiplication map of E as ®F = 0 + a;7 + ao7? and put

G(E) = " @ a7t e O4(9).
Consider the finite flat map
Je Y () — Ay = Spec(Auls]), 0B

and a similar finite map for Y*(n, ). We define the compactifications
XA2(n) and X2(n,p) of Y2(n) and Y2 (n, p) as the normalizations of
Pl in Y/2(n) and Y{*(n, p) via this map, respectively. As in [Sha, §7.2],
we see that X (n) is smooth over A, and X{(n,p) is smooth over
Ay[1/p]. By a similar argument to the proof of [KM, Corollary 10.9.2],
Zariski’s connectedness theorem implies that each fiber of the map
X2(n) — Spec(4,) is geometrically connected, and so is X2 (n, p) —
Spec(Aq[1/p]). For any A,-algebra R which is Noetherian, excellent
and regular, we also have the compactifications X2 (n)z and X2 (n, p)r
of YA (n)r and Y (n, p)g. From the smoothness of X (n), we have
X£(m)gr = X2(n) x4, Spec(R). The base change compatibility also
holds for X2 (n, p)g if g is invertible in R.
On the other hand, the maps

LB A (D] = [(E, ad (D] [CES A [uD] = [(E A elp])]

induce actions of the groups (A/(n))* and (A/(n))*/A = F) on X{*(n)g.
We denote them by {(a), and {c)a, respectively.

Lemma 4.2. Let S be a scheme over A and E a Drinfeld module of
rank two over S. If j,(E) € Og(S) is invertible, then for the big fppf
sheaf “tut 4 s(E) defined by

T > AutAvT(E|T),

the natural map FY — it 4 s(E) is an isomorphism.
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Proof. We may assume that S = Spec(B) is affine and the underlying
invertible sheaf of F is trivial. By [Fli, Proposition 4.2 (2)], any auto-
morphism of £ = Spec(B[X]) is linear, namely it is given by X — bX
for some b € B*. Write as ®F = 0 + a;7 + ao7?. From the assumption,
we have a; € B* and the equality ®F(bX) = bPF(X) yields 77! = 1.
Since the group scheme p, 1 over F, is isomorphic to the constant
group scheme F, so is tg—1|5 over the Fy-algebra B. This concludes

the proof. O

Lemma 4.3. Let S be a scheme over A. Let E and E' be Drinfeld
modules of rank two over S satisfying j.(E) = j:(E') € Os(S)*. Then
the big fppf sheaf Fsom s s(E, E') over S defined by

T — Isomsr(E|r, E'|1)
is represented by a Galois covering of S with Galois group Fy.

Proof. By gluing, we reduce ourselves to the case where S = Spec(B)
is affine and the underlying line bundles of E and E’ are trivial. We
write the t-multiplication maps of £ and E’ as

OF =0+ ay7 +ayr?, OF =0+ a1 + ayr?

with some ay,a] € B and a,a), € B*. By assumption, we have
1
al* Jag = (a})?! /al, € B* and thus a;,a} € B*. Hence the scheme

J = Spec(B[Y]/(Y9 ! — a1 /d)))

is a finite etale F-torsor over B. By Y = (X — Y X), we obtain a map
of functors J — Ssoma s(E, E’). To show that it is an isomorphism,
we may prove it over J. In this case, it follows from Lemma 4.2. [

4.2. Tate-Drinfeld modules. To investigate the structure around
cusps of Drinfeld modular curves and extend the sheaf w2, we need
to introduce the Tate-Drinfeld module. Let Ry be a flat A,-algebra
which is an excellent Noetherian domain with fraction field K,. Let
Ro((z)) and Koy((x)) be the Laurent power series rings over Ry and
Ky, respectively. Put Ty = Spec(Ry((z))). We denote the normalized
x-adic valuation on Ky((z)) by v,. We also denote the ring of entire
series over Ky((x)) by Ko((z)){{X}}; it is the subring of Ky((z))[[X]]

consisting of elements » ., a; X" satisfying

lim (v, (a;) +ip) = +oo for any p € R.
1—00

We put Ro[[z][{{X}} = Ko((2)){{X}} n Ro[[]][[X]].
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Let (C, ®%) be the Carlitz module over Ry. For any non-zero element
feA, put

(4.1) fA = {cb?a (é) ac A} < Ro((z)),
42 ep0-x [T (13

a#0efA a

) e X + 2 X*Ro[[=]][[X]]

as in [Leh, Ch. 5, §2]. Note that any non-zero element of fA is invertible
in Ry((x)). We consider fA as an A-module via ®. Then it is a free
A-module of rank one, and it is also discrete inside Ky((z)). Hence the
power series ey (X) is entire, and it is an element of Ro[[z]][{{X}}.

Put
1

=———¢€

7 ()
Then x — Fy(z) defines an Ry-algebra homomorphism z/fc : Ro((x)) —
Ro((z)) and a map vy : Ty — Tp. For any element h(X) = Y, ;X" €
Ro((z))[[X]], we put vi(h)(X) = X, l/fc(ai)X". Then we have 4(A) =
A and vi(ea)(X) = esn(X).

For any element a € A, consider the power series

Fy(x) 2 PF(1 + 2 Ro[[2]]).

(4.3) ©1N(X) = epa(@ (€75 (X)) € Rol[]][[X]].
Note that (4.2) yields
(4.4) OIM(X) = @Y(X) mod xR[[z]] for any a € A.

Let Ko((x))*# be an algebraic closure of Ky((x)). For any a € A, put

(@)1 (fA) = {y € Ko((2))™® | D¢ (y) € FA},

which is an A-module, and let ¥, < (®¢)~!(fA) be a representative of
the set

(@) (FA)/FA){0}.

Since Ry is flat over A, we have

XY — g X
(4.5) I (X) Xﬁl;[a (1 ™)

(see for example the proof of [Béc, Proposition 2.9]). In particular, it
is an F-linear additive polynomial of degree ¢* deg(a)

Lemma 4.4. If we write as ®) = 0+ a;7 +ay7? for some a; € Ro|[z]],
then we have

ay € 1+ xRo[[7]], a2 € 29 ' Ry[[x]]*.
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Proof. The assertion on a; follows from (4.4). That on asy is proved by
the computation in the proof of [Boc, Lemma 2.10]. Indeed, we choose
a root n € Ko((x))8 of the equation

1
PY(X) =0X + X7 = —.
T

Put ¥ = {en | ce Ff}, %0 = {C € Ko((z))*e | ®9(¢) = 0} and

S = (2 + X)) U (30\{0}). By (4.5), we have ay = 9/(Hﬂ62t er(B))-
The denominator [ [y, ea(8) is equal to

[TTTe+o IT (=) 1 ¢ 17 (%5

BeS (EXo a#0eA ¢eXo\{0} az#0eA

The first term is equal to

[Toso T (22 - (erie) gy e

BeS a#0eA ceFy a#0eA

By the definition (4.1) of A, any a # 0 € A can be written as o =
®¢(1/x) for some a # 0 € A. Thus we have a = =7 h with r = deg(a)
and h € Ro[[z]]*, which yields (o + a? — ¢/z)/a? € 1 + zRy[[z]]. By
a similar computation, the second term is equal to

o T] 040" o+ eRo[[2]]).

Hence we obtain the assertion on as. O

Using Lemma 4.4 and the map vy, we see that the polynomials /4
define a structure of a Drinfeld module of rank two over T;. We refer
to it as the Tate-Drinfeld module TD(fA) over Tj.

Lemma 4.5. Let X be the parameter of TD(A) as above. We trivialize
the underlying invertible sheaf w%%(/\) of the dual TD(A)P by (dX)®1,
and we denote the corresponding parameter of TD(A)P by Y. Then the
dual of the Kodaira-Spencer map

KS" : wrn) ® wrp)» = iy (),
satisfies KSY(dX ® dY') = l(x)dx with

da a1 da 1
I(z) = dxl — a—;d—; == mod Ry[[x]].
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Proof. We want to compute V 4 (dX). For this, first note that the

x

inner biderivation diq € Der;, (TD(A), G,) gives dX via the second iso-
morphism of Lemma 2.21. Then we have

Sy = id o ®FP™ — 0% 0id = ay7 + a7
and Vﬁ(dX) corresponds to the class of 6 € Derg(TD(A),G,) sat-
isfying 6, = 2

dd% Subtracting the inner biderivation dg for

B = ay'%%2 we may assume &; = [(z)7. Hence, the element Wdi(dX) €

T+ %7’ .

dx -
Lie(TD(A)?) is given by the biderivation ¢’ € Dero(TD(A)|z,., Clzn.)
satisfying 0, = el(z)7, where Ty, = Specy, (Ople]/(¢?)). The map 0,
is an element of Homg, 7, . (TD(A)|7, ., C|r,.) defined by Z — el(x) X1
Let £ = Ro((z));% be the underlying invertible sheaf of TD(A). Via
the identification (2.7), the above homomorphism corresponds to the
element

el(z)(dX)® e Ker(V.(LZ ) (Ty.) — V(L2 9)(Typ))

and, with the parameter Y of V,(£®7%) in the lemma, it corresponds
to {(z)7%. This concludes the proof. O

Lemma 4.6. For any monic polynomial m € A, there exists a natural
A-linear closed immersion Ny : C[m] — TD(fA) over Ty satisfying
V}‘(Ag’m) = M. In particular, the Tate-Drinfeld module TD(fA) is
endowed with a natural T'y(n)-structure )\Qn over Ty.

Proof. Let Ro[[z]]{Z) be the z-adic completion of the ring Ro[[z]][Z].

We have a natural map

i: Ro[[2]][2]/(21(2)) — Rol[2](Z)/(2}(2)).
Since ®¢(Z) € Ry[Z] is monic, the ring on the left-hand side is finite

over the z-adically complete Noetherian ring Ry[[x]]. Hence this ring
is also z-adically complete and the map ¢ is an isomorphism. Since

Ro[[2]]{{Z}} <= Ro[[2](Z), the map
Ro[[#]][X] — Rol[[=]I{{Z}}, X = esa(Z)

induces a homomorphism of Hopf algebras

’i71
Ro((2)[X] = Ro[[2]KZ)[1/2]/(®(Z)) = Ro((2))[Z]/(2(2)),
which we denote by (A )*. In the ring R[[£]](Z), we have ®*(es(Z)) =
esa(®9(Z)) for any a € A and this implies that the map (A4)* is
compatible with A-actions. Thus we obtain a homomorphism of finite
locally free A-module schemes over T

M+ Clm] — TD(fA)[m]
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which is compatible with the map vy.

To prove that it is a closed immersion, it is enough to show that
the map Ro[[z]][X] — Ro[[z]|{Z)/(®5(Z)) defined by X — epa(Z) is
surjective. Since the right-hand side is x-adically complete, it suffices
to show the surjectivity modulo z, which follows from (4.2). O

Lemma 4.7. Let D be any finite flat Ro((x))-algebra whose restriction
to Frac(Ry((z))) is etale, and § any element of D. Let D be the integral
closure of Ry[[x]] in D. We consider D as a topological ring by taking
{2'D}iez., as a fundamental system of neighborhoods of 0 € D. Then,
for any F(X) € Ro((x)){{X}}, the evaluation F(J) converges for any
d € D. In particular, we have an F-linear map esp : D — D which is
functorial on D.

Proof. We have D[1/x] = D. Since Ry is excellent, so is the power series
ring Ro[[z]]. Thus D is finite over Ro[[z]] and z-adically complete.
(Here the fact that Ry[[z]] is excellent follows from an unpublished
work of Gabber [KS, Main Theorem 2]. If we assume that Ry is regular,
then the finiteness of D follows from [Mat, Proposition (31.B)]. This is
the only case we need.) This implies that the evaluation F'(§) converges

and defines an element of D. O
Put H2%, = TD(fA)[m]/Im(A2,) and
(4.6) Bl = Ro((x))[n]/(®5(n) — F (1/)).

Then Spec(Bg’ﬁ) is a finite flat C[m]-torsor over Tj. Since m is invert-
ible in Ky, it is etale over Frac(Ry((x))).

Lemma 4.8. For any monic polynomial m € A, there exists an A-
linear isomorphism uf.oj,\m :A/(m) — ,waAm which is compatible with the
map vy such that the image of p(1) € HIN(Ty) in HfoAm(Bgﬁl) is
equal to the image esa(n) of the element esp(n) € TD(fA)[m](Bgfn\l).
In particular, we have an exact sequence of A-module schemes over Ty

(4.7) 0 Cm] 22 TD(fA) ] Z22% A/(m) — 0.

Proof. By Lemma 4.7, we have an element ef5(7) € TD(fA)[m](Bg’ﬁ).
Since its image e (n) in éAm(Bgﬁl) is invariant under the action of

C[m] on B{:

0,m>»

we obtain ey (n) € Hiwm(Ty). This yields an A-linear
homomorphism A/(m) — Hi\, over T, which is compatible with the
map vy.

To see that it is an isomorphism, using the map vy we reduce our-
selves to the case of f = 1. Since the element m is invertible in K,
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using co-Lie complexes we obtain the exact sequence

(A% m)*
0 —=wys . — WrD(A)m] — Wem) — 0.

We also see that the natural sequence
0 —— WTDp(A) ——= WrD(A) —> WTD(A)[m] —= 0

is exact and similarly for C'[m]. Since we have d(ex(Z)) = dZ, the map
(A} ) is an isomorphism. Hence wys = 0 and H3  is etale.

Now it is enough to show aex(n) # 0 in Hé\Qm(Bg’ﬁ) for any non-
zero element a € A/(m). For this, we may assume Ry = K. In
this case, note that the polynomial ®¢(X) — 1/ is irreducible over
Ko((z)), since the equation ®¢(1/X) = 1/x gives an Eisenstein exten-
sion over Ko[[z]]. Hence we may consider the ring B, as a subfield
of Ko((z))*8. Let a € A be a lift of a satisfying deg(a) < deg(m).
The condition aes(n) = 0 implies ¢ (n) = ¢ mod A for some root ¢ of
®C(X) in Ko((x))e. By inspecting z-adic valuations it forces ¢ = 0,
and the irreducibility of ®¢(X) — 1/z implies @ = 0. This concludes
the proof. O

We often write )\ﬁom ’H&’n, B&n, u&’n and 71'?0,“ as Ao, Hoo, Bo, oo
and 7y, respectively.
Put Sy = Spec(Ry((y))) and consider the morphism
Og—1 - TO - S()

defined by y ~ 297!, The Sp-scheme Ty is a finite etale [ -torsor,
where ¢ € F* acts on it by the Rp-linear map

ge: Ro((2)) = Ro((2)), x> c'a.
Since A is stable under this F-action, we see that the coefficients of
ea(X) and @A (X) are in Ry[[z?7!]] for any a € A [Arm, §5C1]. This
means that there exists a unique pair of a Drinfeld module and its
'y (n)-structure over Sy
(TDY(A),A%)
satisfying o, (TD"(A),A},) = (TD(A), Ay). Over Ty, the Tate-Drinfeld
module TDY(A)|z, = TD(A) has a 'Y (n)-structure
(TD(A), Ao, [1e0])
with the element [p10] € (IirD(A)N)/D)(Th) defined by py. We also
put

My = TDY(A)[n]/Im(Ay), I = Jsomas,(A/(n), H).
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Lemma 4.9. There exists an isomorphism of finite etale F;-torsors
over Sy

Proof. Tt is enough to give an F-equivariant morphism Ty — I} over
So, which amounts to giving an A-linear isomorphism p : A/(n) — Ho,
over Ty satisfying cu = g3 (u) for any c € F\. The map g, extends to a
similar Ry((z))-linear isomorphism on By via n — cn, which we denote
by g.. Then the inclusion Ho(Ro((2))) — He(By) is compatible with
g and g.. Consider the isomorphism i, of Lemma 4.8. We have
ge(ea(n)) = ea(cen) in By and this yields cuo = g (foo)- O

4.3. Structure around cusps I. Suppose moreover that Ry is regu-
lar. Note that Lemma 4.4 implies

(4.8) J(TDY(A)) € y~" Ro[[y]]*.

_—— A
We define a scheme Cuspsg, by the cartesian diagram

A
Cuspsp, — X2(n)g,

| |

Spec( Rol[1]]) —— P,

_—— A
and put Cuspsﬁ20 = (Cuspsg,|v(1/j))rea- Since Y2 (n)p, is regular and
(4.8) implies that the map j; induces an isomorphism

y" : 8o = Spec(Ro((y))) — Spec(Ro((1/5))),

_—— A
we see as in the proof of [KM, Lemma 8.11.4] that Cuspsg, is isomor-
phic to the normalization of Sy = Spec(Ry[[y]]) in the scheme Y2 (n)sg,
defined by the cartesian diagram

leA (n>50 }/1A (n>Ro

| |

So — = Spec(Ro((1/7))) AR,

For e € {(, A}, let us consider the functor sending a scheme S over
Sp to the set of T'§(n)-structures on TDY(A)|g, which is representable
by a finite etale scheme [I'}(n)]rpv over Sy. By Lemma 4.2 and Lemma
4.3, as in the proof of [KM, Corollary 8.4.4] we obtain a natural iso-
morphism

[0 ()] 1w /Fy — Vi (0)sp,
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_—— A
where F acts as the automorphism group of TDY(A). Thus Cusps Ro
is isomorphic to the quotient Zg, /F of the normalization Zg of Sy in

[[$(n)]rpv by the induced action of F). Note that we have a natural
identification

[Ty (n)]rpv x50 To = [T'1(n)] o,

where the right-hand side is a similar finite etale scheme over T} for
TD(A). We also put 7o = Spec(Rp[[z]]). It is normal since Ry is
regular.

Lemma 4.10. There exists a natural isomorphism over Sy

[T1()]rp = [T1(0)]rpe x5, To — [IF ()] rpe

which, is compatible with actions of Y = Auta s, (TDY(A)). Here this
group acts on the left-hand side diagonally.

Proof. Let A be the universal 'y (n)-structure on TDV(A) over [Ty (n)]pv.
Taking the determinant of locally constant etale sheaves of locally free
A/(n)-modules, we obtain a natural isomorphism of A-module schemes

LMY m)]ppe — TDY(A)[n]/Im(X). Then, by Lemma 4.9, the map

(Lo /D) rs@ens — [T )]pe, [ A/(M) — HL)] = [eo ]

gives the desired isomorphism. O

Lemma 4.11. The scheme Zg, over Sy is decomposed as

Zh

A0 A,#0 A0
L= Zpluzp™ zZ'= [ T
(A/(n))
Moreover, the group Fy = Autyg,(TDY(A)) induces free actions on
the two components of the former decomposition.

Proof. First note that, for any scheme S over A, and any finite etale
A-module scheme G over S, the big fppf sheaf J#om 4 s(C[n],G) is
representable by a finite etale A-module scheme over S and thus its
zero section is a closed and open immersion.

Since Ty is normal, Lemma 4.10 implies that Zg is identified with
the normalization of 7y in the finite etale scheme [I'y(n)]rp over Tj.
For any scheme T over T, we have an exact sequence of finite etale
A-module schemes over T’

0 —— Cn]lr —2> TD(A) 0]}z —2> A/(n)|r — 0.
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Any T'y(n)-structure X : C[n]|z — TD(A)[n]|zr over T induces an A-
linear homomorphism 7, o A : C[n]|z — A/(n)|r. This gives a mor-
phism over Tj

[T1(n)]rp — Homar, (C[n],A/(n) =Tou U,

where U is the complement of the zero section. Let [[';(n)]%p be the
inverse image of Ty. It is isomorphic to At 4 7, (C[n]) = (A/(n))*.

Since som s 7,(C[n], A/(n)) is also a finite etale A-module scheme
over Ty, it agrees with the normalization of 7y in #Zom 4 1, (C[n], A/(n)).

Moreover, it is etale locally isomorphic to A/(n). Thus we obtain a map

Zi — Homaz(Cln], A/(n) = To v U,
where U is the complement of the zero section. Since U is etale locally
isomorphic to A/(n)\{0}, the group F) acts freely on U.
Let Zﬁo’o and Z}%#O be the inverse images of 7y and U, respectively.

Since the component Z}%(;O is the normalization of 7y in [[';(n)]%p, the
latter decomposition of the lemma follows. Hence we also obtain the
freeness of the F -actions as in the lemma. O

The tuple (TD(A), Ao, [teo]) over Ty gives a map Ty — Y2 (n)g
Since the ring Ry[[z]] is normal, this extends to a map
25 To — X ()g,.
The Rp-algebra homomorphism defined by z — 0 gives a point P2 €
X2(n)p,, which we refer to as the co-cusp. We write the complete local
ring at this point as Oxaw), pa-

0°

Lemma 4.12. Suppose that Ry is a flat Ay-algebra which is an excellent
reqular domain.

(1) The map x5 induces an isomorphism of complete local rings
(l’é)* : OXlA(n)RO,PO% — Ro[[=]].

(2) The invertible sheaf w5, on Y2 (n)g, extends to an invertible
sheaf @, on X£(n)g, satisfying

(25)* (@) = Rol[]]dX,

where dX denotes the invariant differential of TDY(A) associ-
ated to its parameter X.

(3) The formation of W%, is compatible with any base change Ry —
Ry of flat Ay-algebras which are excellent reqular domains.

(4) The natural action of FY on wg, via ¢ — [c|a extends to an

un
action on wy, covering its action on X (n)g,-
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Proof. The assertion (1) follows from Lemma 4.11. Moreover, Lemma
4.11 also implies that the trivial invertible sheaf Ozg dX, with the nat-
0

ural F7-action via X — ¢X which covers the action on ZI%O, descends

_— A
to the quotient Zg /FY ~ Cuspsp, and we obtain &g, by gluing. (3)

follows from the uniqueness of the descended sheaf.
For (4), Lemma 4.10 implies that [c]a acts on

P = [[T()]tpe =~ [T1(n)]tpe xs, To

via 1 x g*. Thus, for the universal I';(n)-structure A7, on TD"(A) over
[[1(n)]rpv, we have

[JA(TDY(A)|p, Adulp) = (TDY (M), Alulr)-

Since any I'; (n)-structure has no non-trivial automorphism, the natural
action of [c]a on Wi | sr; is the descent of the map given by

Hence it extends to the sheaf Oza dX, and thus to WA O
‘0

4.4. Structure around cusps II. Let W,(X) be the unique monic
prime factor of ®¢(X) in A[X] which does not divide ®S(X) for any
non-trivial divisor m of n [Car, §3]. Then

= Fsoma,r,(A/(n), Cln])

is represented by Spec(Rg|X]/(W,(X))), which is finite etale over Ry.
For any scheme S over Ry, we put Ig = I xpg, S.

Let R, be the affine ring of a connected component of I, which is
a finite etale domain over Ry. We denote by ( the image of X in
R,. In the sequel, we also need an explicit description of the scheme
(13 () Jp+ over S, — Spec(Ra((1))).

Put T, = Spec(R,((x))). By Lemma 4.10, it is enough to describe
the restriction

[F1(n)] Dy, = [T1()]TD X710 Tt

For this, we denote by J# the set of A-linear surjections (A/(n))* —
A/(n). By the map (a,b) — ((u,v) — (a,b){(u,v)), we identify the
set  with {(a,b) € (A/(n))? | (a,b) = (1)}. As in [KM, Proposition
10.2.4], for any = €  we denote by k= the unique generator of Ker(Z)
satisfying Z(1) = det(kz, 1) for any [ € (A/(n))?. We also choose Iz €
(A/(n))? satisfying Z(lz) = 1. Then, for any g € GLy(A/(n)) there
exists a unique n(g, =) € A/(n) satisfying

(4.9) lzog = g Hz) +n(g,2)g Hks).
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Put Fix(Z) = {g € GLy(A/(n)) | Zo0 g = Z}. Considering the repre-
senting matrix for g with respect to the ordered basis (kz,lz), we have
an isomorphism

(4.10)  Fix(E) - {(deto@ e, E)) ‘ ge Fix(E)} |

We denote by [I'(n)]rpj,, the scheme representing the functor over
T, sending a Ty-scheme 7' to the set of I'(n)-structures on TD(A)|p. It
is finite etale over T;. By (4.7), to give a € [I'(n)]rpj,, (T) satisfying
T 0 = Z is the same as to give a(kz) € C[n](T) inducing an A-linear
isomorphism A/(n) — C[n] and «a(lz) € 7' ([1])(T), where [1] is the
section T, — A/(n) corresponding to 1 € A/(n).

By taking the determinant, we have an A-linear isomorphism of etale

sheaves of locally free A/(n)-modules

w: /\ TD(A)[n] — C[n],

which defines a map [I'(n)]rp,, — I by (a — wo A%a). For any
scheme T' over T, we say an element o € [I'(n)]rp), (T) is canonical if
the map wo A2a : T — [ is equal to the structure map 7" — T, — 1.
The subfunctor of canonical elements is represented by a finite etale
scheme [['(n)]p, . over T,

Lemma 4.13. Put B, = R,((x))[n]/(®(n)—1/z). Then the map over
Ty

[ Spec(Ba) — [L)I5E,,

ZeH
which is defined on the Z-component by the canonical T'(n)-structure
(k=,lz) — (ea((),en(n)) over By, is an isomorphism.

Proof. The element ey(n) € B, defines a map Spec(B,) — w.'([1]).
Since it is C[n]-equivariant, it is an isomorphism of C|[n]-torsors over
T, and the lemma follows. L]

Put Ty = {( (1)) e GLQ(A/(n))} and T = Ty n SLu(A/(n)). For

any element f # 0 € A, we define

G (w) — L2 qudegm@]q (%) € Ro[[z]][w].

Then we have natural maps

Ro[[w]] — Ro[[]][w]/(G f(w)) — Ro[[w]]
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which are isomorphisms. Moreover, for any b € A/(n), let f, be the
monic generator of the ideal Anna(b(A/(n))). Then f, divides n and
fb € A;f .

Lemma 4.14. The scheme [FA(n)]TDv over Sy is decomposed as

)tpv = L[Spec [w]/(G, (w HSpec w))).

Here the direct sum is taken over a complete representative of the set

{(a,0) € (A/(m)* | (a,0) = ()}/T1.

Proof. For any scheme T over Ty, any I'(n)-structure o on TD(A)|7 de-
fines a I'y(n)-structure ¢ — a(*(0,1)). Since we have SLy(A/(n))/I'{ =
GLy(A/(n))/T'1, Lemma 4.13 yields

Can 1 AFix
[Cy()]tppy, = D), Th= ] Spec(By "™,
Ees T

Note that, via the isomorphism of Lemma 4.13, any element g € I'l 0
Fix(Z) acts on B, of the Z-component by

n—n+ O, ().
For = = (a,b), we have k= = (b, —a) and

i Fix(®) = {(m)l/(n) (1)> } '

By the isomorphism (4.10), the additive subgroup
n(E) = {n(9,=) € A/(n) | g € T1 N Fix(2)}

is isomorphic to (f)/(n). In particular, they have the same cardinality.
On the other hand, for any g € I'} n Fix(Z), (4.9) yields bn(g,Z) = 0
and thus n(Z) < (f,)/(n). Hence they are equal.

Put hy = n/f,. Consider the map

Ru((2))[0']/(®5,(n') = 1/z) = Ba, 0" — @}, ().
Note that the left-hand side is isomorphic to R,((1/7)) and thus nor-

mal. Hence this map identifies the left-hand side with BF 1nF(E) By
changing the variable as w = 1/, Lemma 4.10 yields the decomposi—
tion as in the lemma. U

Corollary 4.15. Suppose that Ry is a flat A,-algebra which is an ex-
cellent regular domain.
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(1) We have a natural isomorphism over Rn[[ 1]

_—— A

Cuspsp = ]_[ Spec(Ru[[z]][w]/(Gy, (w H Spec(R
(a,b)

Here the direct sum is taken over a complete representative of
the set

Fy\{(a,b) € (A/(n))* | (a,b) = (1)}/T1.

(2) Cuspsﬁ0 is finite etale over Ry. In particular, it defines an
effective Cartier divisor of X2 (n)g, over Ry.
(3) At each point of Cuspsﬁo, the invertible sheaf

QXA(n)R IR (2Cuspsg, )
is locally generated by the section dx/z*.

Proof. Note that the ring R,[[w]] is normal. Since the group F; acts
freely on the index set of the decomposition of Lemma 4.14, we ob-
tain the assertion (1), which implies the assertion (2) since we have
Cuspsp. = Cuspsh, X r, Spec(Ry).

For the assertion (3), by a base change it is enough to show it over
R,. Put e = deg(fb) and Gfb( ) = w? — zH(w). Then we have
H(w)dz = z fyw? *dw in Qj, w]/R 20

d_w_H(w) de  1dx
w2 fy wwt fya?

which concludes the proof. O

On the component of 61’18\1352" corresponding to = = (a, b), the pull-
back of TDY(A) agrees with TD(f,A) over R,((w)) with a universal
' (n)-structure (), [u]). Let us describe them explicitly. We set T\, =
Spec(Ry((w))), and consider the ring R,((w)) as a subring of B, as in
the proof of Lemma 4.14. Put

(PE7 QE) = (efbA<C)7 efbA(n))(kE’ ZE)_I
Then we have Q= € TD(f,A)[n](T}) and
(4.11) A Cn)(T;) = TD(LA)[n)(T7), ¢ Q=

On the other hand, taking the determinant as in the proof of Lemma
4.10 yields

Cn] ® (TD(f,A)[n]/Im(\)) /\TD (fo\)
¢ ® (P= mod Im()\)) — Q= A Pz



44 SHIN HATTORI

and similarly for )\f.é’ﬁ Since det(kz, lz) = 1, we obtain an isomorphism
v Hooly = TD(foA)[n]/Tm(X)

defined by e, (n) mod Im(A2Y) — —Pz mod Im()\). Then we have
=10 u{g,ﬁ, which is given by

(4.12)  p:A/(n) » TD(fpA)[n]/Tm(A), 1~ —P=z mod Im(A).

Corollary 4.16. Suppose that Ry is a flat An-algebra which is an ex-
cellent reqular domain. Let g be the common genus of the ﬁbers of
X2(n)g, over Ry. Then, on each fiber, the invertible sheaf (05,)%? has
degree no less than 2g.

Proof. Since the map Y (n) — Y/2(n) is etale, [Gek4, Theorem 6.11]
implies that the dual of the Kodaira-Spencer map for the universal
Drinfeld module %, over Y (n)g,

KSV (.UEA ®UJEA)D —> QYA( )RO/RO

is an isomorphism. We write as (I> n =0+ A7 + As7?. Since we have
the isomorphism

(4.13) w?ﬁ L, w?EqA ;D, [l — l®A§_1,

un

the map (KSY)®~! induces an isomorphism

(4.14) WA T @WEAT = (O )&t

Y2 () ry/Ro

Consider the cusp corresponding to = = (a,b) and the pull-back
of this map to R,((w)). Since R,((w)) is a domain, the isomorphism
E&% | Ru(w)) — TD(fpAA) is Ry((w))-linear. Using Theorem 2.19 (3) and

un

the functoriality of KS, we can show that the pull-back of (4.14) is
identified with a similar map

®q 1 ®q 1 1
Wrp(syn) @ W (fa) = (QRa((w))/Ra)

induced by KS"Y for TD(f,A) over R,((w)). By Lemma 4.5 and (4.13),
this map is given by

®q—1

da ay da
AX)® 1 & (dX)®1 1y g (22— L2 g- 1 g\ ®a— 1
Y e ()
Since the right-hand side is an element of R,[[w]]*(4)®~!, Corollary
4.15 (3) implies that the isomorphism (4.14) extends to an isomorphism
@A) @ @A) — (s (2Cuspsiy )P

Since Cuspsﬁ0 is non-empty, the corollary follows. 0
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4.5. Case of level I'{(n, p). For the structure around cusps of X2 (n, ),
we first note that Y/ (n, ), is normal near infinity in the sense of [KM,
(8.6.2)] by Lemma 4.1. Thus the description around cusps using Tate-
Drinfeld modules and normalization as in the beginning of §4.3 is also
valid in this case.

The closed immersion A}, , : C[p] — TD(A) defines a I'g(gp)-structure
on TD(A) over Ty. Hence we also have a map

¥ To = Xi(n, 0)r,

and a point P2¥ € X2(n, o), .

More generally, for any = = (a,b) € 2, consider the map Ry((x)) —
Ro((w)) = Ro((2))[w]/(Gy,(w)) and the Tate-Drinfeld module TD( f,A)
over Ry((w)). The latter has a canonical I'g(p)-structure C given
by the closed immersion )\&i\p of Lemma 4.6. We denote by Z =
[To(p)]TD(f,0) the scheme representing the functor sending each scheme
T over Ro((w)) to the set of I'g(p)-structures on TD(f,A)|7. It is finite
over Ry((w)) and thus Noetherian. We denote by G, the universal
Lo(p)-structure on Z.

For any Noetherian scheme T over Ry((w)) and any I'g(gp)-structure
G on TD(f,A)|7, the theory of Hilbert schemes shows that the functor
Homr a(G, A/(p)) is representable, locally of finite presentation and
separated over T. From the etaleness of A/(p), we see that the group
scheme #omr 4(G, A/(p)) is also formally etale over 7. Hence it is
etale over T" and thus its zero section is a closed and open immersion.
We write its complement as Ur.

By composing with 7122 : TD(f,A)[p] — A/(p), the universal 'y (g)-
structure G,,, gives a map

Z = [Lo(@)]to(,0) = Homza(Gun, A/(9)) = Z L Uy.

Hence the left-hand side is decomposed accordingly, and the component
over Z agrees with the section Spec(Ro((w))) — Z given by C. From
this, we can show that we have the same description of the complete
local ring at Po"® € X2(n, p)g, and a similar extended invertible sheaf
w5 which is compatible with @2, as in Lemma 4.12. Furthermore,
after passing to R,((w)), we can also show that the formal completion
of X2(n, p)g, along the cusp corresponding to C over the component
of = is isomorphic to Ry[[w]] via the projection to X{(n)g,. We refer
to this cusp as the unramified cusp over =.

4.6. Canonical subgroups of Tate-Drinfeld modules. In this sub-
section we consider the case Ry = Ok. Thus we have the Tate-Drinfeld
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module TD(fA) over the ring Ok ((z)). Put d = deg(p) as before. We
denote the normalized p-adic valuation of Ok ((x)) by v,,.

Lemma 4.17. The Tate-Drinfeld module TD(fA) over Ok ((x)) has

ordinary reduction.

Proof. Put ®/*(X) = ®/*(X) mod p, which is an element of the ring
k(p)[[x]][X]. From (4.4), we see that the coefficient of X¢* in SIM(X)
is an x-adic unit and those of larger degree have positive x-adic valua-
tions. By Lemma 4.4, the coefficient of X ¢ is non-zero. An inspection
of the Newton polygon of @{éA(X ) shows that this polynomial has at
least ¢?¢ — ¢ non-zero roots in an algebraic closure of k(p)((x)). Thus
the reduction of TD(fA) modulo g is ordinary. O

By the exact sequence (4.7), the closed immersion )\Qpn identifies
C[e™] with a closed A-submodule scheme of TD(fA)[p"], which we
denote by C/A. We refer to C/* as the canonical subgroup of TD(fA)
of level n. The reduction C4* modulo ¢ agrees with Ker(F}) of the re-
duction of TD(fA). Thus the pull-backs of C/* to (Ok/(p™))((z)) and
the p-adic completion Ok ((z))" agree with the canonical subgroups of
level n of TD(fA) over them in the sense of Lemma 3.5. We have
CIM = vi(Ch).

We define the canonical and canonical etale isogenies of level one for
TD(fA) as the natural maps

A TD(fA) — TD(fA) /G, p/ : TD(fA)/CI* — TD(fA).
They satisfy
(4.15) pPhomlh = GIPUN -l g pfA — T et

By Lemma 2.8 (2), the quotient TD(fA)/C/* has a natural structure of
a Drinfeld module of rank two which makes these isogenies compatible
with A-actions. The T'2(n)-structure (AL, [#24]) on TD(fA) induces
that on TD(fA)/C*, which we denote by (M2, [a2]).

Since the power series ez (X) € Og[[z]][[X]] is entire, any root
8 # 0 of @g(Z) in its splitting field L over K defines an element
ern(B) of Op[[z]]. From Lemma 3.2 and (4.2) we obtain

(4.16) O0(8) = 0,58 # 0= esn(B) € BOL[[2]]).
Then we put

W) =ex ] ) € OxllaTlixL

1—
25 (9)=0,640 ( esalf)
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As in the proof of [Leh, Ch. 2, Lemma 1.2], we see that this is an
[F-linear additive polynomial, and (4.16) implies that its leading co-
efficient is an element of Ok[[z]]*. Hence X — W/A(X) defines an
isogeny of F,-module schemes over Ok ((x))

7T£A :TD(fA) = TD(fA).
Lemma 4.18. Ker(r/") = cit.

Proof. By comparing ranks, it is enough to show that the composite

Wg)A o /\f.O .o 1s zero. From the definition of the map /\OO .0, this amounts to

showing that the image of U/ (esx(Z)) in the ring Ok [[x][{Z)/(DE (Z))
is zero. For this, note that we have the equality of entire series in

K((x){{2}}

(4.17) UIMNesa(2)) = eppn(P5(2)),

since they have the same linear term o and divisor fA + (®5)7'(0).
Thus the equality also holds in Og[[z]]{Z). Since the latter ring is

Noetherian, the ideal (®¢(Z)) is z-adically closed and thus it contains
the element e,z (P(2)). O

Thus the a-multiplication map of TD(fA) /C{ A for any a € A is given
by a unique polynomial ®/ (X) satisfying
A (A — A
WM (@7 (X) = (PR X)).
Note that we have

Fo(x) = € qu(l + pxOk|[[x]]).

¢ (3)
We also have the Ok-algebra homomorphism
v Ox((x) = Ok((x)), @ — Fy(x)

and the induced map v, : Spec(Ok((z))) — Spec(Ok((z))). For
any element F(X) = ¥ X' € Og((x))[[X]], we put v(F)(X) =
Ym0 Vh(a) X!, as before. Then we have

(4.18) vy (epa)(X) = egpa(X).
Thus (4.3) yields
(4.19) V(@M (epra(X)) = eppa(PF (X))

for any a € A. On the other hand, (4.17) and (4.18) yield
(4.20) W/ era(X)) = eppa(@G (X)) = vi(esa) (R (X))
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Lemma 4.19.
(TD(FA)/CI Mo () = v (TD(FA), oM i)
Proof. First let us show the equality v (TD(fA)) = TD(fA)/CI*. This

amounts to showing
fA(pfA _ o E (A A
\Ijga ((I)a (X)) - Vp(cl)a )(\Ijga (X))

for any a € A. Tt is enough to show the equality in the ring K ((x))[[X]].
For this, (4.3), (4.19) and (4.20) yield

WM @I epa (X)) = UM epa (7 (X)) = eppa(PEa (X))
V(@I (eorn (DG (X)) = v (P2 (P (epa (X))

and the claim follows by plugging in eJI[{(X ). The Ty (n)-structure A,
is given by X — W/*(esx(Z)). By (4.20), the latter element is equal
to v%(esa)(®S(Z)), which means M =v s(p MA).

For the assertion on [fil’,], consider the ring B{" of (4.6) and its
base extension V;(Bgﬁ) by the map v%. These rings are free of rank

q%°e™ over Ok ((z)). We have a homomorphism of Ok ((z))-algebras

vi(Blw) = Ox((2)[n]/(®F (1) — 97, (1/2)) — Bf,

defined by n @g(n). Since (p,n) = 1, we have ap + fn = 1 for
some a, 3 € A and this map sends ®f () + ®§5(1/z) to n. Hence it is
surjective and thus these two rings are isomorphic as Ok ((z))-algebras.

Now a similar argument as above implies that, for the map ﬂf.oj}n :
A/(n) — u;(’}-léco/}n), the restriction i/ (1)] p{? 1s equal to the image of

O,n

the element
vi(esa) (@ (n) € vi(TD(fA))(B).
On the other hand, for the pull-back V;(uf.oj}n) cA/(n) > V;(Hé/}n), the

restriction v (uoo n)(l)\yg (BIY) is equal to the image of the element
* ® A
ega(n) @1 = v (esa)(n) € vi(TD(fA) (v5(By))-
Since they agree with each other in v} (TD(fA)) (Bgﬁ), we obtain i, =
V;(Mg}n)- 0

By Lemma 4.19, the canonical etale isogeny p/* induces an isomor-
phism of Ok ((x))-modules

((P")*) 7" wrp(sa) e ()t O (X)) = Wap(payjers = WrD(sa)-
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Corollary 4.20.
(") dX ®1) = dX.

Proof. Since we have shown that the canonical isogeny 7/* of level
one for TD(fA) is given by X — W/A(X), we have (n/*)*(dX) =
©dX. From (4.15), we obtain (p/*)*(dX) = dX in Wrp(ray/ef™s which

is identified with dX ® 1 via 15(TD(fA)) = TD(fA)/C{". O

5. g-ADIC PROPERTIES OF DRINFELD MODULAR FORMS

5.1. Drinfeld modular forms. Let k be an integer. Let M be an A,-
module. We define a Drinfeld modular form of level I'f(n) and weight
k with coefficients in M as an element of

Mi(PE(0)ar = H(XT () 4, (05)%F @2, M).

By Lemma 4.12 (4), the group F) acts on the A,-module M (T'$(n)) s
via ¢ — {c)a. Since ¢ — 1 is invertible in A,, we have a decomposition

M) = @B Mpm(Di(n))a,

meZ/(q—1)Z

where the direct summand M, ,,,(I'1(n))as is the maximal submodule
on which the operator {¢)a acts by the multiplication by ¢~ for any
ceFy. Wesay fe My(T(n))a is of type m if f € My (T1(n))ar-

Consider the map 22 : Spec(Ay[[z]]) — X2(n) 4, as in §4.3. For any
f € M(T'P(n))as, we define the z-expansion of f at the oo-cusp as the
unique power series fo(x) € Ay|[x]] ®a, M satisfying

(2)*(f) = foola)(dX)®k,

We also have a variant My, (T'2(n, p))as of level I'® (n, o), using X2 (n, p),

the sheaf @2 and the oo-cusp 257

Proposition 5.1. (1) (x-expansion principle) For any A,-module
M and f € Mp(TS(0)as, if fo(z) = 0 then f = 0. Moreover,
for any A,-modules N < M and any f € Mp(I'{(n))ar, we have
fo(x) € Af[z]] ®a, N if and only if f € Mp(T{(n))y. The
same assertions hold for the case of level T2 (n, ) if M is an
Au[1/p]-module.

(2) For any k = 2 and any A,-module M, the natural map

Mi(TT (n)) 4, ®a, M — My(I'P (1))

18 an isomorphism.
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Proof. Since X{*(n)4, and X{*(n, p)a,[1/ are smooth and geometri-
cally connected, Krull’s intersection theorem and Lemma 4.12 (and for
the case of level I'?(n, o), the corresponding statements in §4.5) im-
ply the assertion (1), as in the proof of [Kat, §1.6]. The assertion (2)
follows from Corollary 4.16, similarly to the proof of [Kat, Theorem
1.7.1]. O

Note that our definition of Drinfeld modular forms is compatible
with the classical one as in [Gek2, Gek3]; over X (n)c, this follows
from [Gosl, Theorem 1.79], and the spaces of Drinfeld modular forms
of level I'#(n) and weight k in both definitions are the fixed parts of
the natural action of I'f(n)/I'(n) on them. We can also show that our
x-expansion fo(x) of f at the oo-cusp agrees with Gekeler’s t-expansion
at oo (see [Gek2, Ch. V, §2|, while the normalization we adopt is as in
[Gek3, §5]) of the associated classical Drinfeld modular form to f.

By [Gek3, Proposition (6.11)] and Proposition 5.1 (1), Gekeler’s lift
ga of the Hasse invariant is an element of Mya_; o(I'1(n)).4, satisfying

(5.1) (9a)w(2) = 1 mod p.

5.2. Ordinary loci. In the rest of the paper, we write as Y,, =
Y2(m)o, and X, = X2 (n)o,. For any positive integer m, the pull-
back of any scheme T over Ok to Ok, = Ok/(p™) is denoted by
T

Since we know that X, 1 has a supersingular point [Gek1, Satz (5.9)],
the ordinary loci X°'¢ in Xun,m and yord in Yinm are affine open

un,m un,m

subschemes of finite type over O ,,,. We put
Bord _ O(yord )

un,m un,m

This is a flat Ok ,-algebra of finite type, and the collection {Bgfm}m
forms a projective system of Og-algebras with surjective transition
maps. We define

Bt =lm By, Vi = Spec(BY).

un,m’
n

Then we have B%/(p™) = B4 and B is flat over Q. This

implies that Bﬁfld is p-adically complete and topologically of finite type
over Ok. Moreover, since B is a regular domain, the ring B¢ is
reduced. Thus ijfld is a reduced flat p-adic ring. On the other hand,
we have a map Y4 — Y, and we denote by £ the pull-back of the
universal Drinfeld module to Bﬁfld, which has ordinary reduction.

Now we can form the canonical subgroup C, = C,(E?) of level n
for £74. As is seen in §3.2, it has the v-structure induced from that of
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£ which is unique by Lemma 2.13 (2). Lemma 3.6 implies that its

un

Taguchi dual C2 is etale. We denote by C,,.,,, the pull-back of C,, to Y,2rd

endowed with the induced v-structure, and similarly for (C2),,. Then
the Taguchi dual C,’Zm of C,.m agrees with (C?),, as a finite v-module

and they are finite etale over Y4

un,m*

Lemma 5.2. The finite v-module C,, over Y14, extends to an etale
finite v-module (anJn over X4 which is etale locally isomorphic to

Al(g"). o

Proof. Let K, be a splitting field of ®¢(X) over K. Consider the formal
completion of Xyn|o,, at the cusp corresponding to = = (a,b), which
is isomorphic to Spec(Ok, [[w]])-

We denote the p-adic completion of Ok, ((w)) by O, which is a
reduced flat p-adic ring. The pull-back of £ to O is isomorphic
to that of the Tate-Drinfeld module TD(f,A) over O, ((w)) to O.
By the uniqueness of the canonical subgroup in Lemma 3.5, we have
Culo ~ CPAo = C[p"]. Lemma 2.13 (2) implies that this identifica-
tion is compatible with v-structures, where we give C[p"] the induced
v-structure from C. Taking modulo ™, we obtain an isomorphism
Criml|og, m((w)) = Cle"] of v-modules over O, m((w)).

This implies that, by an fpqc descent, the finite v-module C,,,, ex-
tends to a finite v-module C,, , over nglfim such that its restriction to
the formal completion at each cusp is isomorphic to C[p™] with the
induced v-structure from C. Taking the dual yields the lemma. U

Lemma 5.3. Let U be any non-empty open subscheme of ngfm and &

any geometric point of U. Then the character of its etale fundamental
group with base point &

Tn,m Wit(U) - W(ft<Xord ) — (A/(p"))"

un,m

defined by CP is surjective.

n,m

Proof. We may assume m = 1. Let L be the function field of X, .
As in [Kat, Theorem 4.3], it is enough to show that the restriction of
Tn,1 to the inertia subgroup of Gal(L*P/L) at a supersingular point is
surjective.

Take ¢ € Xy, corresponding to a supersingular Drinfeld mod-
ule over an algebraic closure k of k(p). The complete local ring of
Xun1 Xk(p) k at & is isomorphic to k[[u]]. Let E be the restriction
of &y to this complete local ring. By [Sha, Remark 3.15], we have
Lie(Vyg) = —u and the restriction E|yw)) to the generic fiber is ordi-
nary. By Theorem 2.19 (4) and Lemma 3.3, we have C,(E|y((u)))”
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Ker(Vigoy, .,,)- Here EP|k((uy) 18 the dual of E|y((,)), which is also ordi-
nary by Proposition 3.4. Hence it suffices to show that the finite etale

A-module scheme Ker(Vd”ED|k(( ))) defines a totally ramified extension

of k((u)) of degree §(A/(p"))*.

For this, Proposition 3.4 also implies that the map Lie(V;gp) is the
multiplication by an element of k[[«]] with normalized u-adic valuation
one. Let v, be the normalized u-adic valuation on k((u)) and we extend
it to its algebraic closure k((u))*8. Since the fiber of EP at u = 0 is
also supersingular, the map V;gp can be written as

Vygn(X) = agX + -+ + g X"

with some a; € k[[u]] satisfying v, (ag) = 1, v,(a;) = 1for 1 <i < d and
vy(aq) = 0. Then an inspection of the Newton polygon shows that any
non-zero root z of Vo (X) satisfies v,(2) = 1/(¢* — 1) and there exists
a root 2’ of Vipn (X) with v, (2") = 1/((¢" - 1)) = #(A/(p™))*.
This concludes the proof. l

Consider the quotient £94/C; over Y4 which has a natural struc-
ture of a Drinfeld module of rank two by Lemma 2.8 (2). Since the
universal I'f(n)-structure on &, induces that on £4/C;, we have a
corresponding map 74 : Y. — Y,,,. Since £99/C; has ordinary reduc-
tion, the induced map Yuolffin — Yinm factors through }{f;ﬁn. Hence m,
also factors as mq : Y2 — Y24 On the other hand, the endomorphism
{p1, of Xy, defines endomorphisms of X and Y2, which we also

denote by (p~1),. Put
pa = {p~ noma.

This gives the cartesian diagram

(c;ord /Cl gord gord
Yuonrd Klorllrd }/uo;d )
d " Hn

Lemma 5.4. For any positive integer m, the induced map o4 : Y4 —

un,m
Yord extends to g : X0 — X which is compatible with respect to

un,m un,m un,m

m. Moreover, ¢q agrees with the q%-th power Frobenius map on nglfll.

Proof. Let K, be a splitting field of ®¢(X), as before. Put O, ,, =
Ok, /(™). By an fpqc descent, it suffices to show the existence of
an extension as in the lemma around each cusp over Ok, ,,. For this,
first note that the automorphism of Spec(Ok[X]/(Wa(X))) given by
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X — (IJg(X ) preserves its connected components, since so does its
restriction over k(p) by Lemma 3.2. Hence we have an automorphism
of Spec(QOk,) over Ok defined by ¢ — ®E(¢), which we denote by
0,. We define an endomorphism 7, of Spec(Ok, ((w))) over Ok by
Vo =0, Q V.

Let = = (a,b) be any element of 7 and f;, the monic generator
of Anny(b(A/(n))), as before. On the component defined by =, we
have the Tate-Drinfeld module TD(f,A) over Ok, ((w)) endowed with
a ' (n)-structure (X, [¢]). As in the proof of Lemma 4.19, using (4.11)
and (4.12) we see that the image of (A, [i]) by the map TD(f,A) —
TD(f,A)/C{*" can be identified with 7% (pA, [11]). We denote by

(A, [1]) = Spec(Or, m((w))) = Yino,

the map defined by the triple (TD(fyA)|ok, .(w))s A, [1£]). Then we
have the commutative diagram

Yord #d Yord
(/\[M])T T(/\,[M])

Spec(Ok,m((w))) —— Spec(Ok, m((w))),

p
where the vertical arrows identify the lower term with the formal com-
pletion of Xﬁfm at the cusp corresponding to = with w inverted. Since
we have Fi,(w) € Ok, [[w]], we obtain an extension of ¢4 to each cusp.

Since the canonical subgroup C; is a lift of the Frobenius kernel, from
(3.2) we see that the morphism ¢g : Y19 — Y] agrees with the ¢’-th

power Frobenius map. Then the assertion on X4 also follows, since

it is integral and separated. U
We denote by wd, and W, the pull-backs of the sheaf w3 to Y9,

and X4 respectively.

un,m?’

Proposition 5.5. Let pu, : EXY/Cy — £ be the canonical etale

isogeny of £ over Y. Then the isomorphism of Oyora -modules

Flg, = (i) ™" 0i(Witm) = Wiegi/cr)m — Wenm

extends to an isomorphism of Oxera -modules

Fﬁffﬁﬁdm : @; ((Dﬁg,ﬂm> - (Dﬁfl(,im

Proof. As in the proof of Lemma 5.4, it is enough to extend Fiora
to each cusp over Ok, . This follows from Corollary 4.20 and the
construction of @5 O
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5.3. Weight congruence. First we give a version of the Riemann-
Hilbert correspondence of Katz in our setting. Put A4, = A/(p").

Lemma 5.6. Let n be a positive integer. Let S,, be an affine scheme
which is flat over A, such that Sy = S, X a, Spec(A;) is normal and
connected. Let o4 : S, — S, be a morphism over A, such that the
induced map on S; agrees with the ¢%-th power Frobenius map. We
denote by w$*(S,,) the etale fundamental group for a geometric point of
Sn. Then there exists an equivalence between the category Rep, (Sy)
of free A,-modules of finite rank with continuous actions of 7$*(S,)
and the category F-Crys®(S,) of pairs (H, Fy) consisting of a locally
free Og, -module H of finite rank and an isomorphism of Og, -modules

Proof. This follows by a verbatim argument as in the proof of [Kat,
Proposition 4.1.1]. Here we sketch the argument for the convenience
of the reader. For any object M of Repy,, (Sy), let T;, be a (connected)
Galois covering of S,, such that 7{*(S,,) — Aut(M) factors through the
Galois group G(T,,/S,,) of it. By the etaleness, we can uniquely lift the
¢%th power Frobenius map on 7} to a (pg4-equivariant endomorphism
or, of T, over A,.

We claim that the sequence
(5.2) 0— > A, —=O(T,) "= o(T,)
is exact. Indeed, since T,, is flat over A,, we may assume n = 1, and in
this case the claim follows since O(7}) is an integral domain.

We have an endomorphism on M ®4, O(T,,) defined by m ® f —
m ® ¢f (f), and Galois descent yields an object (H(M), Fy(r)) of
F-Crys(S,,). This defines a functor

H(—) : Repy (S,) — F-Crys’(S,).

The exact sequence (5.2) implies (H(M)|z,)?™ 1 = M and thus the
functor H(—) is fully faithful.

We prove the essential surjectivity by induction on n. For n = 1,
it follows by applying the original result [Kat, Proposition 4.1.1] to
the case where the extension k/F, there is F,a/F . Suppose that the
case of n — 1 is valid. Let (H, F) be any object of F-Crys"(S,). By
assumption, there exists a finite etale cover T,,_; — 5,_1 such that
H|7, , has an Fy-fixed basis hy,...,h,.. By Hensel’s lemma, we can
lift 7,,_; to a finite etale cover T}, — S,.. Take a lift h; of h; to Hlr, .
We have

F’H(hlw . .,hr) = (hl, .. 7hr)(I + @n_lN)
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for some matrix N € M, (O(T,,)). Then it is enough to solve the equa-
tion

Fu((hy, ... h )T+ " *N)) = (hy, ..., he) (T + " INY)

over some finite etale cover of T,,. Since O(T,) is flat over A,, the
equation is equivalent to N + @4(N’') = N’ mod p, from which the
claim follows. O

Corollary 5.7. Let U be any non-empty affine open subscheme of S,,.
Note that, since @y agrees with the ¢%-th power Frobenius map on S,
it induces a map pg : U — U. Then the functor F-Crys(S,) —
F-Crys®(U) defined by the restriction to U is fully faithful.

Proof. Tt follows from the fact that, since Sy is normal and connected,
the restriction functor Rep,, (S,) — Rep, (U) is fully faithful. O

By Lemma 5.4, X4 satisfies the assumptions of Lemma, 5.6.

Proposition 5.8. By the equivalence of Lemma 5.6, the character

T - Wi’t(Xord ) — A

un,n

of Lemma 5.3 associated to C_T?n corresponds to the pair (W, Faera )
of Proposition 5.5.

Proof. By Corollary 5.7, it is enough to show that the character of
7§ (Yard)) associated to CP,, corresponds to the pair (W, Flea ). By
Proposition 3.8, the Hodge-Tate-Taguchi map yields an isomorphism
of invertible Oyora -modules

HTT . C,r?’n ®A7n Oy'l%*dn - word

un,n*

Note that, over any Galois covering 7;,, — Yuorfi trivializing Cfin, the
map HTT is compatible with Galois actions. Hence it suffices to show
that this map is also compatible with Frobenius structures, where we
consider 1 ® g on the left-hand side.

Since the natural map By, — Ogn((2)) is injective, we reduce

ourselves to showing that at the co-cusp the Hodge-Tate-Taguchi map
over Ok ,((z))

HTT : C,(TD(A))2 ®a, Ospec(Oxn((x)) — wrd(a) ® Ok n((2))

commutes with Frobenius structures. As is seen in the proof of Lemma
5.2, the induced v-structure on C,(TD(A)), ~ C[p"] from £ agrees
with that from C. By Lemma 2.17 we have C,(TD(A))Y ~ A, and
Lemma 3.7 implies that the isomorphism HT'T is given by

(5.3) HTT(1) = (A n)*) ' (dZ) = dX.
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Now the proposition follows from Corollary 4.20. O

Theorem 5.9. For i = 1,2, let f; be an element of My, (I2(n))o,. .
Suppose that their x-expansions at the co-cusp (fi)oo(x) satisfy the con-
gruence

(f1)e(z) = (f2)o0(2) # 0 mod E".

Then we have
ki = ky mod (¢ — 1)p™,  1,(n) = min{N € Z | p" = n}.

Proof. By assumption, f; and f; do not vanish on a non-empty affine
open subscheme U of X4 containing the oo-cusp. Thus the quo-

un,n

tient fi/f, defines a nowhere vanishing section on U of (word )®ki—k2

with z-expansion at the co-cusp equal to one. Thus the restriction of
f1/f2 to Spec(O,((z))) around the oo-cusp agrees with (dX)M "2,
By Corollary 4.20, it is fixed by the restriction of the Frobenius map
of (@t )®¥1~*2. Since the natural map B3, — Ok ,((x)) is injective,

we see that the section f1/fs on U itself is fixed by the Frobenius map.
Hence the restriction of the pair (@24 )®k1—k2 pERI=R) 6 [] is trivial.

un,n oed,
Then Corollary 5.7 implies that the pair is trivial on Xg;?n, and by
Proposition 5.8 the (k; — k2)-nd tensor power of the character 7, is
trivial. Now Lemma 5.3 shows that k; — k5 is divisible by the exponent
of the group (A/(p™))*, which equals (¢¢ — 1)p»™). This concludes the

proof. O

Then Theorem 1.1 follows by adding an auxiliary level of degree
prime to ¢ — 1 and applying Theorem 5.9.

5.4. p-adic Drinfeld modular forms. Let X, be the p-adic com-
pletion of X,, = X£(n) and X4 the formal open subscheme of X,
on which the Gekeler’s lift g; of the Hasse invariant is invertible. The
latter is isomorphic to the p-adic completion of

Note that the reduction modulo ™ of X9 is equal to X4 = We

see that X4 is a Noetherian affine formal scheme by [Abb, Corollaire
2.1.37].
Following [Gos2, Definition 3|, we define the p-adic weight space S

as
S=27Z/(¢"-1)Z x Z,

with the discrete topology on the first entry and the p-adic topology
on the second entry. We embed Z into it diagonally.
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For any x = (so,s1) € S, we have a continuous endomorphism of
Ok =F o x (1+ pOk) defined by

x = (zg, 1) — X = xy’x}

which preserves the subgroup 1 + p"Og. Composing it with the char-
acter m,, : T(X%0,) — AX = Of ., we obtain a character rX,. Let

un,n
wl‘i;dnx be the associated invertible sheaf on Xl‘j;dn via the correspon-
dence of Lemma 5.6. Since they form a projective system with surjec-
tive transition maps, they give an invertible sheaf @4 on X°¢ [Abb,
Proposition 2.8.9].
For any finite extension L/K, we put
M, (P (W)o, = H(X5 o, @i o,) = H (X3, win™ ®oy Or).

LlIl?

By [Abb, Proposition 2.7.2.9], we have

M, (TF(n))o, = lim H (X Danrl02.)

D,H‘OL,TL7 un,n
n

and thus it is flat over Q. Put

M (T3 () = My(TT (n))o, [1/6].

We refer to any element of this module as a p-adic Drinfeld modular
form of tame level n and weight x over L. Since the action of F on

X{(n) via ¢ — {c)a induces an action on H*(XZ |o, 3fldhx\@“)
the module M, (I'f(n)), is decomposed as

Mx(rlA(n))L = @ Mx7m(F1(n))L>

meZ/(q—1)Z

where the space M, ,,,(I'1(n)), of type m forms is the maximal subspace
on which {c)a acts by ¢ ™.

For any x € S and any positive integer n, we can find an integer
k satisfying x = k mod (¢¢ — 1)p'»™. Then we have an isomorphism
wordx ~ (ord Y®k compatible with Frobenius structures. Using this

un,n un n

identification, we obtain a map of x-expansion

(55)  HY(XGhlow. Smilos.) = Orallzll,  fo = (fa)e(@).

For any such k£ and k', the correspondence of Lemma 5.6 gives an iso-
morphism (@24 )®F ~ (@1 Y compatible with Frobenius structures.

un,n un,n
Since (5.2) implies that such an isomorphism is unique up to the mul-

tiplication by an element of A, by restricting to the oo cusp and using

—k)/(¢%—

(5.3) we see that it agrees with the multiplication by gd . Since
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(90)o0(z)P™™ = 1 mod ", the map (5.5) is independent of the choice
of k and induces

My m(T1(n))r — OL[[=]][1/6]
[ = (fn>n — foo(x) = Aﬂ(fn)oo(x)

which is an injection by Krull’s intersection theorem. This map identi-
fies our definition of p-adic Drinfeld modular forms with “p-adic Drin-
feld modular forms in the sense of Serre” defined by Goss [Gos2, Defini-
tion 5] and Vincent [Vin, Definition 2.5], by the following proposition.

(5.6)

Proposition 5.10. The image of the injection (5.6) agrees with the
space of power series F.,(x) € Op[[z]][1/p] which can be written as the
p-adic limit of x-expansions {(hy)w(x)}n, where h, is an element of
My, m(T1(n)) 1 for some integer k.

Proof. This can be shown as in the proof of [Kat, Theorem 4.5.1].
Indeed, let f = (f,), be an element of M, ,,(I'1(n))p,. For any n we
choose an integer k, > 2 satisfying x = k, mod (¢¢ — 1)p»™. Note
that, for any integer k& > 2, the description (5.4) and Corollary 4.16
give an isomorphism

HO(Xord |OL,n’@ord,k‘OL’n) _

un,n un,n

(@ H(Xunnloy . <wa|oL,n>®’f+j<q“’>) (g4 —1).

j=0

Therefore, by Proposition 5.1 (2), for each f, we can find an inte-
ger k;, > 2 and an element h, € My ,(I'i(n))o, satisfying k), =
k, mod (¢% — 1)p*™ and (f,)e(2) = (hn)w(z) mod ™. This yields
limy, o0 (hn)oo (%) = foo ().

Conversely, let Fio(z) = lim, o (hy)eo(x) be as in the proposition.
By Proposition 5.1 (1), we may assume h,, € My, »(I'1(n))o,. Mul-
tiplying powers of g; and dividing by ¢, we may assume k,,.; > k,
and

(hn1)eo () = (hn)oo () # 0 mod "
]

for any n. By choosing an isomorphism of Ox-modules Op ~ (’)g[L:K ,
we identify the O, -module (02)® ®p, O with ((@2)®%)LE] and
Or[[x]] with (Ok[[x]])®FK], which are compatible with z-expansions.
Then Theorem 5.9 implies k., = k, mod (¢¢ — 1)p'»™ and thus, in
the p-adic weight space S, the sequence (k,), converges to an element
X satisfying x = k, mod (¢? — 1)p»™. Proposition 5.1 (1) implies

n+1_kn)/(‘1d_1)

g1 = hngc(lk mod " and thus (h,,), defines an element
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f of M, ,(I'i(n))p, satistying fo(z) = Fy(z). This concludes the
proof. O

Theorem 5.11. Let f be a Drinfeld modular form of level T'1(n) N
Lo(p), weight k and type m over Cy with x-expansion coefficients at
o in the localization A, of A at (p). Then f is a p-adic Drinfeld
modular form of tame level n, weight k and type m. Namely, the x-
expansion fu () at the unramified cusp over the co-cusp is in the image

of the map (5.6) for x = k.

Proof. By Proposition 5.1 (1), we may assume f € M(I'f(n, p))r, -
By flat base change, we can find an element g € M,(T'?(n, p))a,,, such
that its image My (T (n, p))r, ) agrees with the element @' f for some
non-negative integer /.

For any integer n > 0, put Y%, = Y*(n, ) x4, Spec(Ok,). The
canonical subgroup C;,, over Yuorfi gives a section of the natural pro-
jection

un,n

-

d
Yoo, — Yinn-

un,n

Pulling back g by this section, we obtain an element g,, of the module
HO(Yord (@ord Y®k) - On each cusp corresponding to = = (a,b), the

un,n’ un,n

pull-back of g,, along this cusp agrees with the pull-back of ¢ along the
unramified cusp over =. Hence g, € HO(X°d  (@ord &%) Since

0 o) = o) = Tim (9,):n (),

this implies that f is a p-adic modular form of weight k. m

REFERENCES

[Abb] A. Abbes: Eléments de géométrie rigide. Volume I, Progr. Math. 286,
Birkh&user/Springer Basel AG, Basel, 2010.

[AIS] F. Andreatta, A. Iovita and G. Stevens: Ouerconvergent modular sheaves and
modular forms for GLy/F, Israel J. Math. 201 (2014), no. 1, 299-359.

[AIP] F. Andreatta, A. Iovita and V. Pilloni: p-adic families of Siegel modular
cuspforms, Ann. of Math. (2) 181 (2015), no. 2, 623-697.

[Arm] C. Armana: Torsion des modules de Drinfeld de rang 2 et formes modulaires
de Drinfeld, Algebra Number Theory 6 (2012), no. 6, 1239-1288.

[Boc] G. Bockle: An FEichler-Shimura isomorphism over function fields between
Drinfeld modular forms and cohomology classes of crystals, preprint, avail-
able at http://typo.iwr.uni-heidelberg.de/groups/arith-geom/home/
members/gebhard-boeckle/publications/



60 SHIN HATTORI

[Car] L. Carlitz: A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), no.
2, 167-182.

[Con] B. Conrad: Higher-level canonical subgroups in abelian varieties, preprint,
available at http://math.stanford.edu/~conrad/

[Dri] V. G. Drinfeld: FElliptic modules, Math. USSR-Sb. 23 (1974), no. 4, 561-592
(1976).

[Fli] Y. Z. Flicker: Drinfeld moduli schemes and automorphic forms. The theory of
elliptic modules with applications, Springer Briefs in Mathematics, Springer,
New York, 2013.

[Gabb] O. Gabber: Affine analog of the proper base change theorem, Israel J. Math.
87 (1994), no. 1-3, 325-335.

[Gabr] P. Gabriel: Etude infinitésimale des schémas en groupes et groupes formels,
Schémas en groupes I, Lecture Notes in Math. 151, Exp. VII 4, pp. 411-475,
Springer, Berlin, 1970.

[Gekl] E.-U. Gekeler: Zur Arithmetik von Drinfeld-Moduln, Math. Ann. 262
(1983), no. 2, 167-182.

[Gek2] E.-U. Gekeler: Drinfeld modular curves, Lecture Notes in Math. 1231,
Springer-Verlag, Berlin, 1986.

[Gek3] E.-U. Gekeler: On the coefficients of Drinfeld modular forms, Invent. Math.
93 (1988), no. 3, 667-700.

[Gekd] E.-U. Gekeler: De Rham cohomology and the Gauss-Manin connection for
Drinfeld modules, p-adic analysis (Trento, 1989), pp. 223-255, Lecture Notes
in Math. 1454, Springer, Berlin, 1990.

[Gosl] D. Goss: w-adic Fisenstein series for function fields, Compos. Math. 41
(1980), no. 1, 3-38.

[Gos2] D. Goss: A construction of v-adic modular forms, J. Number Theory 136
(2014), 330-338.

[Grol] A. Grothendieck: Eléments de géométrie algébrique IV. Etude locale des
schémas et des morphismes de schémas IV, Inst. Hautes Etudes Sci. Publ.
Math. 32 (1967).

[Kat] N. M. Katz: p-adic properties of modular schemes and modular forms, Mod-
ular functions of one variable III (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972), pp. 69-190. Lecture Notes in Math., Vol. 350,
Springer, Berlin, 1973.

[KM] N. M. Katz and B. Mazur: Arithmetic moduli of elliptic curves, Annals of
Mathematics Studies 108, Princeton University Press, Princeton, NJ, 1985.

[KS] K. Kurano and K. Shimomoto: Ideal-adic completion of quasi-excellent rings
(after Gabber), preprint, arXiv:1609.09246v1.

[Lau] G. Laumon: Cohomology of Drinfeld modular varieties. Part I: Geometry,
counting of points and local harmonic analysis, Cambridge Studies in Advanced
Mathematics 41, Cambridge University Press, Cambridge, 1996.

[Leh] T. Lehmkuhl: Compactification of the Drinfeld modular surfaces, Mem.
Amer. Math. Soc. 197, no. 921 (2009).

[Mat] H. Matsumura: Commutative algebra. Second edition, Mathematics Lecture
Note Series 56, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980.

[PR] M. A. Papanikolas and N. Ramachandran: A Weil-Barsotti formula for Drin-
feld modules, J. Number Theory 98 (2003), no. 2, 407-431.



p-ADIC PROPERTIES OF DRINFELD MODULAR FORMS 61

[Pet] A. Petrov: A-expansions of Drinfeld modular forms, J. Number Theory 133
(2013), no. 7, 2247-2266.

[Pil] V. Pilloni: Overconvergent modular forms, Ann. Inst. Fourier (Grenoble) 63
(2013), no. 1, 219-239.

[Ser] J.-P. Serre: Formes modulaires et fonctions zéta p-adiques, Modular functions
of one variable IIT (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp.
191-268. Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.

[Sha] S. M. Shastry: The Drinfeld modular Jacobian Ji(n) has connected fibers,
Ann. Inst. Fourier (Grenoble) 57 (2007), no. 4, 1217-1252.

[Tag] Y. Taguchi: A duality for finite t-modules, J. Math. Sci. Univ. Tokyo 2 (1995),
no. 3, 563-588.

[Vin] C. Vincent: On the trace and norm maps from To(p) to GLa(A), J. Number
Theory 142 (2014), 18-43.

[Wat] W. C. Waterhouse: Introduction to affine group schemes, Graduate Texts in
Mathematics 66, Springer-Verlag, New York-Berlin, 1979.

(Shin Hattori) FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY



