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Abstract. Let p be a rational prime and q a power of p. Let ℘ be
a monic irreducible polynomial of degree d in Fqrts. In this paper,
we define an analogue of the Hodge-Tate map which is suitable
for the study of Drinfeld modules over Fqrts and, using it, de-
velop a geometric theory of ℘-adic Drinfeld modular forms similar
to Katz’s theory in the case of elliptic modular forms. In par-
ticular, we show that for Drinfeld modular forms with congruent
Fourier coefficients at 8 modulo ℘n, their weights are also con-
gruent modulo pqd � 1qprlogppnqs, and that Drinfeld modular forms
of level Γ1pnq X Γ0p℘q, weight k and type m are ℘-adic Drinfeld
modular forms for any tame level n with a prime factor of degree
prime to q � 1.
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1. Introduction

Let p be a rational prime and q a power of p. The theory of p-adic
modular forms, which originated from the work of Serre [Ser], has been
highly developed, and now we have various p-adic families of eigenforms
which play important roles in modern number theory. At the early
stage of its development, Katz [Kat] initiated a geometric treatment of
p-adic modular forms, and from the work of Katz to recent works on
geometric study of p-adic modular forms including [AIS, AIP, Pil], one
of the key ingredients is the theory of canonical subgroups of abelian
varieties and Hodge-Tate maps for finite locally free (commutative)
group schemes.

Let us briefly recall the definition. For a finite locally free group
scheme G over a scheme S, we denote by ωG the sheaf of invariant
differentials of G and by CarpGq the Cartier dual of G. Then the Hodge-
Tate map for G is by definition

CarpGq � HomSpG,Gmq Ñ ωG, x ÞÑ x�
�
dT

T



.

It can be considered as a comparison map between the etale side and the
de Rham side; in fact, for any abelian scheme A with ordinary reduction
over a complete discrete valuation ring O of mixed characteristic p0, pq,
the Cartier dual CarpArpns0q of the unit component of Arpns0 is etale,
and the Hodge-Tate map gives an isomorphism of O{ppnq-modules

CarpArpns0q bZ O Ñ ωA bO SpecpO{ppnqq.

Moreover, if A is close enough to having ordinary reduction, then there
exists a canonical subgroup of A which has a similar comparison prop-
erty via the Hodge-Tate map, instead of Arpns0.

On the other hand, an analogue of the theory of p-adic modular forms
in the function field case—the theory of v-adic modular forms—has also
been actively investigated in this decade (see for example [Gos2, Pet,
Vin]). A Drinfeld modular form is a rigid analytic function on the
Drinfeld upper half plane over Fqpp1{tqq, and it can be viewed as a
section of an automorphic line bundle over a Drinfeld modular curve.
The latter is a moduli space over Fqptq classifying Drinfeld modules (of
rank two), which are analogues of elliptic curves. It is widely believed
that, for each finite place v of Fqptq, Drinfeld modular forms have deep
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v-adic structures comparable to the p-adic theory of modular forms.
However, we do not fully understand what it is like yet.

What is lacking is a geometric description of v-adic modular forms
as in [Kat]. For this, the problem is that the usual Cartier duality does
not work in the Drinfeld case: Since Drinfeld modules are additive
group schemes, the Cartier dual of any non-trivial finite locally free
closed subgroup scheme of a Drinfeld module is never etale and we
cannot obtain an etale-to-de Rham comparison isomorphism via the
Hodge-Tate map.

In this paper, we resolve this and develop a geometric theory of
v-adic Drinfeld modular forms. In particular, we show the following
theorems.

Theorem 1.1 (Corollary to Theorem 4.15). Let n be a monic polyno-
mial in A � Fqrts and ℘ a monic irreducible polynomial in A which
is prime to n. For i � 1, 2, let fi be a Drinfeld modular form of level
Γ1pnq, weight ki and type mi. Suppose that their Fourier expansions
pfiq8pxq at 8 in the sense of Gekeler [Gek3] have coefficients in the
localization Ap℘q of A at p℘q and satisfy the congruences

pf1q8pxq � pf2q8pxq mod ℘n, pf2q8pxq � 0 mod ℘.

Then we have

k1 � k2 mod pqd � 1qplppnq, lppnq � mintN P Z | pN ¥ nu.

Theorem 1.2 (Theorem 4.19). Suppose that n has a prime factor
of degree prime to q � 1. Let f be a Drinfeld modular form of level
Γ1pnqXΓ0p℘q, weight k and type m such that Gekeler’s Fourier expan-
sion f8pxq at 8 has coefficients in Ap℘q. Then f is a ℘-adic Drinfeld
modular form. Namely, f8pxq is the ℘-adic limit of Fourier expansions
of Drinfeld modular forms of level Γ1pnq, type m and some weights.

As a corollary, we define a notion of weight for “℘-adic Drinfeld mod-
ular forms in the sense of Serre” (Definition 4.17). Note that Theorem
1.1 generalizes [Gek3, Corollary (12.5)] of the case n � 1, and Theorem
1.2 is a variant of [Vin, Theorem 4.1] with non-trivial tame level n.

The novelty of this paper lies in the systematic use of the duality
theory of Taguchi [Tag] for Drinfeld modules and a certain class of finite
locally free group schemes called finite v-modules. Using Taguchi’s
duality, we define an analogue of the Hodge-Tate map, which we refer
to as the Hodge-Tate-Taguchi map. For a Drinfeld module E with
ordinary reduction, we construct canonical subgroups of E such that
their Taguchi duals are etale and the Hodge-Tate-Taguchi maps for
them give isomorphisms between the etale and de Rham sides similar



4 SHIN HATTORI

to the case of elliptic curves. Moreover, a study of Taguchi’s duality for
Drinfeld modules, including the invariance of a Hodge height under the
duality (Proposition 3.4), compensates the lack of autoduality for them
and yields the vanishing of the higher cohomology groups for a Hodge
bundle (Corollary 4.2) and an analogue of Igusa’s theorem (Lemma
4.9). These enable us to prove the above theorems by almost verbatim
arguments as in [Kat].

The organization of this paper is as follows. In §2, we review Taguchi’s
duality theory. Here we need a description of the duality for Drinfeld
modules in terms of biderivations [Gek4], which is done by Papanikolas-
Ramachandran [PR] in the case over fields. For this reason, we follow
the exposition of [PR] and generalize their results to general bases.

In §3, we develop the theory of canonical subgroups of Drinfeld mod-
ules with ordinary reduction and Hodge-Tate-Taguchi maps. In our
case, the role of µpn for elliptic curves is played by the ℘n-torsion part
Cr℘ns of the Carlitz module C, where the dual of Cr℘ns in the sense
of Taguchi is the constant A-module scheme A{p℘nq.

Then in §4 we prove the main theorems in a similar way to [Kat,
Chapter 4], the point being the fact that the Riemann-Hilbert corre-
spondence of Katz over the truncated Witt ring WnpFqq [Kat, Propo-
sition 4.1.1] can be suitably generalized to the case over A{p℘nq.

Acknowledgments. The author would like to thank Yuichiro Taguchi
for directing the author’s attention to arithmetic of function fields,
and also for answering many questions on his duality theory. The
author also would like to thank Gebhard Böckle and Rudolph Perkins
for enlightening discussions on Drinfeld modules and Drinfeld modular
forms, and Kentaro Nakamura for pointing out an error in the previous
version of the paper. A part of this work was done during the author’s
visit to Interdisciplinary Center for Scientific Computing, Heidelberg
University. He is grateful to its hospitality. This work was supported
by JSPS KAKENHI Grant Numbers JP26400016, JP17K05177.

2. Taguchi duality

In this section, we review the duality theory for Drinfeld modules
of rank two and an analogue of Cartier duality for this context, which
are both due to Taguchi [Tag]. Let p be a rational prime, q a p-
power and Fq the finite field with q elements. We put A � Fqrts. For
any scheme S over Fq, we denote the q-th power Frobenius map on
S by FS : S Ñ S. For any S-scheme T and OS-module L, we put
T pqq � T �S,FS

S and Lpqq � F �
S pLq. Note that for any OS-algebra A,

the q-th power Frobenius map induces an OS-algebra homomorphism
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fA : Apqq Ñ A. For any A-scheme S, the image of t P A by the
structure map AÑ OSpSq is denoted by θ.

2.1. Line bundles and Drinfeld modules. For any scheme S over
Fq and any invertible OS-module L, we write the associated covariant
and contravariant line bundles to L as

V�pLq � SpecSpSymOS
pLb�1qq, V�pLq � SpecSpSymOS

pLqq

with Lb�1 :� L_ � HomOS
pL,OSq. Note that they represent functors

over S defined by

T ÞÑ L|T pT q, T ÞÑ Lb�1|T pT q,

where L|T and Lb�1|T denote the pull-backs to T . The additive group
Ga acts on the group schemes V�pLq and V�pLq through the natural
actions of OT pT q on L|T pT q and Lb�1|T pT q, respectively. We often
identify L with V�pLq. We have the q-th power Frobenius map

τ : LÑ Lbq, l ÞÑ lbq.

This map induces a homomorphism of group schemes over S

τ : V�pLq Ñ V�pLbqq.

Note that τ also induces an OS-linear isomorphism Lpqq Ñ Lbq, by
which we identify V�pLbqq with V�pLqpqq. Then the relative q-th Frobe-
nius map V�pLq Ñ V�pLqpqq � V�pLbqq is induced by the natural in-
clusion

(2.1) SympLb�qq Ñ SympLb�1q.

For S � SpecpBq and L � OS, we have V�pOSq � Ga and τ induces
the endomorphism of Ga � SpecpBrXsq over B defined by X ÞÑ Xq.
This gives the equality

EndFq ,SpGaq � Btτu,

where Btτu is the skew polynomial ring over B whose multiplication

is defined by aτ i � bτ j � abq
i
τ i�j for any a, b P B.

Definition 2.1 ([Lau], Remark (1.2.2)). Let S be a scheme over A and
r a positive integer. A (standard) Drinfeld (A-)module of rank r over
S is a pair E � pL,ΦEq of an invertible sheaf L on S and an Fq-algebra
homomorphism

ΦE : AÑ EndSpV�pLqq
satisfying the following conditions for any a P Azt0u:
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 the image ΦE
a of a by ΦE is written as

ΦE
a �

r degpaq¸
i�0

αipaqτ
i, αipaq P Lb1�qipSq

with αr degpaqpaq nowhere vanishing.

 α0paq is equal to the image of a by the structure map A Ñ
OSpSq.

We often refer to the underlying A-module scheme V�pLq as E. A
morphism pL,Φq Ñ pL1,Φ1q of Drinfeld modules over S is defined to
be a morphism of A-module schemes V�pLq Ñ V�pL1q over S. The
category of Drinfeld modules over S is denoted by DMS.

We denote the Carlitz module over S by C: it is the Drinfeld module
pOS,Φ

Cq of rank one over S defined by ΦC
t � θ � τ . We identify

the underlying group scheme of C with Ga � SpecSpOSrZsq using
1 P OSpSq.

2.2. ϕ-modules and v-modules. Let S be a scheme over A. Let G
be an Fq-module scheme G over S whose structure map π : G Ñ S
is affine. Note that the additive group Ga over S is endowed with a
natural action of Fq. Put

EG � HomFq ,SpG,Gaq,

the OS-module of Fq-linear homomorphisms G Ñ Ga over S. The
Zariski sheaf EG is naturally considered as an OS-submodule of π�pOGq.

On the other hand, if the formation of EG commutes with any base
change, then the relative q-th Frobenius map FG{S : G Ñ Gpqq defines
an OS-linear map

ϕG : EGpqq � E pqqG Ñ EG
which commutes with Fq-actions.

Definition 2.2. We say an Fq-module scheme G over S is a ϕ-module
over S if the following conditions hold:


 the structure morphism π : G Ñ S is affine,

 the OS-module EG is locally free (not necessarily of finite rank)

and its formation commutes with any base change,

 the induced Fq-action on the sheaf of invariant differentials ωG

agrees with the action via the structure map Fq Ñ OSpSq,

 the natural OS-algebra homomorphism S :� SymOS

pEGq Ñ
π�pOGq induces an isomorphism

S{ppfS b 1� ϕGqpE pqqG qq Ñ π�pOGq.
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A morphism of ϕ-modules over S is defined as a morphism of Fq-module
schemes over S. The category of ϕ-modules over S is denoted by
ϕ-ModS.

The last condition of Definition 2.2 yields a natural isomorphism

CokerpϕGq Ñ ωG.

We also note that for any ϕ-module G over S, the natural map SymOS
pEGq Ñ

π�pOGq defines a closed immersion of Fq-module schemes

iG : G Ñ V�pEGq.

Definition 2.3. A ϕ-sheaf over S is a pair pE , ϕEq of a locally free
OS-module E and an OS-linear homomorphism ϕE : E pqq Ñ E . We
abusively denote the pair pE , ϕEq by E . A morphism of ϕ-sheaves is
defined as a morphism of OS-modules compatible with ϕE ’s. A se-
quence of ϕ-sheaves is said to be exact if the underlying sequence of
OS-modules is exact. The exact category of ϕ-sheaves over S is denoted
by ϕ-ShvS.

We have a contravariant functor

Sh : ϕ-ModS Ñ ϕ-ShvS, G ÞÑ pEG, ϕGq.

On the other hand, for any object pE , ϕEq of the category ϕ-ShvS, put
SE � SymOS

pEq and

GrpEq � SpecSpSE{ppfSE b 1� ϕEqpE pqqqqq.
Then the diagonal map E Ñ E ` E and the natural Fq-action on E
define on GrpEq a structure of an affine Fq-module scheme over S. The
formation of GrpEq is compatible with any base change. We also have
a natural identification

(2.2) GrpEqpT q � Homϕ,OS
pE , π�pOT qq

for any morphism π : T Ñ S, where we consider on π�pOT q the natural
ϕ-structure induced by the q-th power Frobenius map [Tag, Proposition
(1.8)]. Since we have a natural isomorphism E Ñ EGrpEq, we obtain a
contravariant functor

Gr : ϕ-ShvS Ñ ϕ-ModS, E ÞÑ GrpEq,
which gives an anti-equivalence of categories with quasi-inverse Sh.

A sequence of ϕ-modules is said to be Shv-exact if the correspond-
ing sequence in the category ϕ-ShvS via the functor Sh is exact. We
consider ϕ-ModS as an exact category by this notion of exactness.
The author does not know if it is equivalent to the exactness as group
schemes.
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The commutativity of EG with any base change in Definition 2.2 holds
in the case where G is a line bundle over S. From this we can show
that any Drinfeld module is a ϕ-module. Another case it holds is that
of finite ϕ-modules, which is defined as follows.

Definition 2.4 ([Tag], Definition (1.3)). We say an Fq-module scheme
G over S is a finite ϕ-module over S if the following conditions hold:


 the structure morphism π : G Ñ S is affine,

 the induced Fq-action on ωG agrees with the action via the struc-

ture map Fq Ñ OSpSq,

 the OS-modules π�pOGq and EG are locally free of finite rank

with
rankOS

pπ�pOGqq � qrankOS
pEGq,


 EG generates the OS-algebra π�pOGq.

A morphism of finite ϕ-modules over S is defined as a morphism of
Fq-module schemes over S.

Definition 2.5. A finite ϕ-sheaf over S is a ϕ-sheaf such that its un-
derlying OS-module is locally free of finite rank. The full subcategory
of ϕ-ShvS consisting of finite ϕ-sheaves is denoted by ϕ-ShvfS.

Let G be a finite ϕ-module over S. Then we also have the natural
closed immersion iG : G Ñ V�pEGq, which implies that the Cartier dual
CarpGq of G is of height ¤ 1 in the sense of [Gabr, §4.1.3]. Then,
by [Gabr, Théorème 7.4, footnote], the sheaf of invariant differentials
ωCarpGq is a locally free OS-module of finite rank, and thus the formation
of the Lie algebra

LiepCarpGqq � HomSpG,Gaq

commutes with any base change. Since q�1 is invertible in OSpSq, the
OS-module EG is the image of the projector

LiepCarpGqq Ñ LiepCarpGqq, x ÞÑ
1

q � 1

¸
aPF�q

αpaq�1ψapxq,

where α : AÑ OSpSq is the structure map and ψa is the action of a on
LiepCarpGqq induced by the Fq-action on G. Since the formation of this
projector commutes with any base change, so does that of EG. From this
we see that any finite ϕ-module is a ϕ-module. We denote by ϕ-ModfS
the full subcategory of ϕ-ModS consisting of finite ϕ-modules. Then the
functor Gr gives an anti-equivalence of categories ϕ-ShvfS Ñ ϕ-ModfS
with quasi-inverse given by Sh.

On the category ϕ-ModfS, the Shv-exactness agrees with the usual
exactness of group schemes. Indeed, from (2.2) and comparing ranks
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we see that the Shv-exactness implies the usual exactness, and the
converse also follows by using the compatibility of Sh with any base
change and reducing to the case over a field by Nakayama’s lemma.

Lemma 2.6. Let E be a line bundle over S. Let G be a finite locally
free closed Fq-submodule scheme of E over S. Suppose that the rank of
G is a q-power. Then G is a finite ϕ-module.

Proof. We may assume that S � SpecpBq is affine, the underlying in-
vertible sheaf of E is trivial and G � SpecpBGq is free of rank qn over
S. We write as E � SpecpBrXsq. We have a surjection BrXs Ñ BG
of Hopf algebras over B. Let P pXq P BrXs be the characteristic poly-
nomial of the action of X on BG. Since degpP pXqq � qn, the Cayley-
Hamilton theorem implies that this surjection induces an isomorphism
BrXs{pP pXqq � BG.

Since P pXq is monic, we can see that P pXq is an additive polynomial
as in [Wat, §8, Exercise 7]. Since G is stable under the Fq-action on
Ga, we have the equality of ideals pP pλXqq � pP pXqq of BrXs for any
λ P F�q . From this we see that P pXq is Fq-linear and

EG �
n�1à
i�0

BXqi ,

from which the lemma follows. �

Corollary 2.7. Let π : E Ñ F be an Fq-linear isogeny of line bundles
over S. Then the group scheme G � Kerpπq is a finite ϕ-module over
S, and we have a natural exact sequence of ϕ-sheaves

(2.3) 0 // EF // EE // EG // 0.

Proof. The first assertion follows from Lemma 2.6. For the second one,
it is enough to show the surjectivity of the natural map i� : EE Ñ EG.
By Nakayama’s lemma, we may assume S � Specpkq for some field k.
Then π is defined by an Fq-linear additive polynomial as

X ÞÑ P pXq � a0X � a1X
q � � � � � anX

qn , an � 0

and the map i� is identified with the natural map

EE �
à
iPZ¥0

kXqi Ñ EG �
n�1à
i�0

kXqi

of taking modulo
À

l¥0 kP pXq
ql . Hence i� is surjective. �

Lemma 2.8. (1) Let E be a line bundle over S. Let G and H be
finite locally free closed Fq-submodule schemes of E over S sat-
isfying H � G. Suppose that the ranks of G and H are constant
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q-powers. Then E{H is a line bundle over S and G{H is a finite
ϕ-module over S.

(2) ([Hat], Lemma 2.2 (2)) Let E be a Drinfeld module of rank r.
Let H be a finite locally free closed A-submodule scheme of E
of constant q-power rank over S. Suppose either

 H is etale over S, or

 S is reduced and for any maximal point η of S, the fiber
Hη of H over η is etale.

Then E{H is a Drinfeld module of rank r with the induced A-
action.

Proof. For (1), the assertion that E{H is a line bundle over S is [Hat,
Lemma 2.2 (1)]. Moreover, applying Lemma 2.6 to the natural closed
immersion G{H Ñ E{H, we see that G{H is a finite ϕ-module over
S. �

Definition 2.9 ([Tag], Definition (2.1)). We say an A-module scheme
G over S is a t-module over S if the following conditions hold:


 the induced A-action on ωG agrees with the action via the struc-
ture map AÑ OSpSq,


 the underlying Fq-module scheme of G is a ϕ-module over S.

We say G is a finite t-module if in addition the underlying Fq-module
scheme of G is a finite ϕ-module over S.

Note that the former condition in Definition 2.9 is automatically
satisfied if G is etale.

Lemma 2.10. Let E be a line bundle over S. Let G and H be finite
locally free closed Fq-submodule schemes of E over S satisfying H � G.
Suppose that G is endowed with a t-action which makes it a finite t-
module, H is stable under the A-action on G and the ranks of G and
H are constant q-powers.

(1) The A-module scheme H is a finite t-module over S.
(2) Suppose moreover that aG � 0 for some OS-regular element

a P A. Then the A-module scheme G{H is a finite t-module
over S.

Proof. From Lemma 2.6 and Lemma 2.8 (1), we see that H and G{H
are finite ϕ-modules. We have an exact sequence of OS-modules

ωG{H
π� // ωG // ωH // 0

which is compatible with A-actions. Since the t-action on ωG is equal
to the multiplication by θ, so is that on ωH and (1) follows. For (2),
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using co-Lie complexes we can deduce from the assumption that the
map π� is injective. This yields (2). �

Definition 2.11 ([Tag], Definition (3.1)). A v-module over S is a pair

pG, vGq of a t-module G and an OS-linear map vG : EG Ñ E pqqG such that

the map ψG
t : EG Ñ EG induced by the t-action on G satisfies

ψG
t � θ � ϕG � vG, pψG

t b 1q � vG � vG � ψ
G
t .

We refer to such vG as a v-structure on G and denote the pair pG, vGq
abusively by G. A morphism g : G Ñ H of v-modules over S is defined
as a morphism of A-module schemes over S which commutes with v-
structures, in the sense that the following diagram is commutative.

EH
vH //

g�

��

E pqqH

g�b1
��

EG vG
// E pqqG

A sequence of v-modules over S is said to be exact if the underlying
sequence of ϕ-modules is Shv-exact. The category of v-modules over S
is denoted by v-ModS.

A v-module over S is said to be a finite v-module if the underlying ϕ-
module is a finite ϕ-module. The full subcategory of v-ModS consisting
of finite v-modules is denoted by v-ModfS.

Definition 2.12 ([Tag], Definition (3.2)). A v-sheaf over S is a quadru-
ple pE , ϕE , ψE,t, vEq, which we abusively write as E , consisting of the
following data:


 pE , ϕEq is a ϕ-sheaf over S,

 ψE,t : E Ñ E is an OS-linear map which commutes with ϕE ,

 vE : E Ñ E pqq is an OS-linear map which commutes with ψE,t

and satisfies ψE,t � θ � ϕE � vE .

A morphism of v-sheaves is defined as a morphism of underlying OS-
modules which is compatible with the other data, and we say that a
sequence of v-sheaves is exact if the underlying sequence of OS-modules
is exact. The exact category of v-sheaves over S is denoted by v-ShvS.

A v-sheaf is said to be a finite v-sheaf if the underlying OS-module
is locally free of finite rank. The full subcategory of v-ShvS consisting
of finite v-sheaves is denoted by v-ShvfS.

Then the functor Gr induces anti-equivalences of categories

v-ShvS Ñ v-ModS, v-ShvfS Ñ v-ModfS
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with quasi-inverses given by Sh.
Note that for any v-module (resp. finite v-module) G over S and any

S-scheme T , the base change G|T � G �S T has a natural structure of
a v-module (resp. finite v-module) over T . For any Drinfeld module E

over S, the map ϕE : E pqqE Ñ EE is injective and CokerpϕEq is killed by
ψEt � θ. Then E has a unique v-structure

vE � ϕ�1
E � pψEt � θq

and any morphism of Drinfeld modules is compatible with the unique
v-structures. Thus we may consider the category DMS as a full sub-
category of v-ModS. Moreover, for any isogeny π : E Ñ F of Drin-
feld modules over S, Corollary 2.7 implies that Kerpπq has a unique
structure of a finite v-module such that the exact sequence (2.3) is
compatible with v-structures. Note that a v-structure of Kerpπq is not
necessarily unique without this compatibility condition. On the other
hand, in some cases a finite t-module over S has a unique v-structure,
as follows.

Lemma 2.13 ([Tag], Proposition 3.5). Let G be a finite t-module over
S. Suppose either

(1) G is etale over S, or
(2) S is reduced and for any maximal point η of S, the fiber Gη of

G over η is etale.

Then the map ϕG : E pqqG Ñ EG is injective. In particular, there exists
a unique v-structure on G, and for any v-module H, any morphism
G Ñ H of t-modules over S is compatible with v-structures.

Corollary 2.14. Let S be a reduced scheme which is flat over A and
E a Drinfeld module of rank r over S. Let a P A be a non-zero element
and G a finite locally free closed A-submodule scheme of the a-torsion
part Eras of E over S of constant q-power rank. Then E{G has a
natural structure of a Drinfeld module of rank r. Moreover, G has
a unique structure of a finite v-module induced from that of E and,
for any v-module H, any morphism G Ñ H of t-modules over S is
compatible with v-structures.

Proof. The going-down theorem implies that a is invertible in the residue
field of every maximal point η of S, and thus Eras is etale over η. Then
the first assertion follows from Lemma 2.8 (2). Moreover, Lemma 2.10
(1) implies that G is a finite t-module. Since G is the kernel of an
isogeny of Drinfeld modules, the v-structure on E induces that on G.
The other assertions follow from Lemma 2.13 (2). �
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Remark 2.15. The notation here is slightly different from the lit-
erature including [Tag]. Finite ϕ-sheaves are usually referred to as ϕ-
sheaves. In [Tag], finite t-modules, finite v-modules and finite v-sheaves
are assumed to be killed by some nonzero element of A.

2.3. Duality for finite v-modules. Let S be a scheme over A. We
denote by C the Carlitz module over S, as before. We have

EC � HomFq ,SpC,Gaq �
à
iPZ¥0

OSZ
qi

with its unique v-structure given by

vC : EC Ñ E pqqC , Zqi ÞÑ Zqi�1

b pθq
i

� θq � Zqi b 1.

Note that vC is surjective. We have

ψCti pZq :� pψCt q
ipZq � θiZ � � � � � Zqi

and thus the set tψCti pZqui¥0 forms a basis of EC . For any scheme T
over S and any v-module H over T , we denote by Homv,T pH, C|T q the
A-module of morphisms H Ñ C|T in the category v-ModT .

The following theorem, due to Taguchi, gives a duality for finite v-
modules over S which is more suitable to analyze Drinfeld modules and
Drinfeld modular forms than usual Cartier duality for finite locally free
group schemes.

Theorem 2.16 ([Tag], §4). (1) Let G be a finite v-module over S.
Then the big Zariski sheaf

Homv,SpG, Cq : pS-schemesq Ñ pA-modulesq

given by T ÞÑ Homv,T pG|T , C|T q is represented by a finite v-
module GD over S. We refer to GD as the Taguchi dual of G.

(2) rankpGq � rankpGDq.
(3) The functor

v-ModfS Ñ v-ModfS, G ÞÑ GD

is exact (in the usual sense) and commutes with any base change.
(4) There exists a natural isomorphism of v-modules G Ñ pGDqD.

Proof. For the convenience of the reader, we give a simpler proof than
in [Tag, §4]. Consider the linear dual

E_G � HomOS
pEG,OSq

and the dual maps

pψG
t q

_ : E_G Ñ E_G , v_G : pE_G qpqq Ñ E_G , ϕ_G : E_G Ñ pE_G qpqq
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of ψG
t , vG and ϕG, respectively. We define a finite v-module GD over S

by GD � GrpE_G , v_G q with t-action pψG
t q

_ and v-structure ϕ_G .
To see that it represents the functor in the theorem, let π : T Ñ S

be any morphism. Since vC is surjective, to give a map of v-sheaves
g : EC |T Ñ EG|T is the same as to give an OT -linear map which is com-
patible with t-actions and v-structures. Since ψCti�1pZq � ψCt pψ

C
ti pZqq,

to give an OT -linear map g : EC |T Ñ EG|T compatible with t-actions
is the same as to give an element x � gpZq of EG|T pT q. As for the
compatibility with v-structures, we see that if g is compatible with t-
actions, then the relation pg b 1qpvCpψ

C
ti pZqqq � vGpgpψ

C
ti pZqqq implies

a similar relation for ψCti�1pZq � ψCt pψ
C
ti pZqq. Thus we only need to

impose on x the condition for i � 0. Namely, we have

(2.4) Homv,T pG|T , C|T q � tx P EG|T pT q | xb 1 � vGpxqu,

where x b 1 P pEG|T qpqqpT q is the pull-back of x by the Frobenius map
FT . On the other hand, by (2.2) the set GrpE_G , v_G qpT q can be identified
with the set of OT -linear homomorphisms χ : E_G |T Ñ OT satisfying

χ � v_G � fOT
� pF �

T pχqq.

Via the natural isomorphisms

HomOT
pE_G |T ,OT q � EG|T , fOT

: Opqq
T � F �

T pOT q � OT ,

we can easily show that it agrees with (2.4). Thus we obtain a natural
isomorphism

Homv,T pG|T , C|T q � GrpE_G , v_G qpT q
and we can check that it is compatible with A-actions. The assertion
on the exactness follows from the agreement of the exactness and the
Shv-exactness for the category v-ModfS. The other assertions follow
from the construction. �

Lemma 2.17. Let S be any scheme over A. Let a P A be any monic
polynomial. Consider the finite t-module Cras endowed with the natural
v-structure as the kernel of the isogeny a : C Ñ C. Then the Taguchi
dual CrasD of Cras is isomorphic as a v-module to the constant A-
module scheme A{paq endowed with the unique v-structure of Lemma

2.13 (1).

Proof. Let ι : Cras Ñ C be the natural closed immersion. From the
definition of the v-structure on Cras, it is compatible with v-structures.
Thus we have a morphism of t-modules over S

A{paq Ñ CrasD � Homv,SpCras, Cq, 1 ÞÑ ι.
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We claim that it is a closed immersion. Indeed, by Nakayama’s lemma
we may assume S � Specpkq for some field k. Suppose that bι � 0 for
some b P A. Write as b � sa�r with s, r P A satisfying degprq   degpaq.
Then we have ΦC

a pZq | ΦC
r pZq, which is a contradiction unless r � 0.

This implies that the kernel of the above morphism is zero and the
claim follows. Since both sides have the same rank over S, it is an
isomorphism. Since both sides are etale, it is compatible with unique
v-structures. �

2.4. Duality for Drinfeld modules of rank two. Let S be a scheme
over A. Recall that for any S-scheme T , both of the categories DMT of
Drinfeld modules over T and v-ModfT of finite v-modules over T are full
subcategories of v-ModT , and v-ModT is anti-equivalent to v-ShvT . For
any v-modules H,H1 over T , we denote by Ext1

v,T pH,H1q the A-module
of isomorphism classes of Yoneda extensions of H by H1 in the category
v-ModT with Shv-exactness. We identify this A-module with the A-
module Ext1

v,T pEH1 , EHq of isomorphism classes of Yoneda extensions
of EH1 � ShpH1q by EH � ShpHq in the exact category v-ShvT . We
also define a big Zariski sheaf Ext1

v,SpH,H1q as the sheafification of

T ÞÑ Ext1
v,T pH|T ,H1|T q.

Let E be a Drinfeld module over S and put G � Ga or C over S.
We write as G � SpecSpOSrZsq. Let us describe the isomorphism class
of any extension

0 // G // L // E // 0

in the category v-ModS. Consider the associated exact sequence

0 // EE // EL // EG // 0

in the category v-ShvS. Since EG is a free OS-module, this sequence
splits as OS-modules if S is affine. In this case, using ϕGpZ

qiq � Zqi�1
,

we can show that there exists a splitting s : EG Ñ EL of the above
sequence which is compatible with ϕ-structures.

We assume that S is affine and fix such a ϕ-compatible splitting s
for a while. Then the a-action on L for any a P A is given by

ΦL
a � pΦG

a ,Φ
E
a � δaq

with some Fq-linear homomorphism

δ : AÑ HomFq ,SpE,Gq, a ÞÑ δa.

Here δa is associated to the map ψLa � s� s �ψ
G
a : EG Ñ EE and satisfies

(i) δλ � 0 for any λ P Fq,
(ii) δab � ΦG

a � δb � δa � ΦE
b for any a, b P A.
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Since ϕL : E pqqL Ñ EL is injective and by Definition 2.9 the map ψLt � θ
kills CokerpϕLq, the v-structure on L is uniquely determined by the
data δt.

Definition 2.18 ([Gek4], §3 and [PR], §2). Let S be an affine scheme
over A, E a Drinfeld module over S and G � Ga or C as above.

(1) An pE,Gq-biderivation is an Fq-linear homomorphism δ : A Ñ
HomFq ,SpE,Gq, a ÞÑ δa satisfying the above conditions (i) and
(ii). The module of pE,Gq-biderivations is denoted by DerpE,Gq,
which admits two natural A-module structures defined by

pδ � cqa � δa � ΦE
c , pc � δqa � ΦG

c � δa for any c P A.

Note that we have a natural isomorphism

(2.5) evt : DerpE,Gq Ñ HomFq ,SpE,Gq, δ ÞÑ δt.

(2) An pE,Gq-biderivation δ is said to be inner if there exists f P
HomFq ,SpE,Gq satisfying δ � δf , where the pE,Gq-biderivation
δf is defined by

δf,a � f � ΦE
a � ΦG

a � f for any a P A.

The submodule of DerpE,Gq consisting of inner pE,Gq-biderivations
is denoted by DerinpE,Gq, which is stable under two natural A-
actions.

(3) We denote by Der0pE,Gq the submodule of DerpE,Gq consist-
ing of pE,Gq-biderivations δ such that the induced map on
sheaves of invariant differentials

Cotpδtq : ωG Ñ ωE

is the zero map. We have DerinpE,Gq � Der0pE,Gq.
(4) An inner pE,Gq-biderivation δf is said to be strictly inner if

Cotpfq � 0. We denote by DersipE,Gq the submodule of DerpE,Gq
consisting of strictly inner pE,Gq-biderivations.

Then the two natural A-actions on DerpE,Gq agree with each other
on the quotient DerpE,Gq{DerinpE,Gq [PR, p. 412] and we have nat-
ural isomorphisms of A-modules

(2.6)
Ext1

v,SpE,Gq Ñ DerpE,Gq{DerinpE,Gq
evtÑ HomFq ,SpE,Gq{evtpDerinpE,Gqq.

We define an A-submodule

Ext1
v,SpE,Gq

0

of Ext1
v,SpE,Gq as the inverse image of Der0pE,Gq{DerinpE,Gq by the

above isomorphism. Since another choice of a ϕ-compatible splitting
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gives the same biderivation modulo inner ones, the first map of (2.6)
is independent of the choice of a ϕ-compatible splitting, and so is the
the A-submodule Ext1

v,SpE,Gq
0.

Suppose that E � V�pLq is a Drinfeld module of rank two over the
affine scheme S. We have a natural isomorphismà

m¥0

Lb�qm Ñ HomFq ,SpE,Gq, b ÞÑ pZ ÞÑ bq,

by which we identify both sides. Then DerpE,Gq, DerpE,Gq0 and
DerinpE,Gq are locally free OSpSq-modules, and we can show that

T ÞÑ Ext1
v,T pE|T , G|T q, T ÞÑ Ext1

v,T pE|T , G|T q
0

satisfy the axiom of sheaves on affine open subsets of S. This implies
that, for the case where S is not necessarily affine, we have a subsheaf
of A-modules

Ext1
v,SpE,Gq

0 � Ext1
v,SpE,Gq

such that, for any affine scheme T over S and 
 P tH, 0u, we have

Ext1
v,SpE,Gq


pT q � Ext1
v,T pE|T , G|T q


.

Moreover, we have a natural isomorphism of big Zariski sheaves

(2.7) Lb�q Ñ Ext1
v,SpE,Gq

0

sending, for any affine scheme T over S, any element b P Lb�qpT q
to the unique extension class such that, for the associated pE|T , G|T q-
biderivation δ, the map δt : E|T Ñ G|T is given by

δ�t : OT rZs Ñ SympLb�1|T q, Z ÞÑ b.

Thus, taking G � C, we have the following theorem, which is due to
Taguchi [Tag, §5]. The interpretation of his duality using biderivations
obtained here is a generalization of [PR, Theorem 1.1] to general base
schemes.

Theorem 2.19. Let S be any scheme over A.

(1) Let E � pL,ΦEq be any Drinfeld module of rank two over S
with

ΦE
t � θ � a1τ � a2τ

2, ai P Lb1�qipSq.

Then the functor

Ext1
v,SpE,Cq

0 : pS-schemesq Ñ pA-modulesq

is represented by a Drinfeld module ED of rank two over S
defined by

ED � V�pLb�qq, ΦED

t � θ � a1 b ab�1
2 τ � ab�q2 τ 2.
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(2) The formation of ED commutes with any base change.
(3) Let F � pM,ΦF q be any Drinfeld module of rank two over S.

Then any morphism f : E Ñ F of the category DMS induces a
morphism fD : FD Ñ ED of this category. If f is induced by
an OS-linear map f : L Ñ M, then the dual map fD : FD Ñ
ED is given by the q-th tensor power pf_qbq of the linear dual
f_ : M_ Ñ L_.

(4) If f is an isogeny, then fD is also an isogeny of the same degree
as f , Kerpfq has a natural structure of a finite v-module over
S and there exists a natural isomorphism of A-module schemes
over S

pKerpfqqD Ñ KerpfDq.

Proof. The assertions (1) and (2) follow easily from the construction.
The assertion (3) follows from the functoriality of Ext1

v,Sp�, Cq
0 and

the isomorphism (2.7).
Let us show the assertion (4). Put G � Kerpfq. Corollary 2.7 implies

that the exact sequence of group schemes

0 // G // E
f // F // 0

is also Shv-exact and thus G has a natural structure of a finite v-module
such that this sequence is compatible with v-structures. Since E and
C have different ranks, the long exact sequence of Homv,S yields an
exact sequence

0 // GD // Ext1
v,SpF,Cq

// Ext1
v,SpE,Cq.

From a description of the connecting homomorphism using Yoneda ex-
tension, we can show that it factors through the subsheaf Ext1

v,SpF,Cq
0.

Therefore we have an exact sequence of A-module schemes over S

0 // GD // FD fD // ED,

from which we obtain a natural isomorphism GD Ñ KerpfDq. To see
that fD is faithfully flat, by a base change we may assume S � Specpkq
for some field k. Then the group schemes FD and ED are isomorphic to
Ga and fD is defined by an additive polynomial. Since KerpfDq � GD is
finite over S, this polynomial is non-zero and thus fD is faithfully flat.
Since the ranks of G and GD are the same, the assertion on degpfDq
also follows. �

Remark 2.20. Suppose that there exists a section h P Lb�pq�1qpSq
satisfying hbq�1 � �a2. Then the map h : L Ñ Lb�q gives an autod-
uality for Drinfeld modules of rank two. In the classical setting on the
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Drinfeld upper half plane, this is the case because of the existence of
Gekeler’s h-function [Gek3, Theorem 9.1 (c)]. In general, we only have
a weaker version of autoduality: the map

Lbq�1 Ñ Lb�qpq�1q, l ÞÑ l b a2

is an isomorphism of invertible sheaves. This is enough for our purpose.

For a Drinfeld module E over S, we have analogues of the first de
Rham cohomology group and the Hodge filtration for an abelian variety
[Gek4, §5]. First we show the following lemma.

Lemma 2.21. For any Drinfeld module E of rank two over an affine
scheme S, we have natural isomorphisms

LiepEDq Ñ Ext1
v,SpE,Gaq

0, DerinpE,Gaq{DersipE,Gaq Ñ LiepEq_.

Proof. For the former one, we put Sε � SpecSpOSrεs{pε
2qq. Then we

have
LiepEDq � KerpEDpSεq Ñ EDpSqq.

For any Fq-linear homomorphism δ : AÑ HomFq ,SεpE|Sε , C|Sεq, we can
write as

δa � δ0
a � εδ1

a, δia P HomFq ,SpE,Cq.

Then δ P Der0pE|Sε , C|Sεq if and only if

δ0 P Der0pE,Cq, δ1 P Der0pE,Gaq.

On the other hand, for any g � g0 � εg1 P HomFq ,SεpE|Sε , C|Sεq, the
associated inner biderivation δg is written as

δg � δg0 � εpg1 � ΦE � ΦGa � g1q.

From this, we see that the map sending δ to the class of δ1 gives a
natural isomorphism LiepEDq Ñ Ext1

v,SpE,Gaq
0. The latter one is

given by the natural map

DerinpE,Gaq Ñ HomOS
pLiepEq,LiepGaqq, δf ÞÑ Liepfq.

�

For any Drinfeld module E over an affine scheme S, we put

DRpE,Gaq � Der0pE,Gaq{DersipE,Gaq.

From the proof of [PR, p. 412], we see that the two natural A-actions
on Der0pE,Gaq define the same A-action on DRpE,Gaq. If E is of rank
two, then Lemma 2.21 yields an exact sequence of A-modules

(2.8) 0 // LiepEq_ // DRpE,Gaq // LiepEDq // 0,

which is functorial on E.
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Finally, we recall the construction of the Kodaira-Spencer map for
a Drinfeld module E over an A-scheme S [Gek4, §6]. We only treat
the case where S � SpecpBq is affine and the underlying invertible
sheaf of E is trivial. Write as E � SpecpBrXsq so that we identify
as HomFq ,SpE,Gaq � Btτu. We define an action of D P DerApBq on
Btτu by acting on coefficients. Then, via the isomorphism (2.5), the
derivation D induces a map ∇D : Der0pE,Gaq Ñ Der0pE,Gaq, which
in turn defines

πD : LiepEq_ Ñ DRpE,Gaq
∇DÑ DRpE,Gaq Ñ LiepEDq,

where the first and the last arrows are those of (2.8). Then the Kodaira-
Spencer map for E over S is by definition

KS : DerApBq Ñ HomBpLiepEq_,LiepEDqq, D ÞÑ πD.

Hence we also have the dual map

KS_ : ωE bOS
ωED Ñ Ω1

S{A.

3. Canonical subgroups of ordinary Drinfeld modules

Let ℘ be a monic irreducible polynomial of degree d in A � Fqrts. We
denote by OK the complete local ring of A at the prime ideal p℘q, which
is a complete discrete valuation ring with uniformizer ℘. We consider
OK naturally as an A-algebra. The fraction field and the residue field
of OK are denoted by K and kp℘q � Fqd , respectively. We denote by
v℘ the ℘-adic (additive) valuation on K normalized as v℘p℘q � 1. For
any OK-algebra B and any scheme X over B, we put B̄ � B{℘B and
X̄ � X �B SpecpB̄q.

We say an OK-algebra B is a ℘-adic ring if it is complete with respect
to the ℘-adic topology. A ℘-adic ring B is said to be flat if it is flat
over OK .

3.1. Ordinary Drinfeld modules. Let S̄ be an A-scheme of charac-
teristic ℘. Let Ē � pL̄,ΦĒq be a Drinfeld module of rank two over S̄.
By [Sha, Proposition 2.7], we can write as

(3.1) ΦĒ
℘ � pαd � � � � � α2dτ

dqτ d, αi P L̄b1�qipS̄q.

We put

Fd,Ē � τ d : Ē Ñ Ēpqdq, Vd,Ē � αd � � � � � α2dτ
d : Ēpqdq Ñ Ē.

We also denote them by Fd and Vd if no confusion may occur. We also
define a homomorphism F n

d : Ē Ñ Ēpqdnq by

F 1
d � Fd, F n

d � pF n�1
d qpq

dq � Fd.
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We define V n
d : Ēpqdnq Ñ Ē similarly. They are isogenies of Drinfeld

modules satisfying V n
d � F n

d � ΦĒ
℘n and F n

d � V
n
d � ΦĒpq

dnq

℘n [Sha, §2.8].

We also have exact sequences of A-module schemes over S̄

0 // KerpF n
d q

// Ēr℘ns // KerpV n
d q

// 0,

0 // KerpFdq // KerpF n
d q

// KerpF n�1
d qpq

dq // 0,

0 // KerpV n�1
d qpq

dq // KerpV n
d q

// KerpVdq // 0.

Definition 3.1. We say Ē is ordinary if αd P L̄b1�qdpS̄q of (3.1) is
nowhere vanishing, and supersingular if αd � 0.

By [Sha, Proposition 2.14], Ē is ordinary if and only if KerpVdq is
etale if and only if KerpV n

d q is etale for any n.
We need a relation of the isogenies Fd and Vd with duality. For this,

we first prove the following lemma.

Lemma 3.2. Let C be the Carlitz module over A. Then the polynomial
ΦC
℘ pZq is a monic Eisenstein polynomial in OKrZs. In particular, we

have

(3.2) ΦC
℘ pZq � Zqd mod ℘.

Proof. Let L be a splitting field of the polynomial ΦC
℘ pZq over K. Since

the ring A acts on Cr℘spLq transitively, any non-zero root β P L of
ΦC
℘ pZq satisfies v℘pβq � 1{pqd � 1q and thus the monic polynomial

ΦC
℘ pZq is Eisenstein over OK . �

Lemma 3.3.

FD
d,Ē � Vd,ĒD , V D

d,Ē � Fd,ĒD .

Proof. First we prove the former equality. Since Fd,ĒD is an isogeny, it is

enough to show FD
d,Ē

�Fd,ĒD � ΦĒD

℘ . Let L̄ be the underlying invertible

sheaf of Ē. Take any section l of L̄b�q. We have Fd,ĒDplq � lbq
d
. From

(2.1), we see that the map FD
d,Ē

sends it to the class of the biderivation

δ such that δt agrees with the homomorphism

Ē Ñ C � SpecS̄pOS̄rZsq, Z ÞÑ lbq
d

P SympL̄b�1q.

By (3.2), this is equal to the class of ℘ � pZ ÞÑ lq with respect to the
A-module structure of Ext1

v,S̄
pĒ, Cq0. Since l is a section of L̄b�q, the

isomorphism (2.7) implies the assertion.
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For the latter equality, it is enough to show V D
d,Ē

� Vd,ĒD � Φ
pĒDqpq

dq

℘ .

By the former equality of the lemma, we have

V D
d,Ē � Vd,ĒD � V D

d,Ē � F
D
d,Ē � pFd,Ē � Vd,Ēq

D � pΦĒpq
dq

℘ qD.

By the definition of the A-module structure on Ext1
v,S̄
pĒpqdq, Cq, it is

equal to Φ
pĒDqpq

dq

℘ and we obtain the latter equality of the lemma. �

Proposition 3.4. Let S̄ be an A-scheme of characteristic ℘ and Ē a
Drinfeld module of rank two over S̄. Consider the maps

LiepVd,Ēq : LiepĒpqdqq Ñ LiepĒq, LiepVd,ĒDq : LieppĒDqpq
dqq Ñ LiepĒDq

and the linear dual LiepVd,Ēq
_ of the former map. Then we have a

natural isomorphism of OS̄-modules

CokerpLiepVd,Ēq
_q � CokerpLiepVd,ĒDqq.

In particular, Ē is ordinary if and only if ĒD is ordinary.

Proof. We follow the proof of [Con, Theorem 2.3.6]. By gluing, we
may assume that S̄ is affine. By the exact sequence (2.8), we have a
commutative diagram of A-modules

0 // LiepĒpqdqq_ //

LiepFd,Ēq
_

��

DRpĒpqdq,Gaq //

F�
d,Ē
��

LieppĒDqpq
dqq //

LiepFD
d,Ē

q

��

0

0 // LiepĒq_ //

LiepVd,Ēq
_

��

DRpĒ,Gaq //

V �
d,Ē
��

LiepĒDq //

LiepV D
d,Ē

q
��

0

0 // LiepĒpqdqq_ // DRpĒpqdq,Gaq // LieppĒDqpq
dqq // 0,

where rows are exact and columns are complexes. Since LiepFd,Ēq �
LiepFd,ĒDq � 0, Lemma 3.3 implies that the middle column of the
diagram induces the complex

0 // LieppĒDqpq
dqq

F�
d,Ē // DRpĒ,Gaq

V �
d,Ē // LiepĒpqdqq_ // 0.

If it is exact, then as in the proof of [Con, Theorem 2.3.6], by using
[Con, Lemma 2.3.7] and Lemma 3.3 we obtain

CokerpLiepVd,Ēq
_q � CokerpLiepFD

d,Ēqq � CokerpLiepVd,ĒDqq.

Let us show the exactness. Since it is a complex of locally free
OS̄-modules of finite rank and its formation commutes with any base
change of affine schemes, we may assume S̄ � Specpkq for some field k.
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By comparing dimensions, it is enough to show that, for any Drinfeld
module Ē of rank two over k, the maps

F �
d,Ē : Der0pĒ

pqdq,Gaq{DerinpĒ
pqdq,Gaq Ñ Der0pĒ,Gaq{DersipĒ,Gaq

V �
d,Ē : Der0pĒ,Gaq{DersipĒ,Gaq Ñ DerinpĒ

pqdq,Gaq{DersipĒ
pqdq,Gaq

are non-zero.
For the assertion on F �

d,Ē
, we write as

ΦĒ
t � θ � a1τ � a2τ

2, ΦĒ
℘ � pαd � � � � � α2dτ

dqτ d

with a2, α2d � 0. Let δ be the element of Der0pĒ
pqdq,Gaq satisfying

δt � τ and suppose that F �
d,Ē
pδq is an element of DersipĒ,Gaq. Namely,

we have

(3.3) τ d�1 � f � ΦĒ
t � ΦGa

t � f

for some f P HomFq ,kpĒ,Gaq satisfying Cotpfq � 0. We write f as
f � brτ

r � � � � � bsτ
s with some bi P k and 1 ¤ r ¤ s satisfying

br, bs � 0. Then we have s � d � 1 and the coefficient of τ r in the
right-hand side of (3.3) is pθq

r
� θqbr. Since 1 ¤ r ¤ d � 1 and the

element θ generates kp℘q � Fqd over Fq, this term does not vanish and
thus we have r � d� 1, which is a contradiction.

Let us consider the assertion on V �
d,Ē

. If αd � 0, then the map

LiepVd,Ēq is an isomorphism and the claim follows from the above dia-
gram. Otherwise, [Sha, Lemma 2.5] yields αi � 0 unless i � 2d. Let
δ be the element of Der0pĒ,Gaq satisfying δt � τ and suppose that

V �
d,Ē
pδq is an element of DersipĒ

pqdq,Gaq. We have

τpα2dτ
dq � g � ΦĒpq

dq

t � ΦGa
t � g

for some g P HomFq ,kpĒ
pqdq,Gaq satisfying Cotpgq � 0. Then we obtain

a contradiction as in the above case. �

3.2. Canonical subgroups. Let B be an OK-algebra and E a Drin-
feld module of rank two over B. We say E has ordinary reduction if
Ē � E �B SpecpB̄q is ordinary.

Lemma 3.5. Let B be a ℘-adic ring and E a Drinfeld module of rank
two over B with ordinary reduction. Then, for any positive integer
n, there exists a unique finite locally free closed A-submodule scheme
CnpEq of Er℘ns over B satisfying CnpEq � KerpF n

d,Ē
q. The formation

of CnpEq commutes with any base change of ℘-adic rings. We refer to
it as the canonical subgroup of level n of the Drinfeld module E with
ordinary reduction.
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Proof. First note that, since pB,℘Bq is a Henselian pair, the functor
X ÞÑ X̄ gives an equivalence between the categories of finite etale
schemes over B and those over B̄ [Gabb, §1].

Let us show the existence. The finite etale A-module scheme H̄ �
KerpV n

d,Ē
q can be lifted to a finite etale A-module scheme H over B.

By the etaleness and [Gro, Proposition (17.7.10)], we can lift the map
Ēr℘ns Ñ H̄ to a finite locally free morphism of A-module schemes
π : Er℘ns Ñ H over B. Then CnpEq � Kerpπq is a lift of KerpF n

d,Ē
q.

For the uniqueness, suppose that we have two subgroup schemes
Cn,1, Cn,2 of Er℘ns as in the lemma. Put Hi � Er℘ns{Cn,i. Since they
are lifts of H̄, there exists an isomorphism θ : H1 Ñ H2 over B re-
ducing to idH̄ over B̄. Then the etaleness implies that θ is compatible
with the quotient maps Er℘ns Ñ Hi. Therefore, Cn,1 and Cn,2 agree
as A-submodule schemes of Er℘ns. Since the formation of KerpF n

d,Ē
q

commutes with any base change, the commutativity of CnpEq with any
base change follows from its uniqueness. �

We refer to the natural isogeny

πE,n : E Ñ E{CnpEq

as the canonical isogeny of level n for E. We have πE,n mod ℘ � F n
d .

On the other hand, since Er℘ns{CnpEq is etale both over B̄ and
B bOK

K, it is etale over B and we have a natural isomorphism

ωEr℘ns Ñ ωCnpEq.

Moreover, the map

ρE,n : E{CnpEq Ñ pE{CnpEqq{pEr℘ns{CnpEqq
℘n

� E

is an etale isogeny satisfying

ρE,n � πE,n � ΦE
℘n , πE,n � ρE,n � Φ

E{CnpEq
℘n .

In particular, we have ρE,n mod ℘ � V n
d . We refer to ρE,n as the

canonical etale isogeny of level n for E. The formation of πE,n and ρE,n
also commutes with any base change of ℘-adic rings.

Suppose that the ℘-adic ring B is reduced and flat. Then by Corol-
lary 2.14 the quotient E{CnpEq has a natural structure of a Drinfeld
module of rank two. Moreover, Lemma 2.10 implies that Er℘ns, CnpEq
and Er℘ns{CnpEq are finite t-modules, and by Lemma 2.13 (2) they
have unique structures of finite v-modules, which make the natural
exact sequence

(3.4) 0 // CnpEq // Er℘ns // Er℘ns{CnpEq // 0
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compatible with v-structures. We also see that the formation of the
v-structure on CnpEq also commutes with any base change of reduced
flat ℘-adic rings.

Lemma 3.6. Let B be a reduced flat ℘-adic ring. Let E be a Drinfeld
module of rank two over B with ordinary reduction. Then the Taguchi
dual CnpEqD of the canonical subgroup CnpEq is etale over B. Moreover,
it is etale locally isomorphic as a finite v-module to the constant A-
module scheme A{p℘nq over B.

Proof. By Proposition 3.4, the dual ED also has ordinary reduction.
We claim that EDr℘ns{CnpEDq is not killed by ℘n�1. Indeed, if it is
killed by ℘n�1, then we have EDr℘s � CnpEDq, which contradicts the
fact that ĒDr℘s has an etale quotient. Since EDr℘ns{CnpEDq is etale,
the claim implies that it is etale locally isomorphic to A{p℘nq. Note
that this identification is compatible with v-structures by Lemma 2.13
(1).

Since Taguchi duality is exact, the exact sequence (3.4) for ED yields
an exact sequence of finite v-modules over B

0 // pEDr℘ns{CnpEDqqD // EDr℘nsD // CnpEDqD // 0.

By Theorem 2.19 (4), we also have a natural isomorphism of A-module
schemes Er℘ns � EDr℘nsD, by which we identify both sides. Hence we
reduce ourselves to showing the equality

CnpEq � pEDr℘ns{CnpEDqqD.

For this, by the uniqueness of the canonical subgroup it is enough to
show that the reduction of pEDr℘ns{CnpEDqqD is killed by F n

d . Since
it can be checked after passing to a finite etale cover of SpecpBq, we
reduce ourselves to showing that the Taguchi dual pA{p℘nqqD of the

constant A-module scheme A{p℘nq over B̄ is killed by F n
d . This follows

from Lemma 2.17 and (3.2). �

3.3. Hodge-Tate-Taguchi maps. For any positive integer n, any A-
algebra B and any scheme X over A, we put Bn � B{p℘nq and Xn �
X �A SpecpAnq. We identify a quasi-coherent module on the big fppf
site of X with a quasi-coherent OX-module by descent.

Let S be a scheme over A and G a finite v-module over S. For any
scheme T over S, Taguchi duality gives a natural homomorphism of
A-modules

GDpT q � Homv,T pG|T , C|T q Ñ ωG|T pT q

pg : G|T Ñ C|T q ÞÑ g�pdZq,
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which defines a natural homomorphism of big fppf sheaves ofA-modules
over S

HTTG : GD Ñ ωG.

We refer to it as the Hodge-Tate-Taguchi map for the finite v-module
G over S, and also denote it by HTT if no confusion may occur. The
formation of the Hodge-Tate-Taguchi map commutes with any base
change.

Suppose that the A-module scheme G is killed by ℘n. Then the
Hodge-Tate-Taguchi map defines a natural A-linear homomorphism of
big fppf sheaves on Sn

HTT : GD|Sn bAn OSn Ñ ωGn .

Note that, if GD is etale locally isomorphic to the constant A-module
scheme An over S, then the OSn-module GD|Sn bAn OSn is invertible.
By Lemma 3.6, this is the case if G � CnpEq for any Drinfeld module E
of rank two over a reduced flat ℘-adic ring B with ordinary reduction.

Lemma 3.7. Let S be any scheme over A. We give the finite t-module
Cr℘ns the v-structure induced from that of C. Then the Hodge-Tate-
Taguchi map for Cr℘ns

HTT : An bAn OSn � Cr℘nsD|Sn bAn OSn Ñ ωCr℘nsn � OSndZ

is an isomorphism satisfying HTTp1q � dZ.

Proof. Let ι : Cr℘ns Ñ C be the natural closed immersion, as in the
proof of Lemma 2.17. The definition of the Hodge-Tate-Taguchi map
gives HTTp1q � ι�pdZq, which yields the lemma. �

Proposition 3.8. Let B be a reduced flat ℘-adic ring. Let E be a
Drinfeld module of rank two over B with ordinary reduction. Then the
Hodge-Tate-Taguchi map

HTT : CnpEqD|Bn bAn OSpecpBnq Ñ ωCnpEq bB Bn � ωE bB Bn

is an isomorphism of invertible sheaves over Bn.

Proof. It is enough to show that HTT is an isomorphism after passing
to a finite etale cover SpecpB1q of SpecpBq. We may assume that the
A-module scheme CnpEqD|B1 � pCnpEq|B1qD over B1 is constant. In this
case, the proposition follows from Lemma 3.7. �

4. ℘-adic properties of Drinfeld modular forms

4.1. Drinfeld modular curves. Here we review the theory of Drin-
feld modular curves of level Γ∆

1 pnq and their compactifications given in
[Hat]. Let n be a non-constant monic polynomial in A � Fqrts which is



℘-ADIC PROPERTIES OF DRINFELD MODULAR FORMS 27

prime to ℘. Put An � Ar1{ns. For any Drinfeld module E of rank two
over an An-scheme S, a Γpnq-structure on E is an isomorphism of A-
module schemes α : pA{pnqq2 Ñ Erns over S. We know that the functor

over An sending S to the set of isomorphism classes of such pairs pE,αq
over S is represented by a regular affine scheme Y pnq which is smooth
of relative dimension one over An.

For any Drinfeld module E of rank two over an An-scheme S, we de-
fine a Γ1pnq-structure on E as a closed immersion of A-module schemes
λ : Crns Ñ E over S. Then it is known that the functor over An, send-
ing an An-scheme S to the set of isomorphism classes rpE, λqs of pairs
pE, λq consisting of a Drinfeld module E of rank two over S and a Γ1pnq-
structure λ on E, is representable by an affine scheme Y1pnq which is
smooth over An of relative dimension one. For any Γ1pnq-structure λ
on E, the quotient Erns{Impλq is a finite etale A-module scheme over
S which is etale locally isomorphic to A{pnq, and thus the functor

IsomA,SpA{pnq, Erns{Impλqq

is represented by a finite etale pA{pnqq�-torsor IpE,λq over S.
Suppose that there exists a prime factor q of n of degree prime to

q � 1. Then we can choose a subgroup ∆ � pA{pnqq� which is a direct
summand of F�q � pA{pnqq�. Then a Γ∆

1 pnq-structure on E is defined
as a pair pλ, rµsq of a Γ1pnq-structure λ on E and an element rµs P
pIpE,λq{∆qpSq [Hat, §3]. We have a fine moduli scheme Y ∆

1 pnq of the
isomorphism classes of triples pE, λ, rµsq. The natural map Y ∆

1 pnq Ñ
Y1pnq is finite and etale. The universal Drinfeld module over Y ∆

1 pnq is
denoted by E∆

un � V�pL∆
unq and put

ω∆
un :� ωE∆

un
� pL∆

unq
_.

For any Drinfeld module E over an An-scheme S, a Γ0p℘q-structure
on E is a finite locally free closed A-submodule scheme G of Er℘s of
rank qd over S. Then we have a fine moduli scheme Y ∆

1 pn, ℘q classifying
tuples pE, λ, rµs,Gq consisting of a Drinfeld module E of rank two over
an An-scheme S, a Γ∆

1 pnq-structure pλ, rµsq and a Γ0p℘q-structure G
on E. The natural map Y ∆

1 pn, ℘q Ñ Y ∆
1 pnq is finite, and it is etale

over Anr1{℘s. For any An-algebra R, we write as Y ∆
1 pnqR � Y ∆

1 pnq�An

SpecpRq and similarly for other Drinfeld modular curves.
For any An-algebra R0 which is Noetherian, excellent and regular, we

have a natural compactification X∆
1 pnqR0 of Y ∆

1 pnqR0 which is proper
and smooth with geometrically connected fibers over An. Similarly, we
also have a compactification X∆

1 pn, ℘qR0 of Y ∆
1 pn, ℘qR0 which is proper

and smooth with geometrically connected fibers over Anr1{℘s. The
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maps

xayn : rpE, λ, rµsqs ÞÑ rpE, aλ, rµsqs, xcy∆ : rpE, λ, rµsqs ÞÑ rpE, λ, crµsqs

induce actions of the groups pA{pnqq� and pA{pnqq�{∆ � F�q onX∆
1 pnqR0 .

If R0 is in addition a domain, then the sheaf ω∆
un and its pull-back

to Y ∆
1 pn, ℘qR0 extend to natural invertible sheaves ω̄∆

un and ω̄∆,℘
un on

X∆
1 pnqR0 and X∆

1 pn, ℘qR0 , respectively. In fact, the latter sheaf is the
pull-back of the former one to X∆

1 pn, ℘qR0 . The natural action of F�q
on ω∆

un via x�y∆ also extends to an action on ω̄∆
un covering its action

on X∆
1 pnqR0 , and similarly for ω̄∆,℘

un [Hat, Theorem 5.3 and §7].
Suppose that R0 is a flat An-algebra which is an excellent regular

domain. Let WnpXq be the unique monic prime factor of ΦC
n pXq in

ArXs which does not divide ΦC
mpXq for any non-trivial divisor m of

n [Car, §3]. Let Rn be the affine ring of a connected component of
IR0 � SpecpR0rXs{pWnpXqqq, which is a finite etale domain over R0.

Then the formal completion of X∆
1 pnqRn along cusps is studied in

[Hat, §6], by using Tate-Drinfeld modules. For this, we follow the
notation in [Hat, §4]. In particular, for any non-zero element f P A,
put

fΛ �

"
ΦC
fa

�
1

x


 ���� a P A
*
� R0ppxqq, efΛpXq � X

¹
α�0PfΛ

�
1�

X

α



.

We set

(4.1) ΦfΛ
a pXq � efΛpΦ

C
a pe

�1
fΛpXqqq P R0rrxssrXs.

Then the additive group SpecpR0ppxqqrXsq is endowed with a struc-
ture of a Drinfeld module of rank two over R0ppxqq such that its a-
multiplication map is given by ΦfΛ

a pXq for any a P A. We refer to it as
the Tate-Drinfeld module and denote it by TDpfΛq.

Lemma 4.1. Let X be the parameter of TDpΛq as above. We trivialize
the underlying invertible sheaf ωbqTDpΛq of the dual TDpΛqD by pdXqbq,

and we denote the corresponding parameter of TDpΛqD by Y . Put

Φ
TDpΛq
t � θ � a1τ � a2τ

2. Then the dual of the Kodaira-Spencer map

KS_ : ωTDpΛq b ωTDpΛqD Ñ Ω1
R0ppxqq{R0

satisfies KS_pdX b dY q � lpxqdx with

lpxq �
da1

dx
�
a1

a2

da2

dx
�

1

x
mod R0rrxss.
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Proof. We want to compute ∇ d
dx
pdXq. For this, first note that the

inner biderivation δid P DerinpTDpΛq,Gaq gives dX via the second iso-
morphism of Lemma 2.21. Then we have

δid,t � id � Φ
TDpΛq
t � ΦGa

t � id � a1τ � a2τ
2

and ∇ d
dx
pdXq corresponds to the class of δ P Der0pTDpΛq,Gaq sat-

isfying δt �
da1

dx
τ � da2

dx
τ 2. Subtracting the inner biderivation δβ for

β � a�1
2

da2

dx
, we may assume δt � lpxqτ . Hence, the element π d

dx
pdXq P

LiepTDpΛqDq is given by the biderivation δ1 P Der0pTDpΛq|T0,ε , C|T0,εq
satisfying δ1t � εlpxqτ , where we put

T0 � SpecpR0ppxqqq, T0,ε � SpecT0
pOT0rεs{pε

2qq.

The map δ1t is an element of HomFq ,T0,εpTDpΛq|T0,ε , C|T0,εq defined by

Z ÞÑ εlpxqXq. Let L � R0ppxqq
d
dX

be the underlying invertible sheaf
of TDpΛq. Via the identification (2.7), the above homomorphism cor-
responds to the element

εlpxqpdXqbq P KerpV�pLb�qqpT0,εq Ñ V�pLb�qqpT0qq

and, with the parameter Y of V�pLb�qq in the lemma, it corresponds
to lpxq d

dY
. This concludes the proof. �

Let m P A be any monic polynomial. By [Hat, Lemma 4.2], the map
X ÞÑ efΛpZq defines a natural A-linear closed immersion

λfΛ
8,m : Crms Ñ TDpfΛq.

Moreover, by [Hat, Lemma 4.4], we have a natural A-linear isomor-
phism

µfΛ
8,m : A{pmq Ñ HfΛ

8,m :� TDpfΛqrms{ImpλfΛ
8,mq,

which is defined as follows. Put

(4.2) BfΛ
0,m � R0ppxqqrηs{pΦ

C
mpηq � ΦC

f p1{xqq.

Then µfΛ
8,m is the unique map such that the image of the element

µfΛ
8,mp1q P pTDpfΛqrms{ImpλfΛ

8,mqqpR0ppxqqq

in pTDpfΛqrms{ImpλfΛ
8,mqqpB

fΛ
0,mq agrees with the image of the element

efΛpηq P TDpfΛqrmspBfΛ
0,mq.

The pair pλΛ
8,n, rµ

Λ
8,nsq defines a Γ∆

1 pnq-structure on TDpΛq. The

corresponding map SpecpR0ppxqqq Ñ Y ∆
1 pnqR0 extends to a map

x∆
8 : SpecpR0rrxssq Ñ X∆

1 pnqR0 .
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We refer to the image of the point pxq by this map as the 8-cusp.
Via the map x∆

8, the complete local ring of X∆
1 pnqR0 at the 8-cusp is

identified with R0rrxss [Hat, Theorem 5.3].
Now [Hat, Theorem 6.3] is summarized as follows. The set of cusps

defines an effective Cartier divisor Cusps∆
R0

of X∆
1 pnqR0 over R0. Any

cusp of X∆
1 pnqRn is labeled by an element of

H � tpa, bq P pA{pnqq2 | pa, bq � p1qu.

For any element pa, bq P H , let fb be the monic generator of the ideal
AnnApbpA{pnqqq. Then the formal completion of X∆

1 pnqRn at the cusp
labeled by pa, bq is isomorphic to SpecpRnrrwssq in such a way that
the pull-back of the universal Drinfeld module E∆

un to SpecpRnppwqqq is
isomorphic to TDpfbΛq, which is the pull-back of TDpΛq by the map

R0ppxqq Ñ Rnppwqq, x ÞÑ ΦC
fb
p1{wq�1.

Corollary 4.2. Suppose that R0 is a flat An-algebra which is an ex-
cellent regular domain. Let g be the common genus of the fibers of
X∆

1 pnqR0 over R0. Then, on each fiber, the invertible sheaf pω̄∆
unq

b2 has
degree no less than 2g.

Proof. Since the map Y pnq Ñ Y ∆
1 pnq is etale, [Gek4, Theorem 6.11]

implies that the dual of the Kodaira-Spencer map for the universal
Drinfeld module E∆

un over Y ∆
1 pnqR0

KS_ : ωE∆
un
b ωpE∆

unq
D Ñ Ω1

Y ∆
1 pnqR0

{R0

is an isomorphism. We write as Φ
E∆

un
t � θ�A1τ �A2τ

2. Since we have
the isomorphism

(4.3) ωbq�1
E∆

un
Ñ ωbq�1

pE∆
unq

D , l ÞÑ l b Ab�1
2 ,

the map pKS_qbq�1 induces an isomorphism

(4.4) ωbq�1
E∆

un
b ωbq�1

E∆
un

Ñ pΩ1
Y ∆

1 pnqR0
{R0
qbq�1.

Consider the cusp labeled by pa, bq P H and the pull-back of this
map to Rnppwqq, as in [Hat, Theorem 6.3]. Since Rnppwqq is a domain,
the isomorphism E∆

un|Rnppwqq Ñ TDpfbΛq is Rnppwqq-linear. Using Theo-
rem 2.19 (3) and the functoriality of KS, we can show that the pull-back
of (4.4) is identified with a similar map

ωbq�1
TDpfbΛq b ωbq�1

TDpfbΛq Ñ pΩ1
Rnppwqq{Rn

qbq�1
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induced by KS_ for TDpfbΛq over Rnppwqq. Put Φ
TDpΛq
t � θ�a1τ�a2τ

2

with ai P R0rrxss. By Lemma 4.1 and (4.3), this map is given by

pdXqbq�1 b pdXqbq�1 ÞÑ a�1
2 p

da1

dx
�
a1

a2

da2

dx
qq�1pdxqbq�1.

Since the right-hand side is an element of Rnrrwss
�pdx

x2 q
bq�1, [Hat, The-

orem 6.3 (3)] implies that the isomorphism (4.4) extends to an isomor-
phism

pω̄∆
unq

bq�1 b pω̄∆
unq

bq�1 Ñ pΩ1
X∆

1 pnqR0
{R0
p2Cusps∆

R0
qqbq�1.

Since Cusps∆
R0

is non-empty, the corollary follows. �

4.2. Canonical subgroups of Tate-Drinfeld modules. In this sub-
section, we consider the case R0 � OK . Thus we have the Tate-Drinfeld
module TDpfΛq over OKppxqq. Put d � degp℘q as before. We denote
the normalized ℘-adic valuation of OKppxqq by v℘.

Lemma 4.3. The Tate-Drinfeld module TDpfΛq over OKppxqq has
ordinary reduction.

Proof. Put Φ̄fΛ
℘ pXq � ΦfΛ

℘ pXq mod ℘, which is an element of the ring

kp℘qrrxssrXs. From [Hat, (4.4)], we see that the coefficient of Xqd

in Φ̄fΛ
℘ pXq is an x-adic unit and those of larger degree have positive

x-adic valuations. By [Hat, Lemma 4.1], the coefficient of Xq2d
is non-

zero. An inspection of the Newton polygon of Φ̄fΛ
℘ pXq shows that this

polynomial has at least q2d � qd non-zero roots in an algebraic closure
of kp℘qppxqq. Thus the reduction of TDpfΛq modulo ℘ is ordinary. �

The map λfΛ
8,℘n identifies Cr℘ns with a closed A-submodule scheme of

TDpfΛqr℘ns, which we denote by CfΛ
n . We refer to CfΛ

n as the canonical

subgroup of TDpfΛq of level n. The reduction CfΛ
n modulo ℘ agrees

with KerpF n
d q of the reduction of TDpfΛq. Thus the pull-backs of CfΛ

n

to pOK{p℘
mqqppxqq and the ℘-adic completion OKppxqq

^ agree with
the canonical subgroups of level n of TDpfΛq over them in the sense
of Lemma 3.5.

We define the canonical and canonical etale isogenies of level one for
TDpfΛq as the natural maps

πfΛ : TDpfΛq Ñ TDpfΛq{CfΛ
1 , ρfΛ : TDpfΛq{CfΛ

1 Ñ TDpfΛq.

They satisfy

(4.5) ρfΛ � πfΛ � ΦTDpfΛq
℘ , πfΛ � ρfΛ � ΦTDpfΛq{CfΛ

1
℘ .
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By Lemma 2.8 (2), the quotient TDpfΛq{CfΛ
1 has a natural structure of

a Drinfeld module of rank two which makes these isogenies compatible
with A-actions. The Γ∆

1 pnq-structure pλfΛ
8,n, rµ

fΛ
8,nsq on TDpfΛq induces

that on TDpfΛq{CfΛ
1 , which we denote by pλ̄fΛ

8,n, rµ̄
fΛ
8,nsq.

Since the power series efΛpXq P OKrrxssrrXss is entire, any root
β � 0 of ΦC

℘ pZq in its splitting field L over K defines an element
efΛpβq of OLrrxss. From Lemma 3.2 and the definition of efΛpXq, we
obtain

(4.6) ΦC
℘ pβq � 0, β � 0 ñ efΛpβq P βpOLrrxss

�q.

Then we put

ΨfΛ
℘ pXq � ℘X

¹
ΦC

℘ pβq�0,β�0

�
1�

X

efΛpβq



P OKrrxssrXs.

As in the proof of [Leh, Ch. 2, Lemma 1.2], we see that this is an Fq-
linear additive polynomial, and (4.6) implies that its leading coefficient
is an element of OKrrxss

�. Hence X ÞÑ ΨfΛ
℘ pXq defines an isogeny of

Fq-module schemes over OKppxqq

πfΛ
℘ : TDpfΛq Ñ TDpfΛq.

Lemma 4.4. KerpπfΛ
℘ q � CfΛ

1 .

Proof. We denote by OKrrxssxZy the x-adic completion of OKrrxssrZs.

By comparing ranks, it is enough to show that the composite πfΛ
℘ �λfΛ

8,℘

is zero. From the definition of the map λfΛ
8,℘, this amounts to showing

that the image of ΨfΛ
℘ pefΛpZqq in the ring OKrrxssxZy{pΦ

C
℘ pZqq is zero.

For this, note that we have the equality of entire series over Kppxqq

(4.7) ΨfΛ
℘ pefΛpZqq � e℘fΛpΦ

C
℘ pZqq,

since they have the same linear term ℘ and divisor fΛ � pΦC
℘ q

�1p0q.
Thus the equality also holds in OKrrxssxZy. Since the latter ring is
Noetherian, the ideal pΦC

℘ pZqq is x-adically closed and thus it contains

the element e℘fΛpΦ
C
℘ pZqq. �

Thus the a-multiplication map of TDpfΛq{CfΛ
1 for any a P A is given

by a unique polynomial Φ1
apXq satisfying

ΨfΛ
℘ pΦfΛ

a pXqq � Φ1
apΨ

fΛ
℘ pXqq.

We define

F℘pxq �
1

ΦC
℘

�
1
x

� P xqdp1� ℘xOKrrxssq,
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which gives an OK-algebra homomorphism

ν7℘ : OKppxqq Ñ OKppxqq, x ÞÑ F℘pxq

and the induced map ν℘ : SpecpOKppxqqq Ñ SpecpOKppxqqq. For
any element F pXq �

°
l¥0 alX

l P OKppxqqrrXss, we put ν�℘pF qpXq �°
l¥0 ν

7
℘palqX

l. Then we have

(4.8) ν�℘pefΛqpXq � e℘fΛpXq.

Thus (4.1) yields

(4.9) ν�℘pΦ
fΛ
a qpe℘fΛpXqq � e℘fΛpΦ

C
a pXqq

for any a P A. On the other hand, (4.7) and (4.8) yield

(4.10) ΨfΛ
℘ pefΛpXqq � e℘fΛpΦ

C
℘ pXqq � ν�℘pefΛqpΦ

C
℘ pXqq.

Lemma 4.5.

pTDpfΛq{CfΛ
1 , λ̄fΛ

8,n, rµ̄
fΛ
8,nsq � ν�℘pTDpfΛq, ℘λfΛ

8,n, rµ
fΛ
8,nsq.

Proof. First let us show the equality ν�℘pTDpfΛqq � TDpfΛq{CfΛ
1 . This

amounts to showing

ΨfΛ
℘ pΦfΛ

a pXqq � ν�℘pΦ
fΛ
a qpΨfΛ

℘ pXqq

for any a P A. It is enough to show the equality in the ring KppxqqrrXss.
For this, (4.1), (4.9) and (4.10) yield

ΨfΛ
℘ pΦfΛ

a pefΛpXqqq � ΨfΛ
℘ pefΛpΦ

C
a pXqqq � e℘fΛpΦ

C
℘apXqq

� ν�℘pΦ
fΛ
a qpe℘fΛpΦ

C
℘ pXqqq � ν�℘pΦ

fΛ
a qpΨfΛ

℘ pefΛpXqqq

and the claim follows by plugging in e�1
fΛpXq. The Γ1pnq-structure λ̄fΛ

8,n

is given by X ÞÑ ΨfΛ
℘ pefΛpZqq. By (4.10), the latter element is equal

to ν�℘pefΛqpΦ
C
℘ pZqq, which means λ̄fΛ

8,n � ν�℘p℘λ
fΛ
8,nq.

For the assertion on rµ̄fΛ
8,ns, consider the ring BfΛ

0,n of (4.2) and its

base extension ν�℘pB
fΛ
0,nq by the map ν7℘. These rings are free of rank

qdegpnq over OKppxqq. We have a homomorphism of OKppxqq-algebras

ν�℘pB
fΛ
0,nq � OKppxqqrηs{pΦ

C
n pηq � ΦC

f℘p1{xqq Ñ BfΛ
0,n

defined by η ÞÑ ΦC
℘ pηq. Since p℘, nq � 1, we have α℘ � βn � 1 for

some α, β P A and this map sends ΦC
α pηq � ΦC

fβp1{xq to η. Hence it is
surjective and thus these two rings are isomorphic as OKppxqq-algebras.

Now a similar argument as above implies that, for the map µ̄fΛ
8,n :

A{pnq Ñ ν�℘pH
fΛ
8,nq, the restriction µ̄fΛ

8,np1q|BfΛ
0,n

is equal to the image of

the element
ν�℘pefΛqpΦ

C
℘ pηqq P ν

�
℘pTDpfΛqqpBfΛ

0,nq.
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On the other hand, for the pull-back ν�℘pµ
fΛ
8,nq : A{pnq Ñ ν�℘pH

fΛ
8,nq, the

restriction ν�℘pµ
fΛ
8,nqp1q|ν�℘ pBfΛ

0,nq
is equal to the image of the element

efΛpηq b 1 � ν�℘pefΛqpηq P ν
�
℘pTDpfΛqqpν�℘pB

fΛ
0,nqq.

Since they agree with each other in ν�℘pTDpfΛqqpBfΛ
0,nq, we obtain µ̄fΛ

8,n �

ν�℘pµ
fΛ
8,nq. �

By Lemma 4.5, the canonical etale isogeny ρfΛ induces an isomor-
phism of OKppxqq-modules

ppρfΛq�q�1 : ωTDpfΛq bOKppxqq,ν
7
℘
OKppxqq � ωTDpfΛq{CfΛ

1
Ñ ωTDpfΛq.

Corollary 4.6.

ppρfΛq�q�1pdX b 1q � dX.

Proof. Since we have shown that the canonical isogeny πfΛ of level
one for TDpfΛq is given by X ÞÑ ΨfΛ

℘ pXq, we have pπfΛq�pdXq �

℘dX. From (4.5), we obtain pρfΛq�pdXq � dX in ωTDpfΛq{CfΛ
1

, which is

identified with dX b 1 via ν�℘pTDpfΛqq � TDpfΛq{CfΛ
1 . �

4.3. Drinfeld modular forms. Let k be an integer. Let M be an An-
module. We define a Drinfeld modular form of level Γ∆

1 pnq and weight
k with coefficients in M as an element of

MkpΓ
∆
1 pnqqM � H0pX∆

1 pnqAn , pω̄
∆
unq

bk bAn Mq.

By [Hat, Theorem 5.3 (4)], the group F�q acts on theAn-moduleMkpΓ
∆
1 pnqqM

via c ÞÑ xcy∆. Since q�1 is invertible in An, we have the decomposition

MkpΓ
∆
1 pnqqM �

à
mPZ{pq�1qZ

Mk,mpΓ1pnqqM ,

where the direct summand Mk,mpΓ1pnqqM is the maximal submodule
on which the operator xcy∆ acts by the multiplication by c�m for any
c P F�q . We say f PMkpΓ

∆
1 pnqqM is of type m if f PMk,mpΓ1pnqqM .

Consider the map x∆
8 : SpecpAnrrxssq Ñ X∆

1 pnqAn as in [Hat, Theo-
rem 5.3]. For any f P MkpΓ

∆
1 pnqqM , we define the x-expansion of f at

the 8-cusp as the unique power series f8pxq P AnrrxssbAnM satisfying

px∆
8q

�pfq � f8pxqpdXq
bk.

We also have a variantMkpΓ
∆
1 pn, ℘qqM of level Γ∆

1 pn, ℘q, usingX∆
1 pn, ℘q,

the sheaf ω̄∆,℘
un and the 8-cusp x∆,℘

8 of [Hat, §7].
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Proposition 4.7. (1) (x-expansion principle) For any An-module
M and f P MkpΓ

∆
1 pnqqM , if f8pxq � 0 then f � 0. Moreover,

for any An-modules N �M and any f PMkpΓ
∆
1 pnqqM , we have

f8pxq P Anrrxss bAn N if and only if f P MkpΓ
∆
1 pnqqN . The

same assertions hold for the case of level Γ∆
1 pn, ℘q if M is an

Anr1{℘s-module.
(2) For any k ¥ 2 and any An-module M , the natural map

MkpΓ
∆
1 pnqqAn bAn M ÑMkpΓ

∆
1 pnqqM

is an isomorphism.

Proof. Since X∆
1 pnqAn and X∆

1 pn, ℘qAnr1{℘s are smooth and geometri-
cally connected, Krull’s intersection theorem and [Hat, Theorem 5.3]
(and for the case of level Γ∆

1 pn, ℘q, the corresponding statements in
[Hat, §7]) imply the assertion (1), as in the proof of [Kat, §1.6]. The
assertion (2) follows from Corollary 4.2, similarly to the proof of [Kat,
Theorem 1.7.1]. �

Let C8 be the p1{tq-adic completion of an algebraic closure of Fqpp1{tqq.
Put

Γ∆
1 pnq �

"
g P GL2pAq

���� g mod pnq P

�
∆ �
0 1


*
,

Γpnq �

"
g P GL2pAq

���� g mod pnq P

�
1 0
0 1


*
,

where the former group is independent of the choice of ∆.
Note that our definition of Drinfeld modular forms is compatible with

the classical one over C8 as in [Gek2, Gek3]; over the compactification
XpnqC8 of Y pnqC8 this follows from [Gos1, Theorem 1.79], and the
spaces of Drinfeld modular forms of level Γ∆

1 pnq and weight k in both

definitions are the fixed parts of the natural action of

"�
∆ �
0 1


*
on

them. We can also show that our x-expansion f8pxq of f at the 8-
cusp agrees with Gekeler’s t-expansion at 8 (see [Gek2, Ch. V, §2],
while the normalization we adopt is as in [Gek3, §5]) of the associated
classical Drinfeld modular form to f .

By [Gek3, Proposition (6.11)] and Proposition 4.7 (1), Gekeler’s lift
gd of the Hasse invariant is an element of Mqd�1,0pΓ1pnqqAn satisfying

(4.11) pgdq8pxq � 1 mod ℘.



36 SHIN HATTORI

4.4. Ordinary loci. In the rest of the paper, we write as Yun �
Y ∆

1 pnqOK
and Xun � X∆

1 pnqOK
. For any positive integer m, the pull-

back of any scheme T over OK to OK,m � OK{p℘
mq is denoted by

Tm.
Since we know thatXun,1 has a supersingular point [Gek1, Satz (5.9)],

the ordinary loci Xord
un,m in Xun,m and Y ord

un,m in Yun,m are affine open
subschemes of finite type over OK,m. We put

Bord
un,m � OpY ord

un,mq.

This is a flat OK,m-algebra of finite type, and the collection tBord
un,mum

forms a projective system of OK-algebras with surjective transition
maps. We define

B̂ord
un � limÐÝ

n

Bord
un,m, Y ord

un � SpecpB̂ord
un q.

Then we have B̂ord
un {p℘

mq � Bord
un,m and B̂ord

un is flat over OK . This

implies that B̂ord
un is ℘-adically complete and topologically of finite type

over OK . Moreover, since Bord
un,1 is a regular domain, the ring B̂ord

un is

reduced. Thus B̂ord
un is a reduced flat ℘-adic ring. On the other hand,

we have a map Y ord
un Ñ Yun and we denote by Eord

un the pull-back of the

universal Drinfeld module to B̂ord
un , which has ordinary reduction.

Now we can form the canonical subgroup Cn � CnpEord
un q of level n

for Eord
un . As is seen in §3.2, it has the v-structure induced from that of

Eord
un , which is unique by Lemma 2.13 (2). Lemma 3.6 implies that its

Taguchi dual CDn is etale. We denote by Cn,m the pull-back of Cn to Y ord
un,m

endowed with the induced v-structure, and similarly for pCDn qm. Then
the Taguchi dual CDn,m of Cn,m agrees with pCDn qm as a finite v-module

and they are finite and etale over Y ord
un,m.

Lemma 4.8. The finite v-module Cn,m over Y ord
un,m extends to a finite v-

module C̄n,m over Xord
un,m such that its Taguchi dual C̄Dn,m is etale locally

isomorphic to A{p℘nq.

Proof. LetKn be a splitting field of ΦC
n pXq overK. Note that SpecpOKnq

is identified with a connected component of IOK
� SpecpOKrXs{pWnpXqqq.

Consider the formal completion of Xun|OKn
at the cusp labeled by

pa, bq P H , which is isomorphic to SpecpOKnrrwssq by [Hat, Theorem
6.3]. Let fb be the monic generator of AnnApbpA{pnqqq

We denote the ℘-adic completion of OKnppwqq by O, which is a
reduced flat ℘-adic ring. The pull-back of Eord

un to O is isomorphic
to that of the Tate-Drinfeld module TDpfbΛq over OKnppwqq to O.
By the uniqueness of the canonical subgroup in Lemma 3.5, we have
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Cn|O � CfbΛ
n |O � Cr℘ns. Lemma 2.13 (2) implies that this identifica-

tion is compatible with v-structures, where we give Cr℘ns the induced
v-structure from C. Taking modulo ℘m, we obtain an isomorphism
Cn,m|OKn,mppwqq

� Cr℘ns of v-modules over OKn,mppwqq.
This implies that, by an fpqc descent, the finite v-module Cn,m ex-

tends to a finite v-module C̄n,m over Xord
un,m such that its restriction to

the formal completion at each cusp is isomorphic to Cr℘ns with the
induced v-structure from C. Then the Taguchi dual C̄Dn,m is finite etale
and every geometric fiber is isomorphic to A{p℘nq as an A-module
scheme. This yields the lemma. �

Lemma 4.9. Let U be any non-empty open subscheme of Xord
un,m and ξ̄

any geometric point of U . Then the character of its etale fundamental
group with base point ξ̄

rn,m : πet
1 pUq Ñ πet

1 pX
ord
un,mq Ñ pA{p℘nqq�

defined by C̄Dn,m is surjective.

Proof. We may assume m � 1. Let L be the function field of Xun,1.
As in [Kat, Theorem 4.3], it is enough to show that the restriction of
rn,1 to the inertia subgroup of GalpLsep{Lq at a supersingular point is
surjective.

Take ξ1 P Xun,1 corresponding to a supersingular Drinfeld mod-
ule over an algebraic closure k of kp℘q. The complete local ring of
Xun,1 �kp℘q k at ξ1 is isomorphic to krruss. Let E be the restriction
of Eun to this complete local ring. By [Sha, Remark 3.15], we have
LiepVd,Eq � �u and the restriction E|kppuqq to the generic fiber is ordi-
nary. By Theorem 2.19 (4) and Lemma 3.3, we have CnpE|kppuqqqD �
KerpV n

d,ED|kppuqq
q. Here ED|kppuqq is the dual of E|kppuqq, which is also ordi-

nary by Proposition 3.4. Hence it suffices to show that the finite etale
A-module scheme KerpV n

d,ED|kppuqq
q defines a totally ramified extension

of kppuqq of degree 7pA{p℘nqq�.
For this, Proposition 3.4 also implies that the map LiepVd,EDq is the

multiplication by an element of krruss with normalized u-adic valuation
one. Let vu be the normalized u-adic valuation on kppuqq and we extend
it to its algebraic closure kppuqqalg. Since the fiber of ED at u � 0 is
also supersingular, the map Vd,ED can be written as

Vd,EDpXq � a0X � � � � � adX
qd

with some ai P krruss satisfying vupa0q � 1, vupaiq ¥ 1 for 1 ¤ i   d and
vupadq � 0. Then an inspection of the Newton polygon shows that any
non-zero root z of Vd,EDpXq satisfies vupzq � 1{pqd�1q and there exists
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a root z1 of V n
d,EDpXq with vupz

1q � 1{ppqd � 1qqdpn�1qq � 7pA{p℘nqq�.
This concludes the proof. �

Consider the quotient Eord
un {C1 over Y ord

un , which has a natural struc-
ture of a Drinfeld module of rank two by Lemma 2.8 (2). Since the
universal Γ∆

1 pnq-structure on Eun induces that on Eord
un {C1, we have a

corresponding map πd : Y ord
un Ñ Yun. Since Eord

un {C1 has ordinary reduc-
tion, the induced map Y ord

un,m Ñ Yun,m factors through Y ord
un,m. Hence πd

also factors as πd : Y ord
un Ñ Y ord

un . On the other hand, the endomorphism
x℘�1yn of Xun defines endomorphisms of Xord

un and Y ord
un , which we also

denote by x℘�1yn. Put

ϕd � x℘�1yn � πd.

This gives the cartesian diagram

Eord
un {C1

//

��

Eord
un

//

��

Eord
un

��
Y ord

un πd
// Y ord

un
x℘�1yn

// Y ord
un .

Lemma 4.10. For any positive integer m, the induced map ϕd : Y ord
un,m Ñ

Y ord
un,m extends to ϕ̄d : Xord

un,m Ñ Xord
un,m which is compatible with respect to

m. Moreover, ϕ̄d agrees with the qd-th power Frobenius map on Xord
un,1.

Proof. Let Kn be a splitting field of ΦC
n pXq, as before. Put OKn,m �

OKn{p℘
mq. By an fpqc descent, it suffices to show the existence of an

extension as in the lemma around each cusp over OKn,m. For this, first
note that the automorphism of IOK

� SpecpOKrXs{pWnpXqqq given
by X ÞÑ ΦC

℘ pXq preserves its connected components, since so does its
restriction over kp℘q by Lemma 3.2. Hence, for the image ζ P OKn

of X, we have an automorphism of SpecpOKnq over OK defined by
ζ ÞÑ ΦC

℘ pζq, which we denote by σ℘. We define an endomorphism ν̃℘ of
SpecpOKnppwqqq over OK by ν̃℘ � σ℘ b ν℘.

For any pa, bq P H , let fb be the monic generator of AnnApbpA{pnqqq,
as before. Around the cusp labeled by pa, bq, we have the Tate-Drinfeld
module TDpfbΛq over OKnppwqq endowed with a Γ∆

1 pnq-structure pλ, rµsq.
As in the proof of Lemma 4.5, using [Hat, (6.3) and (6.4)] we see that

the image of pλ, rµsq by the map TDpfbΛq Ñ TDpfbΛq{CfbΛ
1 can be

identified with ν̃�℘p℘λ, rµsq. We denote by

pλ, rµsq : SpecpOKn,mppwqqq Ñ Y ord
un,m
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the map defined by the triple pTDpfbΛq|OKn,mppwqq
, λ, rµsq. Then we

have the commutative diagram

Y ord
un,m

ϕd // Y ord
un,m

SpecpOKn,mppwqqq ν̃℘
//

pλ,rµsq

OO

SpecpOKn,mppwqqq,

pλ,rµsq

OO

where the vertical arrows identify the lower term with the formal com-
pletion of Xord

un,m at the cusp labeled by pa, bq with w inverted. Since
we have F℘pwq P OKnrrwss, we obtain an extension of ϕd to each cusp.

Since the canonical subgroup C1 is a lift of the Frobenius kernel, from
(3.2) we see that the morphism ϕd : Y ord

un,1 Ñ Y ord
un,1 agrees with the qd-th

power Frobenius map. Then the assertion on Xord
un,1 also follows, since

it is integral and separated. �

We denote by ωord
un,m and ω̄ord

un,m the pull-backs of the sheaf ω̄∆
un to Y ord

un,m

and Xord
un,m, respectively.

Proposition 4.11. Let ρun : Eord
un {C1 Ñ Eord

un be the canonical etale
isogeny of Eord

un over Y ord
un . Then the isomorphism of OY ord

un,m
-modules

Fωord
un,m

� pρ�unq
�1 : ϕ�dpω

ord
un,mq � ωpEord

un {C1qm Ñ ωord
un,m

extends to an isomorphism of OXord
un,m

-modules

Fω̄ord
un,m

: ϕ̄�dpω̄
ord
un,mq Ñ ω̄ord

un,m.

Proof. As in the proof of Lemma 4.10, it is enough to extend Fωord
un,m

to each cusp over OKn,m. This follows from Corollary 4.6 and the
construction of ω̄∆

un. �

4.5. Weight congruence. First we give a version of the Riemann-
Hilbert correspondence of Katz in our setting. Put An � A{p℘nq.

Lemma 4.12. Let n be a positive integer. Let Sn be an affine scheme
which is flat over An such that S1 � Sn �An SpecpA1q is normal and
connected. Let ϕd : Sn Ñ Sn be a morphism over An such that the
induced map on S1 agrees with the qd-th power Frobenius map. We
denote by πet

1 pSnq the etale fundamental group for a geometric point of
Sn. Then there exists an equivalence between the category RepAn

pSnq
of free An-modules of finite rank with continuous actions of πet

1 pSnq
and the category F -Crys0pSnq of pairs pH, FHq consisting of a locally
free OSn-module H of finite rank and an isomorphism of OSn-modules
FH : ϕ�dpHq Ñ H.
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Proof. This follows by a verbatim argument as in the proof of [Kat,
Proposition 4.1.1]. Here we sketch the argument for the convenience
of the reader. For any object M of RepAn

pSnq, let Tn be a (connected)
Galois covering of Sn such that πet

1 pSnq Ñ AutpMq factors through the
Galois group GpTn{Snq of it. By the etaleness, we can uniquely lift the
qd-th power Frobenius map on T1 to a ϕd-equivariant endomorphism
ϕTn of Tn over An.

We claim that the sequence

(4.12) 0 // An // OpTnq
ϕTn�1

// OpTnq

is exact. Indeed, since Tn is flat over An we may assume n � 1, and in
this case the claim follows since OpT1q is an integral domain.

We have an endomorphism on M bAn OpTnq defined by m b f ÞÑ
m b ϕ�Tnpfq, and Galois descent yields an object pHpMq, FHpMqq of

F -Crys0pSnq. This defines a functor

Hp�q : RepAn
pSnq Ñ F -Crys0pSnq.

The exact sequence (4.12) implies pHpMq|Tnq
ϕTn�1 � M and thus the

functor Hp�q is fully faithful.
We prove the essential surjectivity by induction on n. For n � 1,

it follows by applying the original result [Kat, Proposition 4.1.1] to
the case where the extension k{Fq there is Fqd{Fqd . Suppose that the

case of n � 1 is valid. Let pH, FHq be any object of F -Crys0pSnq. By
assumption, there exists a finite etale cover Tn�1 Ñ Sn�1 such that
H|Tn�1 has an FH-fixed basis h̄1, . . . , h̄r. By Hensel’s lemma, we can
lift Tn�1 to a finite etale cover Tn Ñ Sn. Take a lift hi of h̄i to H|Tn .
We have

FHph1, . . . , hrq � ph1, . . . , hrqpI � ℘n�1Nq

for some matrix N PMrpOpTnqq. Then it is enough to solve the equa-
tion

FHpph1, . . . , hrqpI � ℘n�1N 1qq � ph1, . . . , hrqpI � ℘n�1N 1q

over some finite etale cover of Tn. Since OpTnq is flat over An, the
equation is equivalent to N � ϕdpN

1q � N 1 mod ℘, from which the
claim follows. �

Corollary 4.13. Let U be any non-empty affine open subscheme of
Sn. Note that, since ϕd agrees with the qd-th power Frobenius map on
S1, it induces a map ϕd : U Ñ U . Then the functor F -Crys0pSnq Ñ
F -Crys0pUq defined by the restriction to U is fully faithful.

Proof. It follows from the fact that, since S1 is normal and connected,
the restriction functor RepAn

pSnq Ñ RepAn
pUq is fully faithful. �
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By Lemma 4.10, Xord
un,m satisfies the assumptions of Lemma 4.12.

Proposition 4.14. By the equivalence of Lemma 4.12, the character

rn,n : πet
1 pX

ord
un,nq Ñ A�

n

of Lemma 4.9 associated to C̄Dn,n corresponds to the pair pω̄ord
un,n, Fω̄ord

un,n
q

of Proposition 4.11.

Proof. By Corollary 4.13, it is enough to show that the character of
πet

1 pY
ord

un,nq associated to CDn,n corresponds to the pair pωord
un,n, Fωord

un,n
q. By

Proposition 3.8, the Hodge-Tate-Taguchi map yields an isomorphism
of invertible OY ord

un,n
-modules

HTT : CDn,n bAn OY ord
un,n

Ñ ωord
un,n.

Note that, over any Galois covering Tn Ñ Y ord
un,n trivializing CDn,n, the

map HTT is compatible with Galois actions. Hence it suffices to show
that this map is also compatible with Frobenius structures, where we
consider 1b ϕd on the left-hand side.

Since the natural map Bord
un,n Ñ OK,nppxqq is injective, we reduce

ourselves to showing that at the 8-cusp the Hodge-Tate-Taguchi map
over OK,nppxqq

HTT : CnpTDpΛqqDn bAn OSpecpOK,nppxqqq Ñ ωTDpΛq bOK,nppxqq

commutes with Frobenius structures. As is seen in the proof of Lemma
4.8, the induced v-structure on CnpTDpΛqqn � Cr℘ns from Eord

un agrees
with that from C. By Lemma 2.17 we have CnpTDpΛqqDn � An, and
Lemma 3.7 implies that the isomorphism HTT is given by

(4.13) HTTp1q � ppλΛ
8,℘nq�q�1pdZq � dX.

Now the proposition follows from Corollary 4.6. �

Theorem 4.15. Let L{K be a finite extension. For i � 1, 2, let fi be
an element of MkipΓ

∆
1 pnqqOL

. Suppose that their x-expansions at the
8-cusp pfiq8pxq satisfy the congruence

pf1q8pxq � pf2q8pxq mod ℘n, pf2q8pxq � 0 mod ℘.

Then we have

k1 � k2 mod pqd � 1qplppnq, lppnq � mintN P Z | pN ¥ nu.

Proof. By choosing an isomorphism of OK-modules OL � O`rL:Ks
K ,

we identify the OXun-module pω̄∆
unq

bkbOK
OL with ppω̄∆

unq
bkq`rL:Ks and

AnrrxssbAn OL with pAnrrxssbAn OKq
`rL:Ks, which are compatible with

x-expansions. Thus we may assume L � K.
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Let W be the maximal open subscheme of Y ord
un,n on which f1 and f2

do not vanish. From the assumption, we see that W is non-empty. We
have the section f1{f2 of pω̄ord

un,nq
bk1�k2 on W . Since the ring OK,nppxqq is

local with maximal ideal ℘OK,nppxqq, the assumption also implies that
pfiq8pxq is invertible in OK,nppxqq. Hence the natural map SpecpOK,nppxqqq Ñ
Y ord

un,n around the 8-cusp factors through W , and the pull-back of f1{f2

by this map is equal to pdXqk1�k2 . Thus the section f1{f2 extends
uniquely to a nowhere vanishing section of pω̄ord

un,nq
bk1�k2 on an affine

open subscheme U of Xord
un,n containing the 8-cusp such that its restric-

tion to SpecpOK,nrrxssq around the 8-cusp agrees with pdXqk1�k2 . We
write it also as f1{f2.

By Corollary 4.6, pdXqk1�k2 is fixed by the restriction of the Frobe-
nius map of pω̄ord

un,nq
bk1�k2 to SpecpOK,nppxqqq. Since the natural map

Bord
un,n Ñ OK,nppxqq is injective, we see that the section f1{f2 on U it-

self is fixed by the Frobenius map. Hence the restriction of the pair
ppω̄ord

un,nq
bk1�k2 , Fbk1�k2

ω̄ord
un,n

q to U is trivial. Then Corollary 4.13 implies

that the pair is trivial on Xord
un,n, and by Proposition 4.14 the pk1 � k2q-

nd tensor power of the character rn,n is trivial. Now Lemma 4.9 shows
that k1�k2 is divisible by the exponent of the group pA{p℘nqq�, which
equals pqd � 1qplppnq. This concludes the proof. �

Then Theorem 1.1 follows by adding an auxiliary level of degree
prime to q � 1 and applying Theorem 4.15.

Following [Gos2, Definition 3], we define the ℘-adic weight set S as

S � Z{pqd � 1qZ� Zp
with the discrete topology on the first entry and the p-adic topology
on the second entry. We embed Z into it diagonally.

Corollary 4.16. Let L{K be a finite extension. Let F8pxq be a non-
zero element of OLrrxssr1{℘s. Suppose that there exists a sequence
tfnunPZ¥0 satisfying fn PMknpΓ

∆
1 pnqqL for some integer kn and

lim
nÑ8

pfnq8pxq � F8pxq

with respect to the ℘-adic topology defined by OLrrxss. Then the se-
quence tknunPZ¥0 converges to some element χ P S. Moreover, the
element χ depends only on F8pxq.

Proof. By Proposition 4.7 (1), we may assume fn PMknpΓ
∆
1 pnqqOL

and
F8pxq P OLrrxss. Note that for any positive integer c, the OK,c-module
OL,c is free of finite rank and thus the natural map AnrrxssbAn OL,c Ñ
OL,crrxss is an isomorphism. Again by Proposition 4.7 (1), we may
assume F8pxq � 0 mod ℘. By assumption, for any sufficiently large
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positive integer c, there exists an integer n0 such that if m,n ¥ n0,
then we have

pfmq8pxq � pfnq8pxq mod ℘c, pfnq8pxq � 0 mod ℘

in Anrrxss bAn OL. Hence Theorem 4.15 implies

km � kn mod pqd � 1qplppcq

and the sequence tknunPZ¥0 converges in S. For another such sequence
tgnunPZ¥0 with gn PMk1npΓ

∆
1 pnqqOL

, we also have pfnq8pxq � pgnq8pxq mod
℘c and pfnq8pxq � 0 mod ℘ for any sufficiently large n. Then Theorem
4.15 implies kn � k1n mod pqd�1qplppcq and thus both converge to χ. �

We say any element F8pxq P OLrrxssr1{℘s as in Corollary 4.16 a
℘-adic Drinfeld modular form in the sense of Serre ([Gos2, Definition
5], [Vin, Definition 2.5]).

Definition 4.17. Let F8pxq P OLrrxssr1{℘s be a non-zero ℘-adic Drin-
feld modular form in the sense of Serre. Take any sequence tfnunPZ¥0

satisfying fn P MknpΓ
∆
1 pnqqL and limnÑ8pfnq8pxq � F8pxq. Then we

define the weight of F8pxq as the limit limnÑ8 kn in S, which is well-
defined by Corollary 4.16.

4.6. ℘-adic Drinfeld modular forms. Let Xun be the ℘-adic com-
pletion of Xun � X∆

1 pnq and Xord
un the formal open subscheme of Xun

on which the Gekeler’s lift gd of the Hasse invariant is invertible. The
latter is isomorphic to the ℘-adic completion of

(4.14) SpecXun
pSymppω̄∆

unq
bqd�1q{pgd � 1qq.

Note that the reduction modulo ℘m of Xord
un is equal to Xord

un,m. We

see that Xord
un is a Noetherian affine formal scheme by [Abb, Corollaire

2.1.37].
For any χ � ps0, s1q P S, we have a continuous endomorphism of

O�
K � F�

qd
� p1� ℘OKq defined by

x � px0, x1q ÞÑ xχ � xs00 x
s1
1

which preserves the subgroup 1� ℘nOK . Composing it with the char-
acter rn,n : πet

1 pX
ord
un,nq Ñ A�

n � O�
K,n, we obtain a character rχn,n. Let

ω̄ord,χ
un,n be the associated invertible sheaf on Xord

un,n via the correspon-
dence of Lemma 4.12. Since they form a projective system with surjec-
tive transition maps, they give an invertible sheaf ω̄ord,χ

un on Xord
un [Abb,

Proposition 2.8.9].
For any finite extension L{K, we put

MχpΓ
∆
1 pnqqOL

:� H0pXord
un |OL

, ω̄ord,χ
un |OL

q � H0pXord
un , ω̄

ord,χ
un bOK

OLq.
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By [Abb, Proposition 2.7.2.9], we have

MχpΓ
∆
1 pnqqOL

� limÐÝ
n

H0pXord
un,n|OL,n

, ω̄ord,χ
un,n |OL,n

q

and thus it is flat over OL. Put

MχpΓ
∆
1 pnqqL �MχpΓ

∆
1 pnqqOL

r1{℘s.

We refer to any element of this module as a ℘-adic Drinfeld modular
form of tame level n and weight χ over L. Since the action of F�q on

X∆
1 pnq via c ÞÑ xcy∆ induces an action on H0pXord

un,n|OL,n
, ω̄ord,χ

un,n |OL,n
q,

the module MχpΓ
∆
1 pnqqL is decomposed as

MχpΓ
∆
1 pnqqL �

à
mPZ{pq�1qZ

Mχ,mpΓ1pnqqL,

where the space Mχ,mpΓ1pnqqL of type m forms is the maximal subspace
on which xcy∆ acts by c�m.

For any χ P S and any positive integer n, we can find an integer
k satisfying χ � k mod pqd � 1qplppnq. Then we have an isomorphism
ω̄ord,χ

un,n � pω̄ord
un,nq

bk compatible with Frobenius structures. Using this
identification, we obtain a map of x-expansion

(4.15) H0pXord
un,n|OL,n

, ω̄ord,χ
un,n |OL,n

q Ñ OL,nrrxss, fn ÞÑ pfnq8pxq.

For any such k and k1, the correspondence of Lemma 4.12 gives an iso-
morphism pω̄ord

un,nq
bk � pω̄ord

un,nq
bk1 compatible with Frobenius structures.

Since (4.12) implies that such an isomorphism is unique up to the mul-
tiplication by an element of A�

n , by restricting to the 8-cusp and using

(4.13) we see that it agrees with the multiplication by g
pk1�kq{pqd�1q
d .

Since pgdq8pxq
plppnq � 1 mod ℘n, the map (4.15) is independent of the

choice of k and induces

(4.16)
Mχ,mpΓ1pnqqL Ñ OLrrxssr1{℘s

f � pfnqn ÞÑ f8pxq :� lim
nÑ8

pfnq8pxq

which is an injection by Krull’s intersection theorem. This map identi-
fies our definition of ℘-adic Drinfeld modular forms with ℘-adic Drinfeld
modular forms in the sense of Serre, by the following proposition.

Proposition 4.18. The image of the injection (4.16) agrees with the
space of power series F8pxq P OLrrxssr1{℘s which can be written as the
℘-adic limit of x-expansions tphnq8pxqun, where hn is an element of
Mkn,mpΓ1pnqqL for some integer kn satisfying limnÑ8 kn � χ in S.

Proof. This can be shown as in the proof of [Kat, Theorem 4.5.1].
Indeed, let f � pfnqn be an element of Mχ,mpΓ1pnqqOL

. For any n we
choose an integer kn ¥ 2 satisfying χ � kn mod pqd � 1qplppnq. Note
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that, for any integer k ¥ 2, the description (4.14) and Corollary 4.2
give an isomorphism

H0pXord
un,n|OL,n

,ω̄ord,k
un,n |OL,n

q Ñ�à
j¥0

H0pXun,n|OL,n
, pω̄∆

un|OL,n
qbk�jpq

d�1qq

�
{pgd � 1q.

Therefore, by Proposition 4.7 (2), for each fn we can find an inte-
ger k1n ¥ 2 and an element hn P Mk1n,mpΓ1pnqqOL

satisfying k1n �

kn mod pqd � 1qplppnq and pfnq8pxq � phnq8pxq mod ℘n. This yields
limnÑ8phnq8pxq � f8pxq and limnÑ8 k

1
n � limnÑ8 kn � χ.

Conversely, let F8pxq � limnÑ8phnq8pxq be as in the proposition.
We may assume F8pxq � 0, and also hn P Mkn,mpΓ1pnqqOL

by Propo-
sition 4.7 (1). Multiplying powers of gd and dividing by ℘, without
changing χ � limnÑ8 kn we may assume kn�1 ¡ kn and

phn�1q8pxq � phnq8pxq mod ℘n, phnq8pxq � 0 mod ℘

for any n. Then Theorem 4.15 implies kn�1 � kn mod pqd � 1qplppnq.

Now Proposition 4.7 (1) implies hn�1 � hng
pkn�1�knq{pqd�1q
d mod ℘n and

thus phnqn defines an element f of Mχ,mpΓ1pnqqOL
satisfying f8pxq �

F8pxq. �

Theorem 4.19. Let f be a Drinfeld modular form of level Γ1pnq X
Γ0p℘q, weight k and type m over C8 with x-expansion coefficients at
8 in the localization Ap℘q of A at p℘q. Then f is a ℘-adic Drinfeld
modular form of tame level n, weight k and type m. Namely, the x-
expansion f8pxq at the unramified cusp over the 8-cusp [Hat, §7] is in
the image of the map (4.16) for χ � k.

Proof. By Proposition 4.7 (1), we may assume f P MkpΓ
∆
1 pn, ℘qqFqptq.

By flat base change, we can find an element g PMkpΓ
∆
1 pn, ℘qqAp℘q such

that its image MkpΓ
∆
1 pn, ℘qqFqptq agrees with the element ℘lf for some

non-negative integer l.
For any integer n ¡ 0, put Y ℘

un,n � Y ∆
1 pn, ℘q �An SpecpOK,nq. The

canonical subgroup C1,n over Y ord
un,n gives a section of the natural pro-

jection

Y ℘
un,n

��
Y ord

un,n

<<

// Yun,n.
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Pulling back g by this section, we obtain an element gn of the module
H0pY ord

un,n, pω̄
ord
un,nq

bkq. On each cusp Ξ labeled by pa, bq P H , the pull-
back of gn along this cusp agrees with the pull-back of g along the
unramified cusp over Ξ [Hat, §7]. Hence gn P H0pXord

un,n, pω̄
ord
un,nq

bkq.
Since

℘lf8pxq � g8pxq � lim
nÑ8

pgnq8pxq,

this implies that f is a ℘-adic modular form of weight k. �
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