DUALITY OF DRINFELD MODULES AND ¢-ADIC
PROPERTIES OF DRINFELD MODULAR FORMS

SHIN HATTORI

ABSTRACT. Let p be a rational prime and ¢ a power of p. Let p be
a monic irreducible polynomial of degree d in F,[t]. In this paper,
we define an analogue of the Hodge-Tate map which is suitable
for the study of Drinfeld modules over F,[t] and, using it, de-
velop a geometric theory of p-adic Drinfeld modular forms similar
to Katz’s theory in the case of elliptic modular forms. In par-
ticular, we show that for Drinfeld modular forms with congruent
Fourier coefficients at o0 modulo ™, their weights are also con-
gruent modulo (g% — 1)pM°8 (™1 and that Drinfeld modular forms
of level T'1(n) n Ty(gp), weight k and type m are p-adic Drinfeld
modular forms for any tame level n with a prime factor of degree
prime to ¢ — 1.
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1. INTRODUCTION

Let p be a rational prime and ¢ a power of p. The theory of p-adic
modular forms, which originated from the work of Serre [Ser]|, has been
highly developed, and now we have various p-adic families of eigenforms
which play important roles in modern number theory. At the early
stage of its development, Katz [Kat| initiated a geometric treatment of
p-adic modular forms, and from the work of Katz to recent works on
geometric study of p-adic modular forms including [AIS, AIP, Pil], one
of the key ingredients is the theory of canonical subgroups of abelian
varieties and Hodge-Tate maps for finite locally free (commutative)
group schemes.

Let us briefly recall the definition. For a finite locally free group
scheme G over a scheme S, we denote by wg the sheaf of invariant
differentials of G and by Car(G) the Cartier dual of G. Then the Hodge-
Tate map for G is by definition

Car(G) = Homs(G,Gp) — wg, x— " (d?T) :
It can be considered as a comparison map between the etale side and the
de Rham side; in fact, for any abelian scheme A with ordinary reduction
over a complete discrete valuation ring O of mixed characteristic (0, p),
the Cartier dual Car(A[p"]°) of the unit component of A[p"]? is etale,
and the Hodge-Tate map gives an isomorphism of O/(p™)-modules

Car(A[p"]") @z O — wa ®o Spec(O/(p")).

Moreover, if A is close enough to having ordinary reduction, then there
exists a canonical subgroup of A which has a similar comparison prop-
erty via the Hodge-Tate map, instead of A[p"]°.

On the other hand, an analogue of the theory of p-adic modular forms
in the function field case—the theory of v-adic modular forms—has also
been actively investigated in this decade (see for example [Gos2, Pet,
Vin]). A Drinfeld modular form is a rigid analytic function on the
Drinfeld upper half plane over F,((1/t)), and it can be viewed as a
section of an automorphic line bundle over a Drinfeld modular curve.
The latter is a moduli space over F,(¢) classifying Drinfeld modules (of
rank two), which are analogues of elliptic curves. It is widely believed
that, for each finite place v of F,(t), Drinfeld modular forms have deep
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v-adic structures comparable to the p-adic theory of modular forms.
However, we do not fully understand what it is like yet.

What is lacking is a geometric description of v-adic modular forms
as in [Kat]. For this, the problem is that the usual Cartier duality does
not work in the Drinfeld case: Since Drinfeld modules are additive
group schemes, the Cartier dual of any non-trivial finite locally free
closed subgroup scheme of a Drinfeld module is never etale and we
cannot obtain an etale-to-de Rham comparison isomorphism via the
Hodge-Tate map.

In this paper, we resolve this and develop a geometric theory of
v-adic Drinfeld modular forms. In particular, we show the following
theorems.

Theorem 1.1 (Corollary to Theorem 4.15). Let n be a monic polyno-
mial in A = Fy[t] and ¢ a monic irreducible polynomial in A which
1s prime to n. For v = 1,2, let f; be a Drinfeld modular form of level
[y (n), weight k; and type m;. Suppose that their Fourier expansions
(fi)w(z) at o in the sense of Gekeler [Gek3| have coefficients in the
localization Ay of A at (p) and satisfy the congruences

(/1)o(@) = (f2)w(x) mod ", (f2)eo(z) # 0 mod p.

Then we have
ki = ky mod (¢4 — 1)p*™,  1,(n) = min{N € Z | p" = n}.

Theorem 1.2 (Theorem 4.19). Suppose that n has a prime factor
of degree prime to q — 1. Let f be a Drinfeld modular form of level
['i(n) nTo(p), weight k and type m such that Gekeler’s Fourier expan-
sion fo(x) at o0 has coefficients in A,y. Then f is a p-adic Drinfeld
modular form. Namely, fo(x) is the p-adic limit of Fourier expansions
of Drinfeld modular forms of level I'y(n), type m and some weights.

As a corollary, we define a notion of weight for “p-adic Drinfeld mod-
ular forms in the sense of Serre” (Definition 4.17). Note that Theorem
1.1 generalizes [Gek3, Corollary (12.5)] of the case n = 1, and Theorem
1.2 is a variant of [Vin, Theorem 4.1] with non-trivial tame level n.

The novelty of this paper lies in the systematic use of the duality
theory of Taguchi [Tag] for Drinfeld modules and a certain class of finite
locally free group schemes called finite v-modules. Using Taguchi’s
duality, we define an analogue of the Hodge-Tate map, which we refer
to as the Hodge-Tate-Taguchi map. For a Drinfeld module E with
ordinary reduction, we construct canonical subgroups of F such that
their Taguchi duals are etale and the Hodge-Tate-Taguchi maps for
them give isomorphisms between the etale and de Rham sides similar
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to the case of elliptic curves. Moreover, a study of Taguchi’s duality for
Drinfeld modules, including the invariance of a Hodge height under the
duality (Proposition 3.4), compensates the lack of autoduality for them
and yields the vanishing of the higher cohomology groups for a Hodge
bundle (Corollary 4.2) and an analogue of Igusa’s theorem (Lemma
4.9). These enable us to prove the above theorems by almost verbatim
arguments as in [Kat].

The organization of this paper is as follows. In §2, we review Taguchi’s
duality theory. Here we need a description of the duality for Drinfeld
modules in terms of biderivations [Gek4], which is done by Papanikolas-
Ramachandran [PR] in the case over fields. For this reason, we follow
the exposition of [PR] and generalize their results to general bases.

In §3, we develop the theory of canonical subgroups of Drinfeld mod-
ules with ordinary reduction and Hodge-Tate-Taguchi maps. In our
case, the role of p,» for elliptic curves is played by the p"-torsion part
C[p"] of the Carlitz module C, where the dual of C[p"] in the sense
of Taguchi is the constant A-module scheme A/(p").

Then in §4 we prove the main theorems in a similar way to [Kat,
Chapter 4], the point being the fact that the Riemann-Hilbert corre-
spondence of Katz over the truncated Witt ring W, (F,) [Kat, Propo-
sition 4.1.1] can be suitably generalized to the case over A/(p").

Acknowledgments. The author would like to thank Yuichiro Taguchi
for directing the author’s attention to arithmetic of function fields,
and also for answering many questions on his duality theory. The
author also would like to thank Gebhard Bockle and Rudolph Perkins
for enlightening discussions on Drinfeld modules and Drinfeld modular
forms, and Kentaro Nakamura for pointing out an error in the previous
version of the paper. A part of this work was done during the author’s
visit to Interdisciplinary Center for Scientific Computing, Heidelberg
University. He is grateful to its hospitality. This work was supported
by JSPS KAKENHI Grant Numbers JP26400016, JP17K05177.

2. TAGUCHI DUALITY

In this section, we review the duality theory for Drinfeld modules
of rank two and an analogue of Cartier duality for this context, which
are both due to Taguchi [Tag]. Let p be a rational prime, ¢ a p-
power and F, the finite field with ¢ elements. We put A = [ [t]. For
any scheme S over [F,, we denote the g-th power Frobenius map on
S by Fs : S — S. For any S-scheme T" and Og-module L, we put
TW =T xgp, S and L9 = F#(L). Note that for any Og-algebra A,
the ¢-th power Frobenius map induces an Og-algebra homomorphism
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fa : A9 — A For any A-scheme S, the image of t € A by the
structure map A — Og(S) is denoted by 6.

2.1. Line bundles and Drinfeld modules. For any scheme S over
F, and any invertible Og-module £, we write the associated covariant
and contravariant line bundles to £ as

V(L) = Specg(Sympy (L% 1)), V*(L) = Specy(Symp, (L))

with L8 := LY = Home, (L, Og). Note that they represent functors
over S defined by

T — L|p(T), T+ L p(T),

where L|7 and £#7!|7 denote the pull-backs to T. The additive group
G, acts on the group schemes V,(£) and V*(£) through the natural
actions of Op(T) on L|r(T) and L® ! (T), respectively. We often
identify £ with V,(£). We have the ¢-th power Frobenius map

7oL L% [ [®
This map induces a homomorphism of group schemes over S
7: V(L) - V. (L£®).

Note that 7 also induces an Og-linear isomorphism £ — £®9 by
which we identify V, (£®9) with V,(£)(@. Then the relative g-th Frobe-
nius map V,(£) — V,(£)@ = V,(L£®) is induced by the natural in-
clusion

(2.1) Sym(L£L®7) — Sym(L®™).

For S = Spec(B) and L = Og, we have V,(Ogs) = G, and 7 induces
the endomorphism of G, = Spec(B[X]) over B defined by X — X1
This gives the equality

End[[rqjs(Ga) = B{T}7

where B{r} is the skew polynomial ring over B whose multiplication
is defined by at? - b7 = ab? 77 for any a,b € B.

Definition 2.1 ([Lau], Remark (1.2.2)). Let S be a scheme over A and
r a positive integer. A (standard) Drinfeld (A-)module of rank r over
S'is a pair E = (£, ®¥) of an invertible sheaf £ on S and an F-algebra
homomorphism

®F . A — Endg(V.(L))
satisfying the following conditions for any a € A\{0}:
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e the image ®F of a by ®F is written as

rdeg(a)
oF = > (@), ai(a) e L2U(S)
i=0
With iy qeg(a)(@) nowhere vanishing.
e ap(a) is equal to the image of a by the structure map A —
Os(9).
We often refer to the underlying A-module scheme V,(£) as E. A
morphism (£, ®) — (L', ®’) of Drinfeld modules over S is defined to
be a morphism of A-module schemes V,(£) — V,(L') over S. The
category of Drinfeld modules over S is denoted by DMg.

We denote the Carlitz module over S by C" it is the Drinfeld module
(Os,®%) of rank one over S defined by ®° = 6 + 7. We identify

the underlying group scheme of C' with G, = Specg(Os[Z]) using
le 05(5)

2.2. p-modules and v-modules. Let S be a scheme over A. Let G
be an F;,-module scheme G over S whose structure map = : G — S
is affine. Note that the additive group G, over S is endowed with a
natural action of F,. Put

8g = f%ﬂOquys(g, Ga),

the Og-module of F,-linear homomorphisms G — G, over S. The
Zariski sheaf &g is naturally considered as an Og-submodule of 7, (Og).

On the other hand, if the formation of £; commutes with any base
change, then the relative g-th Frobenius map Fg/5 : G — G@ defines
an Og-linear map

0o Egw = ES — &

which commutes with [ -actions.

Definition 2.2. We say an F,-module scheme G over S is a ¢-module
over S if the following conditions hold:

e the structure morphism 7 : G — S is affine,

e the Og-module &; is locally free (not necessarily of finite rank)
and its formation commutes with any base change,

e the induced F,-action on the sheaf of invariant differentials wg
agrees with the action via the structure map F, — Og(S),

e the natural Og-algebra homomorphism S := Sym, (&) —
7+(Og) induces an isomorphism

S/((fs ®1— pg)(EY)) — mu(Og).
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A morphism of ¢-modules over S is defined as a morphism of IF,-module

schemes over S. The category of ¢-modules over S is denoted by
»-Modg.

The last condition of Definition 2.2 yields a natural isomorphism
Coker(pg) — wg.

We also note that for any p-module G over S, the natural map Sym, (Eg) —
7+(Og) defines a closed immersion of F,-module schemes

ig . Q — V*(gg)

Definition 2.3. A p-sheaf over S is a pair (€, p¢) of a locally free
Og-module £ and an Og-linear homomorphism ¢ : ED — £ We
abusively denote the pair (€,¢¢) by €. A morphism of ¢-sheaves is
defined as a morphism of Og-modules compatible with ¢¢’s. A se-
quence of ¢-sheaves is said to be exact if the underlying sequence of
Og-modules is exact. The exact category of p-sheaves over S is denoted
by p-Shvg.

We have a contravariant functor
Sh : ¢-Modg — ¢-Shvg, G (&g, ¢g).

On the other hand, for any object (€, p¢) of the category p-Shvg, put
Se = Syme, (€) and

Gr(€) = Specs(Se/((fse ® 1 = we) (ED))).

Then the diagonal map £ — £ @ £ and the natural [Fj-action on &
define on Gr(€) a structure of an affine F,-module scheme over S. The
formation of Gr(€) is compatible with any base change. We also have
a natural identification

(2.2) Gr(E)(T) = Homy, o, (€, m.(Or))

for any morphism 7 : T'— S, where we consider on 7, (Or) the natural
@-structure induced by the g-th power Frobenius map [Tag, Proposition
(1.8)]. Since we have a natural isomorphism & — Eq.), we obtain a
contravariant functor

Gr: p-Shvg — p-Modg, & — Gr(€),

which gives an anti-equivalence of categories with quasi-inverse Sh.

A sequence of p-modules is said to be Shv-exact if the correspond-
ing sequence in the category p-Shvg via the functor Sh is exact. We
consider p-Modg as an exact category by this notion of exactness.
The author does not know if it is equivalent to the exactness as group
schemes.
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The commutativity of £ with any base change in Definition 2.2 holds
in the case where G is a line bundle over S. From this we can show
that any Drinfeld module is a p-module. Another case it holds is that
of finite p-modules, which is defined as follows.

Definition 2.4 ([Tag|, Definition (1.3)). We say an F;-module scheme
G over S is a finite p-module over S if the following conditions hold:

e the structure morphism 7 : G — S is affine,
e the induced [F-action on wg agrees with the action via the struc-
ture map F, — Og(9),
e the Og-modules 7,(Og) and &g are locally free of finite rank
with
rankog (1,(Og)) = ¢-*"kos(€o),
o & generates the Og-algebra m,(Og).

A morphism of finite ¢p-modules over S is defined as a morphism of
F,-module schemes over S.

Definition 2.5. A finite ¢-sheaf over S is a y-sheaf such that its un-
derlying Og-module is locally free of finite rank. The full subcategory
of ¢-Shvg consisting of finite p-sheaves is denoted by @—Shvg.

Let G be a finite p-module over S. Then we also have the natural
closed immersion ig : G — V*(&g), which implies that the Cartier dual
Car(G) of G is of height < 1 in the sense of [Gabr, §4.1.3]. Then,
by [Gabr, Théoreme 7.4, footnote|, the sheaf of invariant differentials
Wear(g) is alocally free Og-module of finite rank, and thus the formation
of the Lie algebra

Lie(Car(G)) ~ #omgs (G, G,)

commutes with any base change. Since ¢ —1 is invertible in Og(.S), the
Og-module &; is the image of the projector

Lie(Car(G)) — Lie(Car(G)), = — qu1 S a(a) a(a),

X
aelfy

where o : A — Og(9) is the structure map and 1, is the action of a on
Lie(Car(G)) induced by the F -action on G. Since the formation of this
projector commutes with any base change, so does that of £&;. From this
we see that any finite ¢o-module is a p-module. We denote by @—Modé
the full subcategory of p-Modg consisting of finite p-modules. Then the
functor Gr gives an anti-equivalence of categories @-Shvg — gp—Modé
with quasi-inverse given by Sh.

On the category @—Modg, the Shv-exactness agrees with the usual
exactness of group schemes. Indeed, from (2.2) and comparing ranks
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we see that the Shv-exactness implies the usual exactness, and the
converse also follows by using the compatibility of Sh with any base
change and reducing to the case over a field by Nakayama’s lemma.

Lemma 2.6. Let E be a line bundle over S. Let G be a finite locally
free closed F,-submodule scheme of E over S. Suppose that the rank of
G is a qg-power. Then G is a finite p-module.

Proof. We may assume that S = Spec(B) is affine, the underlying in-
vertible sheaf of E is trivial and G = Spec(Byg) is free of rank ¢™ over
S. We write as E' = Spec(B[X]). We have a surjection B[X] — Bg
of Hopf algebras over B. Let P(X) € B[X] be the characteristic poly-
nomial of the action of X on Bg. Since deg(P(X)) = ¢", the Cayley-
Hamilton theorem implies that this surjection induces an isomorphism
B[X]/(P(X)) =~ Bg.

Since P(X) is monic, we can see that P(X) is an additive polynomial
as in [Wat, §8, Exercise 7]. Since G is stable under the F,-action on
G, we have the equality of ideals (P(AX)) = (P(X)) of B[X] for any
A€ F¥. From this we see that P(X) is Fy-linear and

n—1 )
& = P BXY,
i=0
from which the lemma follows. O

Corollary 2.7. Let m: E — F' be an F-linear isogeny of line bundles
over S. Then the group scheme G = Ker(r) is a finite p-module over
S, and we have a natural exact sequence of @-sheaves

(2.3) 0—>Ep —=Ep —> Eg — 0.

Proof. The first assertion follows from Lemma 2.6. For the second one,
it is enough to show the surjectivity of the natural map i* : £ — &g.
By Nakayama’s lemma, we may assume S = Spec(k) for some field k.
Then 7 is defined by an F,-linear additive polynomial as

X PX)=aX+a X"+ +a, X9, a,#0

and the map ¢* is identified with the natural map
&= P kX" - & = PrXT
iEZ;o =0
of taking modulo ®,., kP(X)?. Hence i* is surjective. O

Lemma 2.8. (1) Let E be a line bundle over S. Let G and H be
finite locally free closed F,-submodule schemes of E over S sat-
isfying H < G. Suppose that the ranks of G and H are constant
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q-powers. Then E/H is a line bundle over S and G/H is a finite
w-module over S.

(2) ([Hat], Lemma 2.2 (2)) Let E be a Drinfeld module of rank r.
Let H be a finite locally free closed A-submodule scheme of E
of constant g-power rank over S. Suppose either

o 1 s etale over S, or
o S is reduced and for any mazimal point n of S, the fiber
H, of H over n is etale.
Then E/H is a Drinfeld module of rank r with the induced A-
action.

Proof. For (1), the assertion that E/H is a line bundle over S is [Hat,
Lemma 2.2 (1)]. Moreover, applying Lemma 2.6 to the natural closed

immersion G/H — E/H, we see that G/H is a finite p-module over
S. O

Definition 2.9 ([Tag], Definition (2.1)). We say an A-module scheme
G over S is a t-module over S if the following conditions hold:

e the induced A-action on wg agrees with the action via the struc-
ture map A — Og(95),
¢ the underlying IF;-module scheme of G is a p-module over S.
We say G is a finite t-module if in addition the underlying [F,-module
scheme of G is a finite p-module over S.

Note that the former condition in Definition 2.9 is automatically
satisfied if G is etale.

Lemma 2.10. Let E be a line bundle over S. Let G and H be finite
locally free closed Fy-submodule schemes of EE over S satisfying H < G.
Suppose that G is endowed with a t-action which makes it a finite t-
module, H is stable under the A-action on G and the ranks of G and
H are constant g-powers.

(1) The A-module scheme H is a finite t-module over S.

(2) Suppose moreover that aG = 0 for some Og-reqular element
a € A. Then the A-module scheme G/H is a finite t-module
over S.

Proof. From Lemma 2.6 and Lemma 2.8 (1), we see that H and G/H

are finite ¢p-modules. We have an exact sequence of Og-modules

*

T
wWg /H Wg W 0

which is compatible with A-actions. Since the t-action on wg is equal
to the multiplication by 6, so is that on wy and (1) follows. For (2),
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using co-Lie complexes we can deduce from the assumption that the
map 7* is injective. This yields (2). O

Definition 2.11 ([Tag], Definition (3.1)). A v-module over S is a pair
(G, vg) of a t-module G and an Og-linear map vg : &g — Séq) such that
the map 1Y : & — &g induced by the t-action on G satisfies

W =0+ pgovg, (b ®1)ovg=uvg oy,

We refer to such vg as a v-structure on G and denote the pair (G, vg)
abusively by G. A morphism ¢ : G — H of v-modules over S is defined
as a morphism of A-module schemes over S which commutes with v-
structures, in the sense that the following diagram is commutative.

En — &Y

g*\ Lg*®1

gg o 5(‘(;1)

A sequence of v-modules over S is said to be exact if the underlying
sequence of ¢-modules is Shv-exact. The category of v-modules over S
is denoted by v-Modg.

A v-module over S is said to be a finite v-module if the underlying ¢-
module is a finite p-module. The full subcategory of v-Modg consisting
of finite v-modules is denoted by U—Modé.

Definition 2.12 ([Tag], Definition (3.2)). A v-sheaf over S is a quadru-
ple (€, ¢s, e+, ve), which we abusively write as &, consisting of the
following data:

o (£,p¢) is a p-sheaf over 9,

o e, & — £ is an Og-linear map which commutes with g,

o vz : £ — £D is an Og-linear map which commutes with (o
and satisfies Vg = 0 4+ @g 0 vg.

A morphism of v-sheaves is defined as a morphism of underlying Og-
modules which is compatible with the other data, and we say that a
sequence of v-sheaves is exact if the underlying sequence of Og-modules
is exact. The exact category of v-sheaves over S is denoted by v-Shvg.

A wv-sheaf is said to be a finite v-sheaf if the underlying Og-module
is locally free of finite rank. The full subcategory of v-Shvg consisting
of finite v-sheaves is denoted by U—Shvg.

Then the functor Gr induces anti-equivalences of categories

v-Shvg — v-Modg, U—Shvg — U—Modg
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with quasi-inverses given by Sh.

Note that for any v-module (resp. finite v-module) G over S and any
S-scheme T', the base change G|r = G xg T has a natural structure of
a v-module (resp. finite v-module) over T'. For any Drinfeld module F
over S, the map ¢g : 8](3(1) — &g is injective and Coker(pg) is killed by
P — 0. Then FE has a unique v-structure

vp = ¢g' o (U —0)

and any morphism of Drinfeld modules is compatible with the unique
v-structures. Thus we may consider the category DMg as a full sub-
category of v-Modg. Moreover, for any isogeny 7m : £ — F' of Drin-
feld modules over S, Corollary 2.7 implies that Ker(r) has a unique
structure of a finite v-module such that the exact sequence (2.3) is
compatible with v-structures. Note that a v-structure of Ker(r) is not
necessarily unique without this compatibility condition. On the other
hand, in some cases a finite t-module over S has a unique v-structure,
as follows.

Lemma 2.13 ([Tag|, Proposition 3.5). Let G be a finite t-module over
S. Suppose either

(1) G is etale over S, or
(2) S is reduced and for any mazimal point n of S, the fiber G, of
G over n s etale.

Then the map g : ééq) — &g 1is injective. In particular, there exists
a unique v-structure on G, and for any v-module H, any morphism
G — H of t-modules over S is compatible with v-structures.

Corollary 2.14. Let S be a reduced scheme which is flat over A and
E a Drinfeld module of rank r over S. Let a € A be a non-zero element
and G a finite locally free closed A-submodule scheme of the a-torsion
part Ela] of E over S of constant q-power rank. Then E/G has a
natural structure of a Drinfeld module of rank r. Moreover, G has
a unique structure of a finite v-module induced from that of E and,
for any v-module H, any morphism G — H of t-modules over S is
compatible with v-structures.

Proof. The going-down theorem implies that a is invertible in the residue
field of every maximal point 1 of S, and thus E|a] is etale over . Then
the first assertion follows from Lemma 2.8 (2). Moreover, Lemma 2.10
(1) implies that G is a finite t-module. Since G is the kernel of an
isogeny of Drinfeld modules, the v-structure on E induces that on G.
The other assertions follow from Lemma 2.13 (2). O
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Remark 2.15. The notation here is slightly different from the lit-
erature including [Tag]. Finite ¢-sheaves are usually referred to as -
sheaves. In [Tag], finite f~-modules, finite v-modules and finite v-sheaves
are assumed to be killed by some nonzero element of A.

2.3. Duality for finite v-modules. Let S be a scheme over A. We
denote by C the Carlitz module over S, as before. We have

Ec = Homg, 5(C,G,) = P 0527

iEZ;O

with its unique v-structure given by

1—1

voibo— P, 27 27 @0 —0) + 27 1.
Note that v is surjective. We have
¢g(z) = (wtc)Z(Z) — 0+ 4 79

and thus the set {¢/7(Z)};50 forms a basis of &-. For any scheme T
over S and any v-module H over T, we denote by Hom, r(#, C|r) the
A-module of morphisms H — C'|r in the category v-Modz.

The following theorem, due to Taguchi, gives a duality for finite v-
modules over S which is more suitable to analyze Drinfeld modules and
Drinfeld modular forms than usual Cartier duality for finite locally free
group schemes.

Theorem 2.16 ([Tag|, §4). (1) Let G be a finite v-module over S.
Then the big Zariski sheaf

Hom, 5(G,C) = (S-schemes) — (A-modules)

gwen by T — Hom, r(G|r,C|r) is represented by a finite v-
module GP over S. We refer to GP as the Taguchi dual of G.
(2) rank(G) = rank(GP).
(8) The functor

v—Modé — U—Modé, G— G-

is exact (in the usual sense) and commutes with any base change.
(4) There exists a natural isomorphism of v-modules G — (GP)P.

Proof. For the convenience of the reader, we give a simpler proof than
in [Tag, §4]. Consider the linear dual

ggv = %mos (Sg, Os)
and the dual maps
(i) &5 = &, g (&) - &, vy &5 — (€)1
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of 1Y, vg and g, respectively. We define a finite v-module G” over S
by GP = Gr(&,vy) with t-action (1) and v-structure ¢y .

To see that it represents the functor in the theorem, let 7 : T" — §
be any morphism. Since v¢ is surjective, to give a map of v-sheaves
g : Ec|r — Eg|r is the same as to give an Op-linear map which is com-
patible with ¢-actions and v-structures. Since ¢S,,(2) = ¢ (¢S (2)),
to give an Op-linear map g : Ec|r — &g|r compatible with t-actions
is the same as to give an element © = ¢g(Z) of &|r(T). As for the
compatibility with v-structures, we see that if g is compatible with ¢-
actions, then the relation (g ® 1)(ve(v5(Z))) = vg(g(¢5(Z))) implies
a similar relation for ¢%,,(Z) = ¢¥7(¥5(Z)). Thus we only need to
impose on x the condition for ¢ = 0. Namely, we have

(2.4) Hom, r(G|r,C|r) = {z € &lr(T) | t®1 = vg(z)},

where 1 ® 1 € (Eg|7)@(T) is the pull-back of z by the Frobenius map
Fp. On the other hand, by (2.2) the set Gr(£5, vy )(T') can be identified
with the set of Op-linear homomorphisms x : £5 |r — Op satisfying

xovg = for o (Fr(x))-

Via the natural isomorphisms
Homo, (€5 |r.Or) = Eglr. o, : OF = F£(Or) ~ Or,

we can easily show that it agrees with (2.4). Thus we obtain a natural
isomorphism

Hom, 7(G|r, C|r) =~ Gr(&g ,vg )(T)

and we can check that it is compatible with A-actions. The assertion
on the exactness follows from the agreement of the exactness and the
Shv-exactness for the category U—Modé. The other assertions follow
from the construction. O

Lemma 2.17. Let S be any scheme over A. Let a € A be any monic
polynomial. Consider the finite t-module Cla] endowed with the natural
v-structure as the kernel of the isogeny a : C' — C'. Then the Taguchi
dual Cla]P of C[a] is isomorphic as a v-module to the constant A-
module scheme A/(a) endowed with the unique v-structure of Lemma
2.19 (1).

Proof. Let ¢« : Cla] — C be the natural closed immersion. From the
definition of the v-structure on Clal], it is compatible with v-structures.
Thus we have a morphism of ¢-modules over .S

A/(a) — Cla]? = Hom, s(C[a],C), 1+ .
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We claim that it is a closed immersion. Indeed, by Nakayama’s lemma
we may assume S = Spec(k) for some field k. Suppose that b = 0 for
some b e A. Write as b = sa+r with s, 7 € A satisfying deg(r) < deg(a).
Then we have ®¢(Z) | ®¢(Z), which is a contradiction unless 7 = 0.
This implies that the kernel of the above morphism is zero and the
claim follows. Since both sides have the same rank over S, it is an
isomorphism. Since both sides are etale, it is compatible with unique
v-structures. U

2.4. Duality for Drinfeld modules of rank two. Let S be a scheme
over A. Recall that for any S-scheme T', both of the categories DMt of
Drinfeld modules over T" and v-Mod?, of finite v-modules over T are full
subcategories of v-Modr, and v-Modr is anti-equivalent to v-Shvy. For
any v-modules H, ' over T, we denote by Ext,, ;.(H,H') the A-module
of isomorphism classes of Yoneda extensions of H by H' in the category
v-Mody with Shv-exactness. We identify this A-module with the A-
module Ext, (£, Ex) of isomorphism classes of Yoneda extensions
of &y = Sh(H') by & = Sh(H) in the exact category v-Shvy. We
also define a big Zariski sheaf &ut, o(#,H') as the sheafification of
T — Exty o (H|r, H'|r).

Let E be a Drinfeld module over S and put G = G, or C' over S.
We write as G = Specg(Os[Z]). Let us describe the isomorphism class
of any extension

0 G L E 0

in the category v-Modg. Consider the associated exact sequence
0 Er &L Ea 0

in the category v-Shvg. Since &g is a free Og-module, this sequence
splits as Og-modules if S is affine. In this case, using ¢g(Z9) = 27,
we can show that there exists a splitting s : £ — &1 of the above
sequence which is compatible with ¢-structures.

We assume that S is affine and fix such a ¢-compatible splitting s

for a while. Then the a-action on L for any a € A is given by
q)aL = (CI)S7 q)aE + 5a)
with some [Fy-linear homomorphism

§: A — Homy, s(E,G), a6,

Here 4, is associated to the map L os—soy¥ : E — Ep and satisfies
(i) oy = 0 for any A e IF,,
(ii) 64 = ®C 0 0y + 0, 0 ®F for any a,b € A.
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Since ¢y, ES") — &7, is injective and by Definition 2.9 the map }F — 6
kills Coker(yr), the v-structure on L is uniquely determined by the
data 9;.

Definition 2.18 ([Gek4], §3 and [PR], §2). Let S be an affine scheme
over A, E/ a Drinfeld module over S and G = G, or C as above.

(1) An (£, G)-biderivation is an F,-linear homomorphism ¢ : A —
Homg, s(E,G), a— §, satisfying the above conditions (i) and
(ii). The module of (E, G)-biderivations is denoted by Der(E, G),
which admits two natural A-module structures defined by

(6#C)g=0,00F  (cx0)y =D 04, for any c e A.
Note that we have a natural isomorphism
(2.5) evy : Der(E,G) — Homg, 5(E,G), 0+ 6.

(2) An (E, G)-biderivation 0 is said to be inner if there exists f €
Homp, s(E, G) satisfying § = 07, where the (£, G)-biderivation
dy is defined by

5f7a:fo(bf—@goffor any a € A.

The submodule of Der(FE, G) consisting of inner (E, G)-biderivations
is denoted by Der;, (E, G), which is stable under two natural A-
actions.

(3) We denote by Dery(E,G) the submodule of Der(E, G) consist-
ing of (E,G)-biderivations § such that the induced map on
sheaves of invariant differentials

Cot(d:) : wg — wg
is the zero map. We have Der;,(E, G) < Derg(E, G).

(4) An inner (E,G)-biderivation d; is said to be strictly inner if
Cot(f) = 0. We denote by Derg(E, G) the submodule of Der(E, G)
consisting of strictly inner (£, G)-biderivations.

Then the two natural A-actions on Der(E, G) agree with each other
on the quotient Der(E, G)/Deri,(E, G) [PR, p. 412] and we have nat-
ural isomorphisms of A-modules

Ext, ¢(E,G) — Der(E, G)/Deri,(E, G)

= Homg, s(E, G)/ev,(Deri, (E, G)).
We define an A-submodule
Ext11}7S(E, G)O

of Ext, ¢(E, G) as the inverse image of Derg(E, G)/Der;,(E, G) by the
above isomorphism. Since another choice of a p-compatible splitting

(2.6)
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gives the same biderivation modulo inner ones, the first map of (2.6)
is independent of the choice of a ¢-compatible splitting, and so is the
the A-submodule Ext, 4(E, G)°.

Suppose that E' = V(L) is a Drinfeld module of rank two over the
affine scheme S. We have a natural isomorphism

P £ > Homp, s(E,G), b (Z—b),
mz=0
by which we identify both sides. Then Der(E,G), Der(FE,G)? and
Deri,(E, G) are locally free Og(S)-modules, and we can show that
T Extyp(Elr,Glr), T = Ext,(E|r, Glr)°

satisfy the axiom of sheaves on affine open subsets of S. This implies
that, for the case where S is not necessarily affine, we have a subsheaf
of A-modules
&xty o(E,G)° < &uty, o(E,G)

such that, for any affine scheme T over S and e € {7, 0}, we have

&uty o(E,G)*(T) = Exty r(El|r, G|r)".
Moreover, we have a natural isomorphism of big Zariski sheaves
(2.7) L — &ut) o(E,G)°

sending, for any affine scheme T over S, any element b € L®9(T)
to the unique extension class such that, for the associated (E|r, G|r)-
biderivation d, the map d; : E|r — G|z is given by

6F : Or[Z] — Sym(L® V), Zw—b.
Thus, taking G = C, we have the following theorem, which is due to
Taguchi [Tag, §5]. The interpretation of his duality using biderivations

obtained here is a generalization of [PR, Theorem 1.1] to general base
schemes.

Theorem 2.19. Let S be any scheme over A.

(1) Let E = (L, DY) be any Drinfeld module of rank two over S
with

OF = 0+ ayr + ap?,  a; € LEV(S).
Then the functor
&uty, g(E,C)° : (S-schemes) — (A-modules)

is represented by a Drinfeld module EP of rank two over S

defined by

EP =V, (£, of =0—a,®a§'7 +aF 72
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(2) The formation of EP commutes with any base change.

(3) Let F = (M, ®F) be any Drinfeld module of rank two over S.
Then any morphism f : E — F of the category DMg induces a
morphism fP : FP — EP of this category. If f is induced by
an Og-linear map f : L — M, then the dual map fP : FP —
EP is given by the q-th tensor power (f¥)®? of the linear dual
Yo MY - LY.

(4) If f is an isogeny, then fP is also an isogeny of the same degree
as f, Ker(f) has a natural structure of a finite v-module over
S and there exists a natural isomorphism of A-module schemes

over S
(Ker(f))” — Ker(f7).

Proof. The assertions (1) and (2) follow easily from the construction.
The assertion (3) follows from the functoriality of &ut, ¢(—, C)° and
the isomorphism (2.7).

Let us show the assertion (4). Put G = Ker(f). Corollary 2.7 implies
that the exact sequence of group schemes

0 G B F 0

is also Shv-exact and thus G has a natural structure of a finite v-module
such that this sequence is compatible with v-structures. Since E and
C have different ranks, the long exact sequence of JZom, s yields an
exact sequence

0 —> GP —— &ut! (F,C) — &ut! 4(E, C).

From a description of the connecting homomorphism using Yoneda ex-
tension, we can show that it factors through the subsheaf &ut; (F, C)°.
Therefore we have an exact sequence of A-module schemes over S

D p I b
0 g F E~,

from which we obtain a natural isomorphism G — Ker(fP). To see
that fP is faithfully flat, by a base change we may assume S = Spec(k)
for some field k. Then the group schemes F'” and EP are isomorphic to
G, and [P is defined by an additive polynomial. Since Ker(f?) = G? is
finite over S, this polynomial is non-zero and thus f? is faithfully flat.
Since the ranks of G and G” are the same, the assertion on deg(f”)
also follows. O

Remark 2.20. Suppose that there exists a section h € £&~(@+1)(3)
satisfying h®4! = —ay. Then the map h : £ — £L® 9 gives an autod-
uality for Drinfeld modules of rank two. In the classical setting on the
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Drinfeld upper half plane, this is the case because of the existence of
Gekeler’s h-function [Gek3, Theorem 9.1 (c)]. In general, we only have
a weaker version of autoduality: the map

£ o o7 s [ ®ay
is an isomorphism of invertible sheaves. This is enough for our purpose.
For a Drinfeld module F over S, we have analogues of the first de

Rham cohomology group and the Hodge filtration for an abelian variety
[Gek4, §5]. First we show the following lemma.

Lemma 2.21. For any Drinfeld module E of rank two over an affine
scheme S, we have natural isomorphisms

Lie(E”) — Ext, g(E,G.)°?, Dery(E,G,)/Derg(E,G,) — Lie(E)".

Proof. For the former one, we put S. = Specg(Og|e]/(¢?)). Then we
have

Lie(E”) = Ker(E”(S.) — EP(S)).
For any Fg-linear homomorphism ¢ : A — Homg,_ g (E|s., C|s.), we can
write as '

0, = 00 + &6y, 6. € Homg, s(E,C).
Then 6 € Derg(E|s.,C|s.) if and only if

8" € Derg(E, C), 4" € Derg(E,G,).
On the other hand, for any g = ¢° + eg' € Homg, s (E|s.,C|s.), the
associated inner biderivation ¢, is written as

b, = 60 + (gt 0 ®F — %= 0 g1).

From this, we see that the map sending § to the class of §! gives a
natural isomorphism Lie(E”) — Ext} ¢(F,G,)". The latter one is
given by the natural map

Deri,(E,G,) — Home, (Lie(E), Lie(G,)), &f — Lie(f).

For any Drinfeld module E over an affine scheme S, we put
DR(E,G,) = Dero(E, G,)/Derg(E,G,).

From the proof of [PR, p. 412], we see that the two natural A-actions
on Dery(E,G,) define the same A-action on DR(E,G,). If £ is of rank
two, then Lemma 2.21 yields an exact sequence of A-modules

(28)  0—— Lie(E)" ——= DR(E, G,) — Lie(EP) — 0,

which is functorial on E.



20 SHIN HATTORI

Finally, we recall the construction of the Kodaira-Spencer map for
a Drinfeld module E over an A-scheme S [Gek4, §6]. We only treat
the case where S = Spec(B) is affine and the underlying invertible
sheaf of E is trivial. Write as £ = Spec(B[X]) so that we identify
as Homp, s(E,G,) = B{r}. We define an action of D € Dery(B) on
B{r} by acting on coefficients. Then, via the isomorphism (2.5), the
derivation D induces a map Vp : Dero(E,G,) — Dero(E,G,), which
in turn defines

75 : Lie(E)* — DR(E, G,) 28 DR(E, G,) — Lie(EP),
where the first and the last arrows are those of (2.8). Then the Kodaira-
Spencer map for E over S is by definition

KS : Dery(B) — Homp(Lie(E)", Lie(E”)), D > mp.
Hence we also have the dual map

KSY : wg ®og wgp — Q}S«/A.

3. CANONICAL SUBGROUPS OF ORDINARY DRINFELD MODULES

Let p be a monic irreducible polynomial of degree d in A = F[t]. We
denote by O the complete local ring of A at the prime ideal (), which
is a complete discrete valuation ring with uniformizer p. We consider
Ok naturally as an A-algebra. The fraction field and the residue field
of Ok are denoted by K and k(p) = Fa, respectively. We denote by
v, the p-adic (additive) valuation on K normalized as v,(p) = 1. For
any Og-algebra B and any scheme X over B, we put B = B/pB and
X = X xpg Spec(B).

We say an Og-algebra B is a p-adic ring if it is complete with respect
to the p-adic topology. A g-adic ring B is said to be flat if it is flat
over O.

3.1. Ordinary Drinfeld modules. Let S be an A-scheme of charac-
teristic p. Let E = (£, ®¥) be a Drinfeld module of rank two over S.
By [Sha, Proposition 2.7], we can write as

(3.1) OF = (g + -+ + agr) 7Y, oy e LO77(S).
We put
Fd7E_v:7—d:E—)E(qd)’ ‘/d7E:ad++a2deE(qd)_)E

We also denote them by Fy and Vg if no confusion may occur. We also
define a homomorphism Fy : E — E@™) by

F} = F;, Fy=(FrHaoF,
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We define V' : E@" - F similarly. They are isogenies of Drinfeld
— — dn

modules satisfying V' o F = ®L, and F} o V' = q)giq )_ [Sha, §2.8].

We also have exact sequences of A-module schemes over S

0 — Ker(Fy) — E[p"] — Ker(Vj') —=0,
0 — Ker(Fy) — Ker(F7) — Ker(Fr 1)) — 0,
0 — Ker(V" ™) — Ker (V) — Ker(Vy) — 0.

Definition 3.1. We say E is ordinary if ag € £879"(S) of (3.1) is
nowhere vanishing, and supersingular if oy = 0.

By [Sha, Proposition 2.14], E is ordinary if and only if Ker(V}) is
etale if and only if Ker(V") is etale for any n.

We need a relation of the isogenies F,; and V; with duality. For this,
we first prove the following lemma.

Lemma 3.2. Let C' be the Carlitz module over A. Then the polynomial
E(Z) is a monic Eisenstein polynomial in Ok[Z]. In particular, we
have

(3.2) (IDg(Z) = 79" mod .

Proof. Let L be a splitting field of the polynomial @g(Z ) over K. Since
the ring A acts on C[p](L) transitively, any non-zero root 5 € L of
E(Z) satisfies v,(8) = 1/(¢* — 1) and thus the monic polynomial
®E(Z) is Eisenstein over O. O

Lemma 3.3.

D _ D _ _
Fyp=Vagp, Vip=Fagp.

Proof. First we prove the former equality. Since F}; o is an isogeny, it is
enough to show F’- o0 F, zp = @gD. Let £ be the underlying invertible
sheaf of E. Take any section [ of £&79. We have F; zp(l) = 124" From

(2.1), we see that the map F- sends it to the class of the biderivation
0 such that d; agrees with the homomorphism

E — C = Specs(0s[Z]),  Z 1" € Sym(LE7).

By (3.2), this is equal to the class of - (Z + [) with respect to the
A-module structure of &xt! o(E,C)°. Since [ is a section of L&, the

isomorphism (2.7) implies the assertion.
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. ED)(ah
For the latter equality, it is enough to show V noVygp = CI>$p e

By the former equality of the lemma, we have
_ . d
Vip o Vago = Vipo Fip = (FupoVap)” = (9777,
By the definition of the A-module structure on &xt! ((E@),C), it is

EDY(a%) ) )
equal to CI>§)ED) *" and we obtain the latter equality of the lemma. [

Proposition 3.4. Let S be an A-scheme of characteristic o and E a
Drinfeld module of rank two over S. Consider the maps

Lie(V, 5) : Lie(EY") — Lie(E), Lie(Vyzp) : Lie((EP)1)) — Lie(EP)

and the linear dual Lie(Vy )" of the former map. Then we have a
natural isomorphism of Og-modules

Coker(Lie(V, z)") =~ Coker(Lie(V, zp)).
In particular, E is ordinary if and only if EP is ordinary.

Proof. We follow the proof of [Con, Theorem 2.3.6]. By gluing, we
may assume that S is affine. By the exact sequence (2.8), we have a
commutative diagram of A-modules

0 — Lie(E —— DR(E@),G,) — Lie((E”)") — 0
Lie(F, l jF; 5 lLie(FfE)

0 —— Lie( DR(E,G,) Lie(EP) 0
Lie(V,, 5) l lvd”jE lLie(Vdf’E)

0 — Lie(E“")Y —=DR(E@"), G,) — Lie((EP)@")) — 0,

where rows are exact and columns are complexes. Since Lie(F, z) =
Lie(F; gp) = 0, Lemma 3.3 implies that the middle column of the
diagram induces the complex

Fig v

0 —— Lie((EP)") 22 DR(E, G,) —= Lie(E@))” —= 0.
If it is exact, then as in the proof of [Con, Theorem 2.3.6], by using
[Con, Lemma 2.3.7] and Lemma 3.3 we obtain
Coker(Lie(V; 5)") ~ Coker(Lie(FfE)) = Coker(Lie(V, gp)).

Let us show the exactness. Since it is a complex of locally free
Og-modules of finite rank and its formation commutes with any base
change of affine schemes, we may assume S = Spec(k) for some field k.
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By comparing dimensions, it is enough to show that, for any Drinfeld
module F of rank two over k, the maps

F;,E : DerO(E(qd)7Ga)/Derin(E(qd)’ Ga.) — Dero(E, Ga)/DerSi(E’ G.)
‘ﬁEimmEGJmMAEGQHDmMEﬂAQM%@@WU@)

are non-zero.

For the assertion on F'*

5 5> We write as

(I)tE:e+alT+a27—27 (I)g:(ad‘f‘"'-i-aszd)Td

with as,anq # 0. Let 0 be the element of Dero(E(qd)_, G.) satistying
d; = 7 and suppose that Fy -(0) is an element of Derg(E, G,). Namely,
we have

(3.3) T = fodf —¢bao

for some f € Homg, (F,G,) satisfying Cot(f) = 0. We write f as
f=0b71"+--- 4 by® with some b; € k and 1 < r < s satisfying
b.,bs # 0. Then we have s = d — 1 and the coefficient of 7" in the
right-hand side of (3.3) is (07 — )b,. Since 1 < 7 < d — 1 and the
element ¢ generates k(p) = IF,« over [Fg, this term does not vanish and
thus we have r = d + 1, which is a contradiction.

Let us consider the assertion on Vd*E If ay # 0, then the map
Lie(V, 5) is an isomorphism and the claim follows from the above dia-
gram. Otherwise, [Sha, Lemma 2.5] yields a; = 0 unless i = 2d. Let
§ be the element of Dero(E,G,) satisfying 6, = 7 and suppose that
V75(9) is an element of Dery (E“"),G,). We have

() = g o ‘I)I:E(Qd) — P oy

for some g € Hom]Fq,k(E(qd), G.) satisfying Cot(g) = 0. Then we obtain
a contradiction as in the above case. O

3.2. Canonical subgroups. Let B be an Og-algebra and E a Drin-
feld module of rank two over B. We say E has ordinary reduction if
E = E xp Spec(B) is ordinary.

Lemma 3.5. Let B be a p-adic ring and E a Drinfeld module of rank
two over B with ordinary reduction. Then, for any positive integer
n, there exists a unique finite locally free closed A-submodule scheme
Cu(E) of Elg"] over B satisfying Co(E) = Ker(F} ). The formation
of Co(E) commutes with any base change of p-adic rings. We refer to
it as the canonical subgroup of level n of the Drinfeld module E with

ordinary reduction.
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Proof. First note that, since (B, pB) is a Henselian pair, the functor
X — X gives an equivalence between the categories of finite etale
schemes over B and those over B [Gabb, §1].

Let us show the existence. The finite etale A-module scheme H =
Ker(V';) can be lifted to a finite etale A-module scheme H over B.
By the etaleness and [Gro, Proposition (17.7.10)], we can lift the map
E[p"] — H to a finite locally free morphism of A-module schemes
m: E[p"] — H over B. Then C,(F) = Ker(n) is a lift of Ker(F} ).

For the uniqueness, suppose that we have two subgroup schemes
Cn1,Crp of E[p"] as in the lemma. Put H; = E[p"]/C,;. Since they
are lifts of H, there exists an isomorphism 6 : H; — H, over B re-
ducing to idg over B. Then the etaleness implies that 6 is compatible
with the quotient maps E[p"| — H;. Therefore, C, 1 and C, o agree
as A-submodule schemes of E[p"]. Since the formation of Ker(£7 ;)
commutes with any base change, the commutativity of C,(F) with any
base change follows from its uniqueness. 0

We refer to the natural isogeny
Tgn: B — E/C,(E)

as the canonical isogeny of level n for E. We have 7g,, mod o = Fy'.
On the other hand, since E[p"]/C.(E) is etale both over B and
B ®o, K, it is etale over B and we have a natural isomorphism

WE[pr] = We, (B)-

Moreover, the map

P EJCo(E) — (B/C.(E))/(E[9"]/Ca(E)) = E
is an etale isogeny satisfying
PEn CTEn = (I)gny TEmn © PEn = q)gT{cn(E)
In particular, we have pg, mod p = V'. We refer to pg, as the
canonical etale isogeny of level n for E. The formation of 7, and pg,
also commutes with any base change of p-adic rings.

Suppose that the p-adic ring B is reduced and flat. Then by Corol-
lary 2.14 the quotient E/C,(E) has a natural structure of a Drinfeld
module of rank two. Moreover, Lemma 2.10 implies that E[p"], C,(E)
and E[p"]/C.(E) are finite t-modules, and by Lemma 2.13 (2) they
have unique structures of finite v-modules, which make the natural
exact sequence

(3.4) 0 —Cu(E) — Elp"] — E[p"]/Co(E) —0
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compatible with v-structures. We also see that the formation of the
v-structure on C,(F) also commutes with any base change of reduced
flat p-adic rings.

Lemma 3.6. Let B be a reduced flat p-adic ring. Let E be a Drinfeld
module of rank two over B with ordinary reduction. Then the Taguchi
dual C,(E)P of the canonical subgroup C,(E) is etale over B. Moreover,
it is etale locally isomorphic as a finite v-module to the constant A-
module scheme A/(p") over B.

Proof. By Proposition 3.4, the dual E” also has ordinary reduction.
We claim that EP[p"]/C,(EP) is not killed by " !'. Indeed, if it is
killed by ©"!, then we have FP[p] = C,(EP), which contradicts the
fact that EP[p] has an etale quotient. Since EP[p"]/C.(EP) is etale,
the claim implies that it is etale locally isomorphic to A/(p"). Note
that this identification is compatible with v-structures by Lemma 2.13
(1).

Since Taguchi duality is exact, the exact sequence (3.4) for E yields
an exact sequence of finite v-modules over B

0 — (EP[p"]/Co(EP))P — EP[p"]” — Cu(EP)P —0.

By Theorem 2.19 (4), we also have a natural isomorphism of A-module
schemes E[p"] ~ EP[p"]P, by which we identify both sides. Hence we
reduce ourselves to showing the equality

Cu(E) = (E"["]/Ca(E7))".

For this, by the uniqueness of the canonical subgroup it is enough to
show that the reduction of (EP[p"]/C.(EP))? is killed by EF7. Since
it can be checked after passing to a finite etale cover of Spec(B), we
reduce ourselves to showing that the Taguchi dual (A/(p"))? of the
constant A-module scheme A/(p") over B is killed by F}. This follows
from Lemma 2.17 and (3.2). O

3.3. Hodge-Tate-Taguchi maps. For any positive integer n, any A-
algebra B and any scheme X over A, we put B, = B/(p") and X,, =
X x4 Spec(A,,). We identify a quasi-coherent module on the big fppf
site of X with a quasi-coherent Oyx-module by descent.

Let S be a scheme over A and G a finite v-module over S. For any
scheme T over S, Taguchi duality gives a natural homomorphism of
A-modules

G”(T) ~ Homyr(Glr, Clr) — wg),(T)
(9 :Glr = Clr) — g*(d2),
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which defines a natural homomorphism of big fppf sheaves of A-modules
over S
HTTg : GP — wg.

We refer to it as the Hodge-Tate-Taguchi map for the finite v-module
G over S, and also denote it by HT'T if no confusion may occur. The
formation of the Hodge-Tate-Taguchi map commutes with any base
change.

Suppose that the A-module scheme G is killed by ™. Then the
Hodge-Tate-Taguchi map defines a natural A-linear homomorphism of
big fppf sheaves on S,

HTT : G”|s, ®a, Os, — wg, -

Note that, if GP is etale locally isomorphic to the constant A-module
scheme A, over S, then the Og, -module G|, ®a, Os, is invertible.
By Lemma 3.6, this is the case if G = C,,(F) for any Drinfeld module F
of rank two over a reduced flat p-adic ring B with ordinary reduction.

Lemma 3.7. Let S be any scheme over A. We give the finite t-module
Cle™] the v-structure induced from that of C'. Then the Hodge-Tate-
Taguchi map for Cp"]

HTT : ﬂ@AJ Osn >~ C[pn]DLgn ®ﬂ Osn — wc[pn]n = OsndZ
is an isomorphism satisfying HTT(1) = dZ.
Proof. Let ¢« : Cp™] — C be the natural closed immersion, as in the

proof of Lemma 2.17. The definition of the Hodge-Tate-Taguchi map
gives HTT(1) = +*(dZ), which yields the lemma. O

Proposition 3.8. Let B be a reduced flat p-adic ring. Let E be a
Drinfeld module of rank two over B with ordinary reduction. Then the
Hodge-Tate-Taguchi map

HTT : Co(E)” |5, ®a, Ospec(B,) = Wen(r) @5 Bn = wr ®p By
is an tsomorphism of invertible sheaves over B,.
Proof. Tt is enough to show that HT'T is an isomorphism after passing
to a finite etale cover Spec(B’) of Spec(B). We may assume that the

A-module scheme C,,(E)”|p = (C,.(E)|p)” over B is constant. In this
case, the proposition follows from Lemma 3.7. 0

4. g-ADIC PROPERTIES OF DRINFELD MODULAR FORMS

4.1. Drinfeld modular curves. Here we review the theory of Drin-
feld modular curves of level I'®(n) and their compactifications given in
[Hat]. Let n be a non-constant monic polynomial in A = F,[t] which is
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prime to p. Put A, = A[1/n]. For any Drinfeld module E of rank two
over an Ap-scheme S, a I'(n)-structure on E is an isomorphism of A-
module schemes « : (4/(n))? — E[n] over S. We know that the functor
over A, sending S to the set of isomorphism classes of such pairs (E, a)
over S is represented by a regular affine scheme Y (n) which is smooth
of relative dimension one over A,.

For any Drinfeld module E of rank two over an A,-scheme S, we de-
fine a I'; (n)-structure on E as a closed immersion of A-module schemes
A : C[n] — E over S. Then it is known that the functor over A,, send-
ing an A,-scheme S to the set of isomorphism classes [(F, A)] of pairs
(E, \) consisting of a Drinfeld module E of rank two over S and a I'; (n)-
structure A on FE, is representable by an affine scheme Y;(n) which is
smooth over A, of relative dimension one. For any I';(n)-structure A
on E, the quotient E[n]/Im()) is a finite etale A-module scheme over
S which is etale locally isomorphic to A/(n), and thus the functor

Fsoma s(A/(n), E[n]/Im(N))

is represented by a finite etale (A/(n))*-torsor /(g ) over S.

Suppose that there exists a prime factor ¢ of n of degree prime to
q¢ — 1. Then we can choose a subgroup A < (A/(n))* which is a direct
summand of F < (4/(n))*. Then a I'?(n)-structure on E is defined
as a pair (A, [u]) of a I';(n)-structure A on F and an element [u] €
(Iizp/A)(S) [Hat, §3]. We have a fine moduli scheme Y{*(n) of the
isomorphism classes of triples (E, A, []). The natural map Y*(n) —
Yi(n) is finite and etale. The universal Drinfeld module over Y;*(n) is
denoted by ES =V, (£2) and put

Wi 1= wig, = (L)

For any Drinfeld module E over an A,-scheme S, a I'g(p)-structure
on F is a finite locally free closed A-submodule scheme G of E[p] of
rank ¢ over S. Then we have a fine moduli scheme Y2 (n, p) classifying
tuples (E, A, [u], G) consisting of a Drinfeld module E of rank two over
an Ay-scheme S, a T'2(n)-structure (), [p]) and a To(p)-structure G
on E. The natural map Y*(n,p) — Y/2(n) is finite, and it is etale
over A,[1/p]. For any Ay-algebra R, we write as Y2 (n)r = Y2 (n) x4,
Spec(R) and similarly for other Drinfeld modular curves.

For any A,-algebra Ry which is Noetherian, excellent and regular, we
have a natural compactification X2 (n)g, of Y*(n)g, which is proper
and smooth with geometrically connected fibers over A,. Similarly, we
also have a compactification X2 (n, p)g, of Y/>(n, p)g, which is proper
and smooth with geometrically connected fibers over A,[1/p]. The
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maps

(@ [(EA [uD] = [(E, e [uD] - {a - [(E, A [u])] = [(E, A clu])]

induce actions of the groups (A/(n))* and (4/(n))*/A = F on X{*(n)g,.

If Ry is in addition a domain, then the sheaf w2, and its pull-back
to Y2 (n, p)g, extend to natural invertible sheaves @2 and w2 on
X2 (), and X2(n, p)r,, respectively. In fact, the latter sheaf is the
pull-back of the former one to X2(n, p)g,. The natural action of Fy
on w2 via (—)A also extends to an action on W2 covering its action
on X&(n)g,, and similarly for ©5:# [Hat, Theorem 5.3 and §7].

Suppose that Ry is a flat A,-algebra which is an excellent regular
domain. Let W,(X) be the unique monic prime factor of ®¢(X) in
A|X] which does not divide ®$(X) for any non-trivial divisor m of
n [Car, §3]. Let R, be the affine ring of a connected component of
Ir, = Spec(Ro| X]/(W,(X))), which is a finite etale domain over Rj.

Then the formal completion of X2 (n)g, along cusps is studied in
[Hat, §6], by using Tate-Drinfeld modules. For this, we follow the
notation in [Hat, §4]. In particular, for any non-zero element f € A,
put

o ()

We set

aeA}gRo((x)), en(X) =X [] (1_9.

a#0efA

(4.1) O30 (X) = epa (@ (€72 (X)) € Ro[[]][X].

Then the additive group Spec(Ro((x))[X]) is endowed with a struc-
ture of a Drinfeld module of rank two over Ry((x)) such that its a-
multiplication map is given by ®/4(X) for any a € A. We refer to it as
the Tate-Drinfeld module and denote it by TD(fA).

Lemma 4.1. Let X be the parameter of TD(A) as above. We trivialize
the underlying invertible sheaf w%%(/\) of the dual TD(A)P by (dX)®,
and we denote the corresponding parameter of TD(A)P by Y. Put
@tTD(A) =0+ a17 + as7®. Then the dual of the Kodaira-Spencer map

KSY : wing) @ wrpayp = Ly,
satisfies KSY(dX ® dY') = l(x)dx with

da ai da 1
I(z) = d—; — 122 =~ mod Ry[[«]].

ay dx x
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Proof. We want to compute V a (dX). For this, first note that the

x

inner biderivation diq € Der;, (TD(A), G,) gives dX via the second iso-
morphism of Lemma 2.21. Then we have

digr = id o (I)tTD<A) — % oid = a7 + aypT?

and V.4 (dX) corresponds to the class of § € Derg(TD(A),G,) sat-

isfying 6; = %7‘ + %7’2. Subtracting the inner biderivation dg for
B =a;"%2 we may assume &; = [(z)7. Hence, the element 7 4 (dX) €

dx
Lie(TD(A)?) is given by the biderivation ¢’ € Dero(TD(A)|z,., Clzn,.)
satisfying 0; = el(z)T, where we put
Ty = Spec(Ro((x))), To. = Specy, (O [e] /().

The map ¢; is an element of Homg, 7, . (TD(A)|z,., C|n,.) defined by
Z > el(z)X?. Let £L = Ry((z));% be the underlying invertible sheaf
of TD(A). Via the identification (2.7), the above homomorphism cor-
responds to the element

el(z)(dX)®1 € Ker(V,(LZ ) (T ) — V. (L2 ) (Ty))

and, with the parameter Y of V,(£®7%) in the lemma, it corresponds
to I(z)-%. This concludes the proof. O

Let m € A be any monic polynomial. By [Hat, Lemma 4.2], the map
X — esa(Z) defines a natural A-linear closed immersion

AL, : Clm] — TD(fA).

Moreover, by [Hat, Lemma 4.4], we have a natural A-linear isomor-
phism
pEA s Af(m) — HEL, = TD(A) ] Im (A2,
which is defined as follows. Put
(4.2) Bia = Ro((2))[n]/(®5 () — F (1/x)).
Then ufo/}m is the unique map such that the image of the element
(1) € (TD(fA)[m]/Im(A,)) (Ro((2)))

in (TD(fA) [m]/Im()\f.oAm))(Bgﬁ) agrees with the image of the element
esn(n) € TD(fA)[m](B] ).

The pair (A}, [ub,]) defines a I'f(n)-structure on TD(A). The

oo,n)
corresponding map Spec(Ro((z))) — Y~ (n)g, extends to a map

w5 Spec(Ro[[]]) — X7 (),
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We refer to the image of the point (x) by this map as the co-cusp.
Via the map 22, the complete local ring of X2 (n)g, at the co-cusp is
identified with Ro[[ ]| [Hat, Theorem 5.3].

Now [Hat, Theorem 6.3] is summarized as follows. The set of cusps
defines an effective Cartier divisor Cuspsf, of X{(n)g, over Ry. Any
cusp of X2 (n)p, is labeled by an element of

A = {(a,b) € (A/())* | (a,b) = (1)}

For any element (a,b) € J, let f, be the monic generator of the ideal
Anny(b(A/(n))). Then the formal completion of X (n)g, at the cusp
labeled by (a,b) is isomorphic to Spec(R,[[w]]) in such a way that
the pull-back of the universal Drinfeld module EZ, to Spec(R,((w))) is
isomorphic to TD(f,A), which is the pull-back of TD(A) by the map

Ro((2)) = Ra((w)), @ — @ (1/w)™

Corollary 4.2. Suppose that Ry is a flat An-algebra which is an ex-
cellent reqular domain. Let g be the common genus of the ﬁbers of

X2(n)g, over Ry. Then, on each fiber, the invertible sheaf (w5,)®? has
degree no less than 2g.

Proof. Since the map Y (n) — Y2(n) is etale, [Gek4, Theorem 6.11]
implies that the dual of the Kodaira-Spencer map for the universal
Drinfeld module EZ over Y (n)g,

KSY :wis, @ wims)r = Wy ko
is an isomorphism. We write as (ID i =04 A7+ Ay72. Since we have
the isomorphism

(4.3) WA o Wi, 1o I® AT,

the map (KSY)®?! induces an isomorphism

(4.4) WA T ®WEA (QYA(n)RO )5

Consider the cusp labeled by (a,b) € 5 and the pull-back of this
map to R,((w)), as in [Hat, Theorem 6.3]. Since R,((w)) is a domain,
the isomorphism EZ |z, (w)) — TD(fsA) is Ru((w))-linear. Using Theo-

rem 2.19 (3) and the functoriality of KS, we can show that the pull-back
of (4.4) is identified with a similar map

®q—1

WTD(f,A) ®wTD(f A) (Q}%n((w))/Rn)@)qil
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induced by KS" for TD(f,A) over Ry((w)). Put &;°® =+ a7+ ar7?
with a; € Ro[[z]]. By Lemma 4.1 and (4.3), this map is given by

(dX)®q*1 ® (dX)@)qfl N a;l(@ _ ﬂ@

=1 )®1 1
dr  as dx) (dx)

Since the right-hand side is an element of R,[[w]]*(%)®7" !, [Hat, The-
orem 6.3 (3)] implies that the isomorphism (4.4) extends to an isomor-
phism

(@22 ® (@2)% - (s,

un

0o/ Ro (2Cuspsﬁo))®q_1.

Since Cuspsﬁ0 is non-empty, the corollary follows. O

4.2. Canonical subgroups of Tate-Drinfeld modules. In this sub-
section, we consider the case Ry = Ok . Thus we have the Tate-Drinfeld
module TD(fA) over Ok ((x)). Put d = deg(p) as before. We denote

the normalized p-adic valuation of Ok ((z)) by v,.

Lemma 4.3. The Tate-Drinfeld module TD(fA) over Ok((x)) has

ordinary reduction.

Proof. Put ®/*(X) = ®/*(X) mod p, which is an element of the ring
k(p)[[z]][X]. From [Hat, (4.4)], we see that the coefficient of X4
in ®/*(X) is an z-adic unit and those of larger degree have positive
z-adic valuations. By [Hat, Lemma 4.1], the coefficient of X¢*" is non-
zero. An inspection of the Newton polygon of ®/*(X) shows that this
polynomial has at least ¢*¢ — ¢ non-zero roots in an algebraic closure

of k(p)((x)). Thus the reduction of TD(fA) modulo p is ordinary. [

The map Ag;fpn identifies C[p"] with a closed A-submodule scheme of
TD(fA)[p"], which we denote by C/*. We refer to C/* as the canonical
subgroup of TD(fA) of level n. The reduction ¢ modulo o agrees
with Ker(F?7) of the reduction of TD(fA). Thus the pull-backs of CJ*
to (Ok/(p™))((x)) and the p-adic completion Ok ((x))" agree with
the canonical subgroups of level n of TD(fA) over them in the sense
of Lemma 3.5.

We define the canonical and canonical etale isogenies of level one for
TD(fA) as the natural maps

N TD(FA) — TD(FA)/CI™, pf . TD(FA)/CI™ — TD(fA).
They satisfy
(4.5) P ot = IPUN - Ao prA — (I)gD(fA)/C{A'
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By Lemma 2.8 (2), the quotient TD(fA)/C/* has a natural structure of
a Drinfeld module of rank two which makes these isogenies compatible
with A-actions. The T'®(n)-structure (A, [#da]) on TD(fA) induces
that on TD(fA)/C/", which we denote by (A, [ao])-

Since the power series e (X) € Ogk|[x]][[X]] is entire, any root
B # 0 of (IJS(Z) in its splitting field L over K defines an element
ern(B) of Opl[x]]. From Lemma 3.2 and the definition of esy (X), we
obtain

(4.6) G (B) = 0,8 # 0= esa(B) € BOL[[]]).
Then we put

VANX)=pX ]

9 (8)=0,670 <1 - m> e Ok[[z]][X].

As in the proof of [Leh, Ch. 2, Lemma 1.2], we see that this is an F,-
linear additive polynomial, and (4.6) implies that its leading coefficient
is an element of Ok[[z]]*. Hence X — W/*(X) defines an isogeny of
[F,-module schemes over Ok ((x))

wlh  TD(fA) — TD(fA).
Lemma 4.4. Ker(r/") = c/h
Proof. We denote by Ok [[z]|{Z) the x-adic completion of Ok [[z]][Z].

By comparing ranks, it is enough to show that the composite 7T£A o)\gfoA,p

is zero. From the definition of the map /\Qp, this amounts to showing
that the image of W/*(esx(Z)) in the ring Ok [[x][{Z)/(PE(Z)) is zero.
For this, note that we have the equality of entire series over K ((x))

(4.7) UIMNepn(Z)) = eppn(P0(2)),

since they have the same linear term @ and divisor fA + (®5)'(0).
Thus the equality also holds in Og[[z][{Z). Since the latter ring is
Noetherian, the ideal (®S(Z)) is z-adically closed and thus it contains
the element e,z ((2)). O

Thus the a-multiplication map of TD(fA) /C{ M for any a € A is given
by a unique polynomial & (X) satisfying

A A / A
UIMN@IMNX)) = (TN X)),
We define

Fo(e) = gy €271+ o2OullaTD,

x
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which gives an Og-algebra homomorphism
vh: Ok((2)) — O ((2)), @ Fy()

and the induced map v, : Spec(Ok((z))) — Spec(Ok((z))). For
any element F(X) = >, &X' € Ox((x))[[X]], we put v}(F)(X) =
Y=o Vh(a) X', Then we have
(4.8) volera)(X) = eppa(X).
Thus (4.1) yields
(4.9) v (@1 (epra(X)) = epa(®F (X))
for any a € A. On the other hand, (4.7) and (4.8) yield
(4.10) WM epn (X)) = eppa (@G (X)) = v (esa)(PF (X))
Lemma 4.5.

(TD(fA)/C™ AL, [L]) = va(TD(FA), oA, [])-
Proof. First let us show the equality v} (TD(fA)) = TD(fA)/CI*. This

amounts to showing
FA(HfA _ (A A
N0 (X)) = v (257) (P (X))

for any a € A. It is enough to show the equality in the ring K ((x))[[X]].
For this, (4.1), (4.9) and (4.10) yield

TN @1 (epa (X)) = UM epa(PF (X)) = eora(P6,(X))
= (P2 (eppa (PG (X)) = w5 (@1 (W] (e (X))

and the claim follows by plugging in 6]71{ (X). The T'y(n)-structure A,
is given by X — W/*(esx(Z)). By (4.10), the latter element is equal
to v%(esa)(25(2)), which means My = v (pA%).
For the assertion on [fill,], consider the ring B]

)
)

A of (4.2) and its
base extension y;(Bgﬁ) by the map v%. These rings are free of rank
q%°e™ over Ok ((z)). We have a homomorphism of O ((x))-algebras

va(Blw) = Ox((@)[n]/(®F (n) — 97, (1/x)) — BJ,
defined by n — ®¢(n). Since (p,n) = 1, we have ap + fn = 1 for
some «, 3 € A and this map sends ®f () + ®%5(1/x) to n. Hence it is
surjective and thus these two rings are isomorphic as Ok ((z))-algebras.
Now a similar argument as above implies that, for the map ﬂf.ol}n :
A/(n) — 1/;(7-[{.01}“), the restriction iy (1)] p{? 15 equal to the image of

O,n

the element
vi(era) (@S () € vi(TD(fA))(BIY).
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On the other hand, for the pull-back V;(uf.ol}n) :A/(n) —> u;‘)(HQ}n), the

restriction v/} (uécol}n)(l)hg( BIY) is equal to the image of the element

esa(n) @1 = v (esa)(n) € vi(TD(fA) (5(By))-
Since they agree with each other in v} (TD(fA)) (Bgﬁ), we obtain i, =
0 JA 0
Vp(ll’too7n)'

By Lemma 4.5, the canonical etale isogeny p/* induces an isomor-
phism of Ok ((x))-modules

(")) s winiem) o ey ut, O (@) = wrppayerr = wrnga)-

Corollary 4.6.
(") dX ®1) = dX.

Proof. Since we have shown that the canonical isogeny /% of level
one for TD(fA) is given by X — W/A(X), we have (n/*)*(dX) =
©dX. From (4.5), we obtain (p/*)*(dX) = dX in Wrp(payefrs which is

identified with X ® 1 via 15(TD(fA)) = TD(fA)/C{". O

4.3. Drinfeld modular forms. Let k£ be an integer. Let M be an A,-
module. We define a Drinfeld modular form of level I'®(n) and weight
k with coefficients in M as an element of

Mi(PE(n)ar = H(XT () 4, (035)%F @2, M).

By [Hat, Theorem 5.3 (4)], the group F* acts on the A,-module My (T'$(n))a
via ¢ — {c)a. Since ¢—1 is invertible in A,, we have the decomposition

M) = @B Mpm(Ti(n)ar,

meZ/(q—1)Z

where the direct summand My ,,(I'1(n))as is the maximal submodule
on which the operator {¢ya acts by the multiplication by ¢~ for any
ceFy. Wesay fe My(TY(n))a is of type m if f € My (T1(n))ar-
Consider the map 2 : Spec(Ay[[z]]) — X2(n)4, as in [Hat, Theo-
rem 5.3]. For any f € My(I'D(n))y, we define the z-expansion of f at
the oo-cusp as the unique power series fo(z) € Ay[[x]]®a, M satisfying

(2)*(f) = foola)(dX)®*,

We also have a variant My, (T'2(n, p))as of level I'®(n, p), using X2 (n, p),
the sheaf @2 and the oo-cusp z5* of [Hat, §7].
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Proposition 4.7. (1) (x-expansion principle) For any A,-module
M and f € My(TS(0)as, if fo(z) = 0 then f = 0. Moreover,
for any A,-modules N € M and any f € Myp(I'{(n))ar, we have
fol(z) € Ayl[z]] ®a, N if and only if f € Mp(T{(n))n. The
same assertions hold for the case of level IS (n, ) if M is an
Au[1/p]-module.

(2) For any k = 2 and any A,-module M, the natural map

My (DT ()4, ®a, M — My(TT ()
s an isomorphism.

Proof. Since X{*(n)4, and X{(n, p) 4,1/ are smooth and geometri-
cally connected, Krull’s intersection theorem and [Hat, Theorem 5.3]
(and for the case of level I'f(n, p), the corresponding statements in
[Hat, §7]) imply the assertion (1), as in the proof of [Kat, §1.6]. The
assertion (2) follows from Corollary 4.2, similarly to the proof of [Kat,
Theorem 1.7.1]. O

Let Cy be the (1/t)-adic completion of an algebraic closure of F,((1/t)).

Put
A A *
Fl(n)z{ge GLy (A ‘gmod (O 1)},

F(n)z{ge GLy(A ‘gmod (é ?)}

where the former group is independent of the choice of A.

Note that our definition of Drinfeld modular forms is compatible with
the classical one over C, as in [Gek2, Gek3]; over the compactification
X(n)c, of Y(n)c, this follows from [Gosl, Theorem 1.79], and the
spaces of Drinfeld modular forms of level I'f*(n) and weight & in both
definitions are the fixed parts of the natural action of {(ﬁ I)} on
them. We can also show that our z-expansion fu(z) of f at the oco-
cusp agrees with Gekeler’s t-expansion at o (see [Gek2, Ch. V, §2],
while the normalization we adopt is as in [Gek3, §5]) of the associated
classical Drinfeld modular form to f.

By [Gek3, Proposition (6.11)] and Proposition 4.7 (1), Gekeler’s lift
ga of the Hasse invariant is an element of Mya_; o(I'1(n))4, satisfying

(4.11) (9d)oo(z) =1 mod g.
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4.4. Ordinary loci. In the rest of the paper, we write as Y, =
YA ()o, and X, = X2 (n)o,. For any positive integer m, the pull-
back of any scheme T over Ok to Ok, = Ok/(p™) is denoted by
..

Since we know that X, 1 has a supersingular point [Gek1, Satz (5.9)],
the ordinary loci X% in Xuyy and Y39, in Yy, are affine open

subschemes of finite type over O ,,,. We put
Bord _ O(yord )

un,m un,m

This is a flat Ok n-algebra of finite type, and the collection {BX 1.,
forms a projective system of Og-algebras with surjective transition
maps. We define
éﬁfld = lim B yord = Spec(éﬁﬁd).
4

un,m’
n

Then we have B%/(p™) = B2 and B9 is flat over Ok. This

implies that Bg;d is p-adically complete and topologically of finite type
over Og. Moreover, since Bﬁf& is a regular domain, the ring Eﬁfld is
reduced. Thus Bf;;d is a reduced flat p-adic ring. On the other hand,
we have a map Y4 — Y, and we denote by £¢ the pull-back of the
universal Drinfeld module to Bg;d, which has ordinary reduction.

Now we can form the canonical subgroup C, = C,(E?) of level n
for £, As is seen in §3.2, it has the v-structure induced from that of
£ which is unique by Lemma 2.13 (2). Lemma 3.6 implies that its

un

Taguchi dual C2 is etale. We denote by C,,.,,, the pull-back of C,, to Y,2rd

endowed with the induced v-structure, and similarly for (C2),,. Then
the Taguchi dual C?, of C,, agrees with (C2),, as a finite v-module

and they are finite and etale over Y24

un,m*

Lemma 4.8. The finite v-module Cp m, over Y15, extends to a finite v-
module C,, , over ngfm such that its Taguchi dual CP, is etale locally

isomorphic to A/(p™"). ’

Proof. Let K, be a splitting field of ®¢'(X) over K. Note that Spec(Ok, )

is identified with a connected component of I, = Spec(Ox|X]/(W,(X))).
Consider the formal completion of Xy.|o,, at the cusp labeled by
(a,b) € A, which is isomorphic to Spec(Ok,[[w]]) by [Hat, Theorem
6.3]. Let f;, be the monic generator of Anny(b(A/(n)))

We denote the p-adic completion of Ok, ((w)) by O, which is a
reduced flat p-adic ring. The pull-back of £ to O is isomorphic
to that of the Tate-Drinfeld module TD(f,A) over Ok, ((w)) to O.
By the uniqueness of the canonical subgroup in Lemma 3.5, we have
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Culo =~ CP*o = C[p"]. Lemma 2.13 (2) implies that this identifica-
tion is compatible with v-structures, where we give C[p"] the induced
v-structure from C. Taking modulo p™, we obtain an isomorphism
Crm |0k, m(w)) = Clp"] of v-modules over O, m((w)).

This implies that, by an fpqc descent, the finite v-module C,,,, ex-
tends to a finite v-module C,, ,, over Xfl’ffm such that its restriction to
the formal completion at each cusp is isomorphic to C[p"] with the
induced v-structure from C'. Then the Taguchi dual C_gm is finite etale
and every geometric fiber is isomorphic to A/(p") as an A-module

scheme. This yields the lemma. U

Lemma 4.9. Let U be any non-empty open subscheme of nglflm and &

any geometric point of U. Then the character of its etale fundamental
group with base point &

Pagn + 71 (U) = 71 (Xanim) = (4/(0")

un,m

defined by CP

n,m

Proof. We may assume m = 1. Let L be the function field of Xy, ;.
As in [Kat, Theorem 4.3], it is enough to show that the restriction of
Tn1 to the inertia subgroup of Gal(L*P/L) at a supersingular point is
surjective.

Take & € Xy, corresponding to a supersingular Drinfeld mod-
ule over an algebraic closure k of k(p). The complete local ring of
Xun1 Xk(p) k at & is isomorphic to k[[u]]. Let E be the restriction
of Eu to this complete local ring. By [Sha, Remark 3.15], we have
Lie(Vyg) = —u and the restriction E|yw)) to the generic fiber is ordi-
nary. By Theorem 2.19 (4) and Lemma 3.3, we have C,,(E|yu)))” =

Ker(Vigo, .,,)- Here EP|k((uy 18 the dual of E|y(,)), which is also ordi-

nary by Proposition 3.4. Hence it suffices to show that the finite etale

A-module scheme Ker(Vd"ED|k(( ))) defines a totally ramified extension

of k((u)) of degree §(A/(p"))*.

For this, Proposition 3.4 also implies that the map Lie(V,gp) is the
multiplication by an element of k[[«]] with normalized u-adic valuation
one. Let v, be the normalized u-adic valuation on k((u)) and we extend
it to its algebraic closure k((u))*8. Since the fiber of EP at u = 0 is
also supersingular, the map V;gp can be written as

18 surjective.

Vign(X) = agX + -+ + g X"

with some a; € k[[u]] satisfying v, (ag) = 1, v,(a;) = 1 for 1 <7 < d and
vy(aqg) = 0. Then an inspection of the Newton polygon shows that any
non-zero root z of Vo (X) satisfies v,(z) = 1/(¢* —1) and there exists
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a root 2’ of Vi, (X) with v,(2") = 1/((g% — 1)g?=1) = #(A/(p™)*.
This concludes the proof. U

Consider the quotient £94/C; over Y4 which has a natural struc-
ture of a Drinfeld module of rank two by Lemma 2.8 (2). Since the
universal I'f(n)-structure on &, induces that on £¢/C;, we have a
corresponding map 7y : Y04 — Yy, Since £94/C; has ordinary reduc-
tion, the induced map Yuorf"in — Yinm factors through }{fg%. Hence 7,4
also factors as mq : Y2 — Y24 On the other hand, the endomorphism
{p 1y of Xy defines endomorphisms of X and Y24, which we also

denote by {(p1),. Put

pa =P o ma.

This gives the cartesian diagram

(c:ord /Cl gord 5ord
Yord Yord Yord )
un Td un (o~ o un

Lemma 4.10. For any positive integer m, the induced map pq : Y9 —

un,m

Yord extends to g : X0 — X which is compatible with respect to

un,m un,m un,m

m. Moreover, ¢4 agrees with the q%-th power Frobenius map on ngfl.

Proof. Let K, be a splitting field of ®¢(X), as before. Put O, ,, =
Ok, /(p™). By an fpqc descent, it suffices to show the existence of an
extension as in the lemma around each cusp over Ok, ,,. For this, first
note that the automorphism of Ipn, = Spec(Ok[X]/(Wi(X))) given
by X - ®C(X) preserves its connected components, since so does its
restriction over k(p) by Lemma 3.2. Hence, for the image ( € Ok,
of X, we have an automorphism of Spec(Og,) over Ok defined by
(— @g (¢), which we denote by o,. We define an endomorphism 7, of
Spec(Ok, ((w))) over Ok by 7, = 0, Q v,

For any (a,b) € A, let f, be the monic generator of Ann(b(A/(n))),
as before. Around the cusp labeled by (a, b), we have the Tate-Drinfeld
module TD(f,A) over Ok, ((w)) endowed with a I'f(n)-structure (\, [1]).
As in the proof of Lemma 4.5, using [Hat, (6.3) and (6.4)] we see that
the image of (X, [u]) by the map TD(f,A) — TD(f,A)/C{** can be
identified with 7% (pA, [11]). We denote by

(A, [1]) : Spec(Ox, m((w))) = Yo,
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the map defined by the triple (TD(fyA)|ok, (w))s A, [14]). Then we
have the commutative diagram

Yord ¥Pd Yord
(A:[M])T T(/\:[M])

Spec(Oxim((w)) ——> Spec(Om((w))),

where the vertical arrows identify the lower term with the formal com-
pletion of X% at the cusp labeled by (a,b) with w inverted. Since
we have Fi,(w) € Ok, [[w]], we obtain an extension of ¢4 to each cusp.

Since the canonical subgroup C; is a lift of the Frobenius kernel, from
(3.2) we see that the morphism ¢q : Y39 — Y39 agrees with the ¢%-th
power Frobenius map. Then the assertion on ngfl also follows, since

it is integral and separated. O

We denote by w?d and @4 the pull-backs of the sheaf @2, to Y,ord

un,m un,m un,m

and X4 respectively.

un,m’

Proposition 4.11. Let py, @ EXY/Cy — E9Y be the canonical etale

isogeny of EXY over Yr4. Then the isomorphism of Oyoa -modules

_ £ \—1 ., _* ord ~ ord
ngﬁf}m - (pun) t Py (wun,m) = Wgerd /ey Y, T wun,m

extends to an isomorphism of Oxora -modules
un,m

F, word L 952 (@3;dm) - a’ﬁfm'
Proof. As in the proof of Lemma 4.10, it is enough to extend Fjor
to each cusp over Ok, ,,. This follows from Corollary 4.6 and the
construction of @2 . O

4.5. Weight congruence. First we give a version of the Riemann-
Hilbert correspondence of Katz in our setting. Put A, = A/(p").

Lemma 4.12. Let n be a positive integer. Let S, be an affine scheme
which is flat over A, such that S; = S, X4, Spec(A;) is normal and
connected. Let pq : S, — S, be a morphism over A, such that the
induced map on Sy agrees with the q%-th power Frobenius map. We
denote by w$*(S,) the etale fundamental group for a geometric point of
Sn. Then there exists an equivalence between the category Rep, (Sy)
of free A,-modules of finite rank with continuous actions of 7$(S,)
and the category F-Crys’(S,) of pairs (H, Fy) consisting of a locally
free Og, -module H of finite rank and an isomorphism of Og, -modules

Fy o pp(H) — H.
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Proof. This follows by a verbatim argument as in the proof of [Kat,
Proposition 4.1.1]. Here we sketch the argument for the convenience
of the reader. For any object M of Rep, (5,), let T}, be a (connected)
Galois covering of S, such that 7$*(.S,,) — Aut(M) factors through the
Galois group G(T,,/S,,) of it. By the etaleness, we can uniquely lift the
q%th power Frobenius map on T} to a (pg4-equivariant endomorphism
or, of T, over A,.
We claim that the sequence

(4.12) 0—— A, — O(T) "2 o(T)
is exact. Indeed, since T, is flat over A, we may assume n = 1, and in
this case the claim follows since O(77) is an integral domain.

We have an endomorphism on M ®y4, O(T,) defined by m ® f —
m @ o7, (f), and Galois descent yields an object (H(M), Fyry) of
F-Crys(S,,). This defines a functor

H(—) : Repy (S,) — F-Crys’(S,).

The exact sequence (4.12) implies (H(M)|r,)¥™ ' = M and thus the
functor H(—) is fully faithful.

We prove the essential surjectivity by induction on n. For n = 1,
it follows by applying the original result [Kat, Proposition 4.1.1] to
the case where the extension k/F, there is F,a/F, . Suppose that the
case of n — 1 is valid. Let (H, F) be any object of F-Crys"(S,). By
assumption, there exists a finite etale cover T,,_; — S,_1 such that
H|r,_, has an Fy-fixed basis hi,...,h,. By Hensel’s lemma, we can
lift T,,_; to a finite etale cover T}, — S,. Take a lift h; of h; to Hlr,.
We have

Fy(hy, ... h) = (hi,...,h)(I + " 'N)
for some matrix N € M,.(O(T,,)). Then it is enough to solve the equa-
tion

Fy((hi, ..., h)(T + 9" 'N)) = (h, ..., h) (I + " 'N')

over some finite etale cover of T,. Since O(T,) is flat over A,, the
equation is equivalent to N + ¢4(N') = N’ mod p, from which the
claim follows. ]

Corollary 4.13. Let U be any non-empty affine open subscheme of
S,. Note that, since @q agrees with the q?-th power Frobenius map on
Sy, it induces a map pq : U — U. Then the functor F-Crys’(S,) —
F-Crys(U) defined by the restriction to U is fully faithful.

Proof. Tt follows from the fact that, since S is normal and connected,
the restriction functor Repy (S,) — Rep, (U) is fully faithful. O
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By Lemma 4.10, X4 satisfies the assumptions of Lemma 4.12.

Proposition 4.14. By the equivalence of Lemma 4.12, the character

rn,n . ’/Tft(Xord ) N A;

un,n

of Lemma 4.9 associated to CP

P corresponds to the pair (W2, Floora )
of Proposition 4.11.

un,n’

Proof. By Corollary 4.13, it is enough to show that the character of
7§ (Yrd) associated to CP,, corresponds to the pair (W, Flga ). By
Proposition 3.8, the Hodge-Tate-Taguchi map yields an isomorphism
of invertible Oyora -modules

HTT : C}, @4, Oyora — wind

un,n*

Note that, over any Galois covering T, — Y%, trivializing 7, the
map HTT is compatible with Galois actions. Hence it suffices to show
that this map is also compatible with Frobenius structures, where we
consider 1 ® @4 on the left-hand side.

Since the natural map B, — Ogn((z)) is injective, we reduce

ourselves to showing that at the co-cusp the Hodge-Tate-Taguchi map
over O ,((z))

HTT : C,(TD(A))2 @4, Ospec(Oxn((@)) — wrp(n) @ O n((2))
commutes with Frobenius structures. As is seen in the proof of Lemma
4.8, the induced v-structure on C,(TD(A)), ~ C[p"] from £ agrees
with that from C. By Lemma 2.17 we have C,(TD(A))Y ~ A, and
Lemma 3.7 implies that the isomorphism HTT is given by
(4.13) HTT(1) = (A% o)) ' (dZ) = dX.

Now the proposition follows from Corollary 4.6. 0

Theorem 4.15. Let L/K be a finite extension. Fori = 1,2, let f; be
an element of My, (T2 (n))e,. Suppose that their x-expansions at the
oo-cusp (fi)w(x) satisfy the congruence

(f)w(®) = (f2)oo(x) mod ",  (f2)oo(x) #Z 0 mod p.

Then we have

ki = ky mod (¢4 — 1)p*™, 1,(n) = min{N € Z | p" = n}.

Proof. By choosing an isomorphism of Og-modules O ~ O@L:K],
we identify the Ox, -module (02 )®* ®p, O with ((04,)®*)EE] and
Au[[2]]®4, Or with (A,[[2]]®a4, Ok )BLEE] which are compatible with

xr-expansions. Thus we may assume L = K.
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Let W be the maximal open subscheme of Kﬁfg‘l on which f; and fs
do not vanish. From the assumption, we see that W is non-empty. We
have the section f1/fa of (W3, )®* =" on W. Since the ring Ok ,((x)) is
local with maximal ideal pOk,,((x)), the assumption also implies that
(fi)oo(x) is invertible in Ok ,,((z)). Hence the natural map Spec(Og ,((x))) —
Yo around the oo-cusp factors through W, and the pull-back of fi/fs

un,n

by this map is equal to (dX)* *2. Thus the section fi/f, extends

uniquely to a nowhere vanishing section of (w2 )®¥1~k2 on an affine

open subscheme U of Xfl)ff,in containing the oco-cusp such that its restric-
tion to Spec(Of ,[[z]]) around the oo-cusp agrees with (dX)*=*2. We
write it also as f1/fs.

By Corollary 4.6, (dX)*~"2 is fixed by the restriction of the Frobe-
nius map of (whd )®¥=*2 to Spec(Ok,((x))). Since the natural map

Bt — Okn((2)) is injective, we see that the section f1/f, on U it-

self is fixed by the Frobenius map. Hence the restriction of the pair
((word Y®ki=ke  [®F1-k2y ¢ [] i trivial. Then Corollary 4.13 implies

un,n T
that the pair is trivial on X219 | and by Proposition 4.14 the (ki — k»)-
nd tensor power of the character r,,, is trivial. Now Lemma 4.9 shows
that k1 — ko is divisible by the exponent of the group (A/(p"))*, which

equals (g% — 1)p'™. This concludes the proof. O

Then Theorem 1.1 follows by adding an auxiliary level of degree
prime to ¢ — 1 and applying Theorem 4.15.
Following [Gos2, Definition 3], we define the p-adic weight set S as

S=7/(¢" - 1)Z x Z,

with the discrete topology on the first entry and the p-adic topology
on the second entry. We embed Z into it diagonally.

Corollary 4.16. Let L/K be a finite extension. Let Fu(x) be a non-
zero element of Orl|x]][1/p]. Suppose that there ezists a sequence
{frtnezs, satisfying f, € My, (T{(n))L for some integer k, and

i (£,)o() = Fo()

with respect to the p-adic topology defined by Or[[x]]. Then the se-
quence {kn}n€Z>0 converges to some element x € S. Moreover, the
element x depends only on Fy(x).

Proof. By Proposition 4.7 (1), we may assume f, € My, (I'2(n))o, and
Fy(z) € Op[]|x]]. Note that for any positive integer ¢, the O ~module
OL. is free of finite rank and thus the natural map A,[[z]]®a, OL. —
Or.[[z]] is an isomorphism. Again by Proposition 4.7 (1), we may
assume Fy(x) # 0 mod p. By assumption, for any sufficiently large
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positive integer c¢, there exists an integer ng such that if m,n = ny,
then we have

(fm)oo(®) = (fa)oo(x) mod ©°  (fn)w(x) # 0 mod e
in Au[[z]] ®a4, OL. Hence Theorem 4.15 implies

ke = ky, mod (g% — 1)p»©

and the sequence {k,}nez., converges in S. For another such sequence
{gn}n€Z>0 with gn € Mkﬁl (FlA (n))OLa we also have (fn)OO(m) = (gn)OO(:E) mod
©° and (f,)eo(x) # 0 mod p for any sufficiently large n. Then Theorem
4.15 implies k, = k', mod (¢?—1)p?(°) and thus both converge to y. O

We say any element Fy,(z) € Opl[x]][1/p] as in Corollary 4.16 a
p-adic Drinfeld modular form in the sense of Serre ([Gos2, Definition
5], [Vin, Definition 2.5]).

Definition 4.17. Let F(x) € Or[[z]][1/g] be a non-zero p-adic Drin-
feld modular form in the sense of Serre. Take any sequence {f,}nez.,
satisfying f, € My, (T2 (1)), and lim, o (fn)w(7) = Fp(x). Then we
define the weight of F,(x) as the limit lim,,_, &k, in S, which is well-
defined by Corollary 4.16.

4.6. p-adic Drinfeld modular forms. Let X, be the p-adic com-
pletion of X,, = X2(n) and X9 the formal open subscheme of X,
on which the Gekeler’s lift g; of the Hasse invariant is invertible. The
latter is isomorphic to the g-adic completion of

(4.14) Specy,, (Sym((@)® ™)/ (92— 1))-
Note that the reduction modulo p™ of X is equal to X4 = We

see that X4 is a Noetherian affine formal scheme by [Abb, Corollaire
2.1.37].
For any x = (so,s1) € S, we have a continuous endomorphism of

O =F i x (1+ pOk) defined by
x = (xg, 1) — X = 'z}

which preserves the subgroup 1+ p"Ok. Composing it with the char-

acter m,, : T(X0S,) — AX = Of ., we obtain a character rX,. Let
DX be the associated invertible sheaf on X% via the correspon-

dence of Lemma 4.12. Since they form a projective system with surjec-
tive transition maps, they give an invertible sheaf @4 on X°¢ [Abb,
Proposition 2.8.9].

For any finite extension L/K, we put

M (T (m)o, = H(X o, omo,) = HY (X3, 80" @0y OL).

un ’
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By [Abb, Proposition 2.7.2.9], we have
M, (P (m))o, = lim HO (X e

,TL|OL,77,7 un,n |OL n)

and thus it is flat over O. Put
My (TP () = My (TP (n))o, [1/6].

We refer to any element of this module as a gp-adic Drinfeld modular
form of tame level n and weight x over L. Since the action of F on
X{(n) via ¢ — {c)a induces an action on H(XZ |o, Sflan|OLn)
the module M, (I'f(n)), is decomposed as

M (If(n)e = @D  Mem(Ti(w)e,
meZ)(q—1)Z
where the space M, ,,,(I'1(n)),, of type m forms is the maximal subspace
on which {c)a acts by ¢™™.
For any x € S and any positive integer n, we can find an integer
k satisfying x = k mod (¢% — 1)p'»™. Then we have an isomorphism

OPAX = (w0l )®* compatible with Frobenius structures. Using this

identification, we obtain a map of xz-expansion

(4.15)  H(X3 oy, mitlos,) = Ovallzll,  fu (fu)o(2)-

For any such k and k', the correspondence of Lemma 4.12 gives an iso-
morphism (w3 ) ~ (wgrd ) compatible with Frobenius structures.
Since (4.12) implies that such an isomorphism is unique up to the mul-

tiplication by an element of A, by restricting to the co-cusp and using
d_
(4.13) we see that it agrees with the multiplication by g( WD)

Since (gq)eo(z)?"™ =1 mod ", the map (4.15) is independent of the
choice of k and induces

Mym(T1(n))r — OL[[=]][1/]
£ = i fol) o= T (f)o()
which is an injection by Krull’s intersection theorem. This map identi-

fies our definition of p-adic Drinfeld modular forms with @-adic Drinfeld
modular forms in the sense of Serre, by the following proposition.

(4.16)

Proposition 4.18. The image of the injection (4.16) agrees with the
space of power series Fo(x) € Op[[z]][1/p] which can be written as the
p-adic limit of x-expansions {(hy,)w(x)}n, where h, is an element of
My, m(T1(n)) 1 for some integer k, satisfying lim, o k,, = x in S.

Proof. This can be shown as in the proof of [Kat, Theorem 4.5.1].
Indeed, let f = (f,), be an element of M, ,,(I'1(n))p,. For any n we
choose an integer k, > 2 satisfying x = k, mod (¢ — 1)p»™. Note
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that, for any integer k > 2, the description (4.14) and Corollary 4.2
give an isomorphism

H (Xord |OLn’7ordk|OLn) -

un,n unn

(@ HO(Xun,n|OL,m (@fn|0L,n)®k+j(qdl))> /(gd - 1)

j=0

Therefore, by Proposition 4.7 (2), for each f, we can find an inte-
ger k/, = 2 and an element h, € My ,(I'i(n))o, satisfying k], =
k, mod (g% — 1)p%*™ and (f,)w(2) = (hn)w(z) mod ™. This yields
limy,, 5o0(hn)w(z) = fo(z) and lim, e k), = lim,, ok, = x.

Conversely, let Fio(z) = lim, 0 (hy, )Oo( ) be as in the proposition.
We may assume Fy,(z) # 0, and also h,, € My, ,»(I'1(n))o, by Propo-
sition 4.7 (1). Multiplying powers of g4 and dividing by g, without
changing y = lim,,_,,, k, we may assume k,,, > k, and

(hns1)o0(7) = (hn)oo () mod 0", (hn)ao () # 0 mod o

for any n. Then Theorem 4.15 implies k, ;1 = k, mod (qd — 1)ph).

Now Proposition 4.7 (1) implies h,, 1 = hng(k”+1 B/ od ©" and
thus (h,,), defines an element f of M, ,,(I'1(n))o, satisfying fo(x) =
Fo(x). O

Theorem 4.19. Let f be a Drinfeld modular form of level I';(n) N
Lo(p), weight k and type m over Cy with x-expansion coefficients at
o in the localization A,y of A at (p). Then f is a p-adic Drinfeld
modular form of tame level n, weight k and type m. Namely, the x-

expansion fo(x) at the unramified cusp over the co-cusp [Hat, §7] is in
the image of the map (4.16) for x = k.

Proof. By Proposition 4.7 (1), we may assume f € M(T'{(n, 0))r, -
By flat base change, we can find an element g € M,(T'(n, p))4,,, such
that its image My (I (n, ))r, ) agrees with the element o' f for some
non-negative integer /.

For any integer n > 0, put Y . = Y*(n, p) x4, Spec(Ok.,). The

3 ord
canonical subgroup Cy , over Y9, gives a section of the natural pro-
jection

Y#®

un,n

-

ord
Yor — Yuun-

un,n
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Pulling back g by this section, we obtain an element g, of the module
HO (Y2, (w3d, )®%). On each cusp E labeled by (a,b) € 2, the pull-

back of g, aléng this cusp agrees with the pull-back of ¢ along the
unramified cusp over = [Hat, §7]. Hence g, € HO(Xd & (word )®k).

Since 7 ’
@lfoo(x) = goo(7) = ,}E{}O(gn)@(a})’
this implies that f is a p-adic modular form of weight k. 0
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