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ABSTRACT. Let p be a rational prime. Let F' be a totally real number field
such that F' is unramified over p and the residue degree of any prime ideal
of F dividing p is < 2. In this paper, we show that the eigenvariety for
ReSF/Q(GLQ), constructed by Andreatta—Iovita—Pilloni, is proper at integral
weights for p > 3. We also prove a weaker result for p = 2.
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1. INTRODUCTION

Let p be a rational prime and let N be a positive integer which is prime to p.
We fix an algebraic closure Q, of Q, and denote its p-adic completion by C,. Let
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Wao be the weight space for GLg g, which is a rigid analytic variety over Q, such
that the set of C,-valued points Wg(C,) is identified with the set of continuous
homomorphisms Z; — C;.

In [CM, Buz|, Coleman—-Mazur and Buzzard defined a rigid analytic curve Cy
with a morphism x : Cy — Wy such that the set of Cp,-valued points Cn(Cp) is
in bijection with the set of normalized overconvergent elliptic eigenforms of tame
level N which are of finite slopes, in such a way that the eigenform f corresponding
to a point x € Cn(C,) is of weight x(z). The curve Cy is called the Coleman—
Mazur eigencurve, and it has played an important role in arithmetic geometry,
since it turned out to be useful to control p-adic congruences of elliptic modular
forms. After their construction of the eigencurve, much progress has been made
to generalize it to the case of automorphic forms on algebraic groups other than
GL>,p. Now we have, for various algebraic groups G over a number field, a similar
rigid analytic variety € to the Coleman-Mazur eigencurve over a weight space WY
for G, which is called the eigenvariety for G.

Despite their importance, we still do not know much about the geometry of
eigenvarieties. For example, we do not even know if an eigenvariety has finitely
many irreducible components. One of the topics of active research is the smooth-
ness of eigenvarieties at classical points. For the Coleman—Mazur eigencurve, we
know that the smoothness at classical points in many cases [BeC1, BD, Hid1, Kis].
Bellaiche—Chenevier [BeC2] studied tangent spaces of their eigenvariety for unitary
groups at certain classical points, and applied it to showing the non-vanishing of a
Bloch—Kato Selmer group. On the other hand, Bellaiche proved the non-smoothness
of the eigenvariety for U(3) at classical points [Bel]. It is natural to think that such
geometric information of eigenvarieties is related to deep p-adic properties of auto-
morphic forms.

Another interesting topic, which this paper is concerned with, is the properness
of eigenvarieties over weight spaces. Since eigenvarieties are not of finite type over
weight spaces, they are not proper in the usual sense. Instead, we consider the fol-
lowing geometric interpretation of the non-existence of holes: Let D¢, = Sp(C,(T’))
be the closed unit disc centered at the origin O and let ’Dép = D¢, \ {O} be the
punctured disc. For any quasi-separated rigid analytic variety &', we write A¢, for
the base extension of X' to Sp(C,,). Suppose that we have a commutative diagram
of rigid analytic varieties

X
De, — &,

) G
D(Cp — WCP’

where the vertical arrows are the natural maps. Then we say that the eigenvariety
& is proper if there exists a morphism D¢, — &c, such that the above diagram
is still commutative with this morphism added. Roughly speaking, this means
that any family of overconvergent eigenforms of finite slopes on G parametrized
by the punctured disc can always be extended to the puncture. However, note
that what eigenvarieties parametrize are in general not eigenforms themselves but
eigensystems occurring in the space of overconvergent automorphic forms. We also
note that the naive interpretation of the non-existence of holes that any p-adically
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convergent sequence of overconvergent eigenforms of finite slopes converges to an
overconvergent eigenform of finite slope, is false [CS, Theorem 2.1].

For the properness of the Coleman—Mazur eigencurve Cy, Buzzard—Calegari first
proved the properness of Cy for the case where p = 2 and N = 1 [BuC]. It was
followed by Calegari’s result [Cal] on the properness of Cx at integral weights: he
showed the existence of the map D¢, — Cn ¢, as in the definition of the properness
if the image of the puncture O in the weight space corresponds to a classical weight.
One of the key points of their proofs is to show that any non-zero overconvergent
elliptic eigenform of infinite slope does not converge on a certain region of a modu-
lar curve, while any overconvergent elliptic eigenform of finite slope does converge
on a larger region. In [BuC], they deduced the former from the theory of canon-
ical subgroups, especially a behavior of the U,-correspondence for elliptic curves
with Hodge height p/(p 4+ 1), while the latter is a consequence of a standard ana-
lytic continuation argument via the Up-operator. Recently, the properness of the
Coleman—Mazur eigencurve was proved in full generality by Diao—Liu [DL] by using
p-adic Hodge theory, especially the theory of trianguline p-adic representations in
families.

For algebraic groups other than GLs g, the properness of eigenvarieties has not
been known. Note that in Diao—Liu’s proof of the properness of the Coleman—
Mazur eigencurve, in order to apply p-adic Hodge theory, it seems crucial that
we have a Galois representation, not just a Galois pseudo-representation, over (the
normalization of) the eigencurve. This is a consequence of the fact that we can con-
vert pseudo-representations into representations over smooth rigid analytic curves
[CM, Remark after Theorem 5.1.2]. Thus at present it is unclear if their proof
can be generalized to show the properness of eigenvarieties of dimension greater
than one on the components where the residual Galois representations attached to
automorphic forms are absolutely reducible.

The aim of this paper is to generalize the method of Buzzard and Calegari to
the case of Hilbert modular forms and to obtain the properness of the Hilbert
eigenvariety constructed by Andreatta—Tovita—Pilloni [ATP2] at integral weights in
some cases.

To state the main theorem, we fix some notation. For any totally real number
field F' with ring of integers O, put G = Resp/g(GLz2) and T = Resp,,/z(Gm)-
Let K/Q, be a finite extension such that F'® K splits completely. Let W be the
weight space for G over K as in [AIP2, §4.1]. By definition, we have

WE = Spf(Ok[[T(Z,) x Z;]))"

and the set of C,-valued points W (C,) can be identified with the set of pairs of
continuous characters

v:T(Zy) - C;, w:Z; —C.

We say that the weight (v, w) is 1-integral if its restriction to 1+ p(Or ® Z,,) x (14
pZ,) comes from an algebraic character T X Gy, — Gy,. This restriction corresponds
to a pair ((kg)g, ko) of a tuple (kg)g of integers indexed by the set of embeddings
B : F — K and an integer ky. We say that a 1-integral weight is 1-doubly even if
every kg and kg are divisible by four. Then the main theorem in this paper is the
following.
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Theorem 1.1 (Theorem 5.1). Let F be a totally real number field which is unrami-
fied over p. Let K/Q, be a finite extension in @p such that F ® K splits completely.
Let N > 4 be an integer prime to p. Let & — W be the Hilbert eigenvariety of
tame level N constructed in [ATP2, §5], which is defined over a finite extension of
K.

Suppose that for any prime ideal p of F dividing p, the residue degree f, of p
satisfies f, < 2 (resp. p splits completely in F) if p is odd (resp. even). Then
E is proper at 1-integral (resp. 1-doubly even) weights. Namely, any commutative
diagram of rigid analytic varieties over C,

2
.
J/ 4 \L

5 G
D(Cp b Cp

can be filled with the dotted arrow if ¥ (O) corresponds to a 1-integral (resp. 1-doubly
even) weight.

For the proof, we basically follow the idea of Buzzard and Calegari [BuC, Cal].
Thus the key step in our case is also to show that any non-zero overconvergent
Hilbert eigenform f of 1-integral weight and infinite slope does not converge on the
locus where all the partial Hodge heights are no more than 1/(p + 1) in a Hilbert
modular variety.

Let us explain briefly how to show this non-convergence property, following
[BuC]. For simplicity, we assume that f is of integral weight, namely the weight
(v,w) corresponds to an algebraic character T x G, — Gy,. For any Hilbert—
Blumenthal abelian variety (HBAV) A with an Op-action over the ring of integers
Oy, of a finite extension L/K, we say that a finite flat closed Op-subgroup scheme
H of A over Op is p-cyclic if its generic fiber is etale locally isomorphic to the con-
stant group scheme Op /pOp. We say that A is critical if every S-Hodge height of
A is equal to p/(p+1) for any embedding 8 : F — K. Then, for any critical A and
any p-cyclic subgroup scheme #H of A, the quotient A/H has the canonical subgroup
Alp]/H of level one and its S-Hodge heights are all 1/(p + 1) [Hat2, Proposition
6.1]. This is where the assumption on residue degrees is used in the most crucial
way. It is unclear if the claim holds without this assumption: At least, we have
a counterexample of a similar assertion for truncated Barsotti-Tate groups if we
drop the assumption on f, [Hat2, Remark 6.2].

Consider the Hilbert modular variety classifying pairs (A, H) of a HBAV A and
its p-cyclic subgroup scheme H. Let U be the locus where H is the canonical sub-
group of A. Another thing we need here is to show that for any (A, H) with A criti-
cal, the corresponding point [(A4, H)] of the Hilbert modular variety has a connected
admissible affinoid open neighborhood intersecting U such that, if an overconver-
gent Hilbert eigenform f of integral weight converges on the locus where all the
B-Hodge heights are < 1/(p + 1), then we can evaluate U, f on this neighborhood
(Proposition 3.7). This implies that, if f is in addition of infinite slope, then we
have (U, f)(A,H) = 0 for any critical A and any p-cyclic subgroup scheme H. From
this, by a combinatorial argument (Lemma 5.2), we obtain f(A/H, Alp]/H) = 0
for any such (A, #), which yields f = 0 and the above non-convergence property
follows. It seems that this argument using a connected neighborhood cannot be
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generalized immediately to the case where f is not of locally algebraic weight, since
in this case U, f is defined only on the locus U (even after taking a finite etale cover)
and it cannot be evaluated for any critical A.

Note that sheaves of overconvergent Hilbert modular forms of [ATP2] are defined
on the locus in the Hilbert modular variety where canonical subgroups exist. How-
ever, the theory of canonical subgroups used in [AIP2] does not give the existence
locus which is enough large to contain critical HBAV’s unless p is sufficiently large.
Instead, we use [Hat2, Theorem 8.1], which enables us to enlarge the locus where
sheaves of overconvergent Hilbert modular forms are defined from the original locus
given in [AIP2], and to include the case of p < 5 in the main theorem.

What the Hilbert eigenvariety £ of [AIP2] parametrizes are eigensystems in the
space of overconvergent Hilbert modular forms. Thus, to follow the strategy of
Buzzard and Calegari to reduce the properness to the above non-convergence prop-
erty of overconvergent modular forms, we have to convert a family of eigensystems
of finite slopes, or a morphism from a rigid analytic variety to £, into a family of
eigenforms and vice versa. The latter direction can be treated (Proposition 2.7) as
in the proof of [BeC2, Proposition 7.2.8]. For the former direction, we first prove
that any family of eigensystems over any smooth rigid analytic variety over C, can
be lifted locally to a family of eigenforms (Proposition 2.5). This can be considered
as a version of Deligne—Serre’s lifting lemma [DS, Lemme 6.11]. Then we glue the
local eigenforms using a weak multiplicity one result, after we normalize the local
eigenforms with respect to the first g-expansion coefficient (Proposition 4.15). This
use of the weak multiplicity one and the normalization via a g-expansion coefficient
hinders us from generalizing the main theorem to the case of GSps, where sheaves
of overconvergent Siegel modular forms and the Siegel eigenvariety are constructed
in a similar way [AIP].

Once we have a family of overconvergent Hilbert eigenforms f of finite slopes
parametrized by Dgp associated to the family of eigensystems ¢ : Dép — &, , we
extend its domain of definition in the Hilbert modular variety as large as possible
by an analytic continuation using the Up-operator. Since the Hecke eigenvalues
are of absolute values bounded by one, we can show that the g-expansion defines
a rigid analytic function around a cusp parametrized by D(ép which is of absolute
value bounded by one. Such a function automatically extends to the puncture, and
a gluing shows that f also extends to the puncture (Proposition 4.19). Since we
analytically continued f to a large region, the specialization f(O) at the puncture
is also defined over the same large region. Thus the non-convergence property of
eigenforms of infinite slope mentioned above implies that f(O) is also of finite slope,
which gives us an extended map D¢, — &c, -

The organization of this paper is as follows. In §2, we recall Buzzard’s eigenva-
riety machine [Buz] on which the construction of the Hilbert eigenvariety in [AIP2]
relies, and we prove results to convert a family of eigensystems into local eigenforms
and vice versa. In §3, we recall the definition of overconvergent Hilbert modular
forms and the construction of the Hilbert eigenvariety, both due to Andreatta—
Tovita—Pilloni [ATP2], including generalizations of some of their results to the case
over C,. We also give a connected neighborhood of any critical point in a Hilbert
modular variety, which is one of the key ingredients of the proof of Theorem 1.1.
In §4, we prove properties of the g-expansion for overconvergent Hilbert modular
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forms. These are used to produce a global eigenform by gluing local eigenforms ob-
tained from a family of eigensystems, and also to extend a family of overconvergent
Hilbert eigenforms over the punctured unit disc to the puncture. Combining these
results, we prove Theorem 1.1 in §5.

Acknowledgments. The author would like to thank Fabrizio Andreatta, Ruochuan
Liu and Vincent Pilloni for kindly answering his questions on their works. He is also
grateful to Kevin Buzzard, Yoichi Mieda, Tomoki Mihara, Tadashi Ochiai, Vincent
Pilloni and Yuichiro Taguchi for stimulating comments on an earlier draft, and the
anonymous referee for valuable comments. He also would like to thank Shu Sasaki
for enlightening discussions on p-adic modular forms and encouragements.

2. LEMMATA ON BUZZARD’S EIGENVARIETY

Let p be a rational prime and let K be a finite extension of Q, in @p. In this
section, we establish two lemmata on Buzzard’s eigenvariety machine [Buz]. In
the first lemma, we show that any family of Hecke eigensystems over a smooth
rigid analytic variety over C, lifts locally to a family of eigenforms. The second
one enables us to convert any family of Hecke eigensystems of finite slopes over a
reduced rigid analytic variety into a morphism to the eigenvariety.

2.1. Buzzard’s eigenvariety machine. First we briefly recall the construction
of Buzzard’s eigenvariety. Let R be a reduced K-affinoid algebra. Let M be a
Banach R-module satisfying the condition (Pr) of [Buz, §2]. We write End%™ (M)
for the R-algebra of continuous R-endomorphisms of M. Let T be a commutative
K-algebra endowed with a K-algebra homomorphism T — End%""(M). Let ¢ be
an element of T. Suppose that ¢ acts on M as a compact operator. We call such
a quadruple (R, M, T, ¢) an input data for the eigenvariety machine over K.

For such M and M’, a continuous R-linear T-module homomorphism « : M’ —
M is called a primitive link if there exists a compact R-linear T-module homomor-
phism ¢ : M — M’ such that ¢ acts on M as aoc and it acts on M’ as coa. A
continuous R-linear T-module homomorphism « : M’ — M is called a link if it is
the composite of a finite number of primitive links.

Let P(T) =1+, -, cxT" be the characteristic power series of ¢ acting on M,
which is an element of the ring R{{T}} of entire functions over R. The spectral
variety Z, for ¢ is the closed analytic subvariety of Sp(R) x Al defined by P(T).
We denote the projection Zy — Sp(R) by f.

The eigenvariety £ associated to (R, M, T, ) is the rigid analytic variety over
Z4 defined as follows: Let C be the set of admissible affinoid open subsets Y of Zy
satisfying the condition that there exists an affinoid subdomain X of Sp(R) such
that Y C f~1(X) and the map Y — X induced by f is finite and surjective. We
can show that C is an admissible covering of Zy [Buz, §4, Theorem], and we refer
to C as the canonical admissible covering of Zj.

Let Y = Sp(B) be an element of C and let X = Sp(A) be as above. Suppose that
X is connected. Then the A-algebra B is projective of constant rank d. In the ring
of entire functions A{{T'}} over A, we can show that P(T) can be written as P(T') =
Q(T)S(T) with some S(T) € A{{T'}} and a polynomial Q(T) of degree d over A
with constant term one, and that we have a natural isomorphism A[T]/(Q(T)) ~ B.
Put Q*(T) = T9Q(T~1). By the Riesz theory [Buz, Theorem 3.3], the restriction
My of M to X = Sp(A) can be uniquely decomposed as My = N & F, where N
is a projective A-module of rank d such that Q*(¢) acts on N as the zero map
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and it acts on F' as an isomorphism. Since Q*(0) # 0, the operator ¢ is invertible
on N. Let T(Y) be the A-subalgebra of End™ (N) generated by the image of
T. Then the A-algebra T(Y) is finite and thus a K-affinoid algebra. Moreover,
we have a natural A-algebra homomorphism A[T]/(Q(T)) ~ B — T(Y) sending
T to (¢|n)~t. Put E(Y) = Sp(T(Y)). If X is not connected, by decomposing X
into connected components as X = [[, X;, we put £(Y) =[], £(Y|x,). Then these
local pieces can be glued along the admissible covering C and define the eigenvariety
€ — Zy [Buz, §5]. By [Buz, Lemma 5.3], the rigid analytic varieties £ and Z,; are
separated.

By the construction, the natural map £ — Z is finite and the structure mor-
phism £ — Sp(R) is locally (with respect to both the source and the target) finite.
Moreover, we have a K-algebra homomorphism T — O(€) such that, for any ad-
missible affinoid open subset V' of Z,, the induced map T ®x O(V) — O(&|y) is
surjective.

In some cases we can glue this construction to define the eigenvariety over a
non-affinoid base space. Let W be a reduced rigid analytic variety over K. Let
T be a commutative K-algebra and let ¢ be an element of T. Suppose that,
for any admissible affinoid open subset X C W, we are given a Banach O(X)-
module Mx satisfying the condition (Pr) with a K-algebra homomorphism T —
Endg’(n)'})(M x ) such that the image of ¢ is a compact operator. Suppose also that
for any admissible affinoid open subsets X; C Xs C W, we have a continuous
O(X1)-module homomorphism « : My, — Mx,®0(x,)O(X1) which is a link and
satisfies a cocycle condition. Then the eigenvarieties for (O(X), Mx, T, ¢) can be
patched into the eigenvariety £ — Z, — W [Buz, Construction 5.7], where Zy
denotes the spectral variety over W constructed by gluing the spectral varieties
over X.

Let L/K be an extension of complete valuation fields (of height one). For any
quasi-separated rigid analytic variety X over K and any coherent Oxy-module F,
we can define base extensions X}, := X&x L and F;, of X and F functorially (see
[BGR, 9.3.6] and [Conl, §3.1]). If the extension L/K is finite, then they are just
the fiber product and the pull-back in the usual sense. Otherwise, it seems unclear
if it has usual properties as a fiber product: for an open immersion j : U — X,
what we know in this case is that the base extension jj, : Uy — X, is also an open
immersion if j is quasi-compact (for example, if X' is quasi-separated and U is an
admissible affinoid open subset) or a Zariski open immersion. At any rate, [BGR,
Proposition 9.3.6/1 and Corollary 9.3.6/2] implies that the base extension takes
any admissible affinoid covering of X" to that of X. We write the set of L-valued
points X1 (L) also as X(L).

Let (R, M, T, ) be an input data for the eigenvariety machine over K and let
& — Zy be the associated eigenvariety over X = Sp(R). We say that a K-algebra
homomorphism A : T — L is an L-valued eigensystem in M if there exist an element
x € X(L) given by a K-algebra homomorphism z* : R — L and a non-zero element
m of M®p L such that we have hm = A(h)m for any h € T. It is said to be of
finite slope if A(¢) # 0. Then there exists a natural bijection between £(L) and the
set of L-valued eigensystems A in M of finite slopes [Buz, Lemma 5.9]. We state
the following lemma for the reference, which is in fact shown in [Buz].

Lemma 2.1. Let (R, M, T, ) be an input data for the eigenvariety machine over
K and let £ — Z4 be the associated eigenvariety over X = Sp(R). Let L/K be
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an extension of complete valuation fields and take z € E(L). Let x € X(L) and
y € Zy(L) be the images of z. Let A : T — L be the L-valued eigensystem in M
corresponding to z. Let m be a non-zero element of M&pg . L satisfying hm =
A(h)m for any h € T. Take an admissible affinoid open subset V' in the canonical
admissible covering of Zy satisfyingy € V(L). Write f(V)) = Sp(A). Suppose f(V)
is connected. Let P(T) be the characteristic power series of ¢ acting on M. Let
Q(T) be the factor of P(T) in A{{T}} associated to V and let Mg = N @ F be the
corresponding decomposition of M4, as above.

(1) M(h) = h(z) in L, where h(z) is the specialization at z of the image of h by

the map T — O(E).
(2) The decomposition

M®R7$*L = N®A,x* L@F@AJ*L

is the one corresponding to the factor Q.(T) of P.(T), where P,(T) and
Q. (T) are the images of P(T) and Q(T) in L{{T}} by x*, respectively.
(3) Que(M@)™1) =0 and m € N®4 ,+L.

Proof. The first assertion follows from the proof of [Buz, Lemma 5.9]. The second
one follows from [Buz, Lemma 2.13] and the uniqueness of the decomposition in
[Buz, Theorem 3.3]. For the third one, note that the definition of the map £(V) — V
implies Q. (A(¢)™1) = Q:(A\(¢)) = 0. Since Q% (¢)m = Q% (A\(¢))m = 0, the second
assertion implies m € N®4 o= L. O

2.2. Lifting lemma a la Deligne—Serre. In this subsection, we consider the
problem of converting a family of eigensystems into a family of eigenforms. First
we show a local lemma in the following setting: Let L be a complete valuation field
which is algebraically closed. Let (A, N,T,S, ) be a tuple consisting of

an L-affinoid algebra A,

a projective A-module N of finite rank,

a finite A-algebra T equipped with an A-algebra homomorphism T —
EHdA (N),

e an L-affinoid algebra S which is an integral domain, and

e a homomorphism ¢ : T'— S of L-affinoid algebras.

For any x € Sp(S), we write m, for the associated maximal ideal of S.

Lemma 2.2. Let L be a complete valuation field which is algebraically closed. Let
(A,N,T,S,p) be a tuple as above. Assume that, for any x € Sp(S), the induced
map

p(=)(z) : T — S/m,

is an S/mg-valued eigensystem in N. Namely, we assume that, for any x € Sp(S),
there exists a non-zero element f, € N ®4 S/m, satisfying (h @ 1)f, = (1®
o(h)(@))fs for any h € T.
(1) There exists a non-zero element F € N ®4 S satisfying (h®@ 1)F = (1®
o(h))F for any heT.
(2) Assume moreover that S is a principal ideal domain. We write F(x) for
the image of F' in N @4 S/my. Then there exists F' as in (1) satisfying
F(z) # 0 for any x € Sp(9).
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Proof. Put P = Ker(p : T — S), which is a prime ideal of T. Consider the
multiplication map p: T ®4 T/P — T/P, and put

Q =Ker(u) =Ker(T®aT/P —-T/P — S).

Then the ideal @ is a minimal prime ideal. Indeed, since the A-algebra T is finite,
the T'/ P-algebra T ® 4 T'/ P is also finite and thus the latter ring is a finite extension
of a quotient of T'/P. Since the quotient (T'®4 T/ P)/Q is isomorphic to T/ P, we
have the inequality

dim(T/P) > dim(T @4 T/P) > ht(Q) + dim(T/P),

which implies ht(Q) = 0.

The ideals n, = ¢~ *(m,) and n’, = (pou)~*(m,) are maximal ideals of the rings
T and T®4T/P, respectively. We write 7, for the inverse image of m, by the map
T/P — S, which is also a maximal ideal. Via the map 1®¢ : T®@sT/P - T®4 S,
the ring T ® 4 T/P acts on N ® 4 S/m, for any = € Sp(.5).

First we claim that 7}, = Annpg,r/p(fs). Since 7, is a maximal ideal and
fz # 0, it is enough to show 7}, C Annpg ,7r/p(fz). Since L is algebraically closed,
the ideal Im(n, ®4T/P)+Im(T®47,;) is a maximal ideal contained in 7/, and thus
they are equal. For any h € T, we denote its image in 7/P by h. Take elements
h € T and h' € n,. We have (h ® h')f, = 0. On the other hand, we also have
(W @1)f, = (1 ®p(h)(x))f, = 0 by assumption. This implies (b’ ® h)f, = 0 and
the claim follows.

Next we claim that the localization (N ® 4 T/P)g of the T ® 4 T/P-module
N ®4 T/P at @ is non-zero. Suppose the contrary. Since the T'® 4 T/ P-module
N ®4 T/P is finite, we can find s ¢ @ satistying s(N ®4 T/P) = 0. Take any
x € Sp(S). We have s(N ®4 T/ny) = 0. Since L is algebraically closed, we have
L=T/n, =S/m, and we also see that s(N ® 4 .S/m,) = 0. In particular, we have
sfz =0 and s € Annpg , p/p(fz) = 0. Thus we obtain

se () 2= () (o (ma)=(pomw)™( [] ma)

z€Sp(S) z€Sp(S) z€Sp(S)

The assumption that S is a reduced L-affinoid algebra implies

m m, = 0.

z€Sp(S)

Hence s € Ker(p o 1) = @, which is a contradiction.

Therefore we obtain @ € Supprg ,1/p(N ®4 T/P). Since Q is a minimal prime
ideal, it is also contained in Asspg ,7/p(IN ®a T/P). Namely, the prime ideal Q
is written as Q = Annpg ,7/p(G) with some non-zero element G of N ®4 T'/P.
Since the A-module N is projective, the natural map 1® ¢ : N4 T/P — N®4 S
is an injection. Thus the image F = (1 ® ¢)(G) is non-zero. Moreover, since
h®1—1®h e Q for any h € T, we have the equality (h®1)G = (1® h)G. Hence
we obtain (h® 1)F = (1 ® ¢(h))F and the assertion (1) follows.

Now assume that S is a principal ideal domain. Then each maximal ideal m, of
S is generated by a single element t,. Put

E(F) = {z € Sp(9) | F(x) = 0}.

Since the A-module N is projective and the Krull dimension of S is no more than
one, we see that X(F') is a finite set. For any = € X(F'), the element F lies in
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Ker(N®4 S = N ®a S/my) = my(N ®4 S). By Krull’s intersection theorem,
there exists a positive integer c, satisfying F' € t*(N @4 S) \ t&TH(N ®4 S). Put
F = t¢»H with some non-zero element H of N ®4 S. We have H(z) # 0 and
Y(H) € X(F). Since the S-module N ®4 S is torsion free, the element H also
satisfies (h ® 1)H = (1 ® ¢(h))H for any h € T. Repeating this, we can find F as
in the assertion (1) satisfying X(F) = 0. O

Remark 2.3. Let Sp(S) be a connected affinoid subdomain of the unit disc D¢, =
Sp(Cp(T)). Note that C,(T') is a principal ideal domain, since it is a unique factor-
ization domain of Krull dimension one. [BGR, Proposition 7.2.2/1] implies that S
is a regular ring of Krull dimension no more than one such that every maximal ideal
is principal. Since Sp(S) is connected, we see that S is a principal ideal domain.
Hence the assumption of Lemma 2.2 (2) is satisfied in this case.

We say that a rigid analytic variety X is principally refined if any admissible
covering of X has a refinement by an admissible affinoid covering X = (J,;; U; such
that the affinoid algebra of each affinoid open subset U; in the refined covering is a
principal ideal domain.

Remark 2.4. Remark 2.3 implies that any open subvariety of D¢, is principally
refined.

For the eigenvariety associated to an input data (R, M, T, ¢), the above lemma
implies the following proposition.

Proposition 2.5. Let (R, M, T, ) be an input data for the eigenvariety machine
over K and let € — Z4y — Sp(R) be the associated eigenvariety. Let L/K be an
extension of complete valuation fields such that L is algebraically closed. Let X be
a smooth rigid analytic variety over L and let ¢ : X — £ = EQx L be a morphism
of rigid analytic varieties over L.

(1) There exist an admissible affinoid covering X = J;c; Ui and a non-zero
element F;, € M®@rO(U;) for eachi € I satisfying (h@1)F; = (1@¢*(h))F;
for any h € T, where ¢* : T — O(E) = O(U;) is the map induced by .

(2) Assume moreover that X is principally refined. We write k(x) for the
residue field of x € U; and Fi(x) for the image of F; in M&gpk(z). Then
we can find F; as in (1) satisfying F;(x) # 0 for any x € U;.

Proof. Let C be the canonical admissible covering of Z,. For any V € C, we have
the K-affinoid variety £(V) = Sp(T(V')), as before. Then &, = Jy ¢ E(V)1 is an
admissible affinoid covering of £,. Let f : Z, — Sp(R) be the natural projection
and write f(V) = Sp(A). For any V € C such that f(V) is connected, take
an admissible affinoid covering ™' (€(V)r) = U,¢;, Ui such that U; = Sp(S;) is
connected for any i € Iyy. From the construction of the eigenvariety, we have a
natural decomposition M®rA = N @ F into closed A-submodules N and F. Note
that the A-module N is finite and projective. Since the complete tensor product
commutes with the direct sum, the S;-module N ® 4 5; is a submodule of M&®rS;.

For any i € Iy, consider the natural map ¢* : T — T(V) — S;. We de-
note the map T(V) — S; also by ¢*. For any z € U; = Sp(S;), the com-
posite Sp(k(x)) — U; — & corresponds to a k(z)-valued eigensystem of T in
M of finite slope. Namely, there exists a non-zero element g, of M®grk(x) =
N@ak(z) © F@k(x) satisfying (h ® 1)g. = (1 ® ¢*(h)(x))g, for any h € T
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and (¢ ® 1)g, # 0. Lemma 2.1 (3) implies g, € N®ak(z). Since U; is con-
nected and smooth, the ring S; is an integral domain. Applying Lemma 2.2 (1)
to the tuple (A®x L, N&x L, T(V)®kL, S;, p* @ 1), we obtain a non-zero element
Gi € N®aSi = (NOKL)® 44, 1S satisfying (h® 1)G; = (1 ® ¢*(h))G; for any
h € T. Setting F; to be the image of G; by the injection N ®4 S; — M®gS;, the
assertion (1) follows.

For the assertion (2), by assumption we may assume that each S; is a principal
domain. Then Lemma 2.2 (2) allows us to find G; satisfying in addition G;(z) # 0
for any = € U;. Since we have a commutative diagram

N®A SZ(—> M®Rsl

| |

N @4 k(z)— M&grk(x)

such that the horizontal arrows are injective, we obtain F;(z) # 0 for any z €
U;. O

2.3. Bellaiche—Chenevier’s argument. Let (R, M, T, ¢) be an input data for
the eigenvariety machine over K and let & — Z, — Sp(R) be the associated
eigenvariety. Let L/K be an extension of complete valuation fields. Put R, =
R& L. Let X be arigid analytic variety over L equipped with a morphism  : X —
Sp(Ryr). For any = € X, we have a natural ring homomorphism £*(z) : R — k(z).
A ring homomorphism ¢ : T — O(X) is said to be a family of eigensystems in M
over X if, for any x € X, there exists a non-zero element f, of M®R’,{*(z)k(x) such
that (h® 1)f, = (1 ® p(h)(x))f, for any h € T. It is said to be of finite slopes if
©(¢)(x) # 0 for any x € X. This is the same as saying that ¢(¢) € O(X)*. In this
subsection, we show that we can convert a family of eigensystems of finite slopes
over a reduced base space into a morphism to the eigenvariety, following [BeC2,
Proposition 7.2.8]. First we recall the following lemma.

Lemma 2.6. (1) Let f : X — Y be a morphism of rigid analytic varieties over
L with X reduced. Let Z be a closed analytic subvariety of Y. Suppose
f(X)C Z. Then f factors through Z.

(2) Let f,f": X =Y be two morphisms of rigid analytic varieties over L with
X reduced and'Y separated. Suppose that these morphisms define the same
map between the underlying sets. Then f = f'.

Proof. For the first assertion, we may assume that X = Sp(R;1), ¥ = Sp(R2) and
Z = Sp(Ry/I) for some ideal I of Ry. Consider the associated ring homomorphism
f*: Ry — Ry and put J = Ker(f*). By assumption, every maximal ideal m of Ry
satisfies (f*)~(m) D I. Since R; is Jacobson and reduced, we obtain

Ic () MMm=u7C ) m=0)THo) =
meSp(R1) meSp(R1)
Hence the assertion (1) follows. The second assertion follows from the first one

applied to (f, f) : X =Y xp Y and the diagonal Y - Y x Y. a

Proposition 2.7. Let (R, M, T,$) be an input data for the eigenvariety machine
over K and let € — Z4y — Sp(R) be the associated eigenvariety. Let L/K be an
extension of complete valuation fields. Let X be a reduced rigid analytic variety
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over L equipped with a morphism k : X — Sp(Ry). Suppose that we have a family
of eigensystems of finite slopes ¢ : T — O(X) in M over X. Then there exists a
unique morphism ® : X — & such that the diagram

XL(C;L

N

Sp(Rr)

is commutative and, for any x € X, the eigensystem over k(x) corresponding to
Sp(k(x)) - X L &L is the map o(—)(z) : T — k(x).

Proof. Let C be the canonical admissible covering of Z4. Take any V = Sp(B) € C
and put f(V) = Sp(A) as in the proof of Proposition 2.5. Let I be a finite subset
of T such that its image in T(V) is a system of generators of the finite B-algebra
T(V). We denote by A‘I/L the affine space over V;, = V®x L whose variables are
indexed by I. We have a morphism of rigid analytic varieties

iV,I Zg(V)L%A{/L, Z (h(z))hel.

From the definition of I, we see that the map iy is a closed immersion.
On the other hand, we also have a morphism of rigid analytic varieties

p:X = Sp(RL) x A,z (k(2),9(¢) ' (2)).

Let P(T) € R{{T}} be the characteristic power series of ¢ acting on M. For
any © € X, let Py(T) be the image of P(T) in k(x){{T}} by the map x*(z) :
R — k(x). By [Buz, Lemma 2.13], it is the characteristic power series of ¢
acting on M® R+ (x)k(2). By assumption, there exists a non-zero element g, of
M®p o (2)k () satisfying

(h©1)ge = (1@ @(h)(x))ga-

Then Lemma 2.1 (3) implies P, (p(¢)(z)~1) = 0. By using the assumption that X
is reduced and Lemma 2.6 (1), we see that the morphism yu factors through Z, ..

For any V € C, put Xy, = p~%(Vz). For any I as above, we consider the
morphism of rigid analytic varieties over V[,

g Xv, = Ay, @ ((h)(2))her-

By [Buz, Lemma 5.9] and Lemma 2.1 (1), for any x € Xy, there exists a unique
point z, € E(k(x)) satisfying o(h)(z) = h(z;) for any h € T. We claim that
zz € E(V)r. Indeed, we may assume that f(V) is connected. Let Q(T) be the
factor of P(T) corresponding to V and let Q. (T) be its image by x*(x). Let N
be the direct summand of M4 corresponding to V. For any x € Xy, , we have
u(z) € Vi and Qu(p(6™1) (@) = Q3(p(6)(x)) = 0. Hence Q%(¢)ga = 0 and thus
9gu € N®4 k(z). From the proof of [Buz, Lemma 5.9], this implies z, € £(V) and
the claim follows.

In particular, we have jy,;(z) = iv,1(z,) for any x € Xy, and thus jy ;(Xy,) C
iv,1(E(V)r). Since iy is a closed immersion and Xy, is reduced, Lemma 2.6 (1)
yields a unique morphism ®vy ; : Xy, — E(V) over Vi, which makes the following
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diagram commutative.

A,
We claim that the morphism @y ; is independent of the choice of a finite subset
I of T as above. Indeed, for any z € Xy, , we have Oy ;(z) = i‘773(jv7[(x)) = 2z,
which depends only on z. Since X is reduced and & is separated, Lemma 2.6 (2)
implies the claim. Moreover, by the same reason we can glue the morphisms ®v.;
along V € C and obtain a morphism ® : X — £7. Since the requirement on ® in
the proposition is the same as ®(z) = z,, it is satisfied by the morphism ® we have
constructed. Lemma 2.6 (2) ensures the uniqueness. (]

3. HILBERT EIGENVARIETY

3.1. Hilbert modular varieties. Let p be a rational prime. Let F' be a totally
real number field of degree g which is unramified over p. We denote its ring of
integers by 0 = Op and its different by Dp. For any integer N, we put
Un ={e€ Of |e=1mod N}.

For any prime ideal p | p of Op, let Jp be the residue degree of p.

Fix a finite extension K/Q, in @, such that F ® K splits completely. We
denote by Ok the ring of integers of K, by my the maximal ideal of O, by 7x a
uniformizer of K, by e the absolute ramification index of K, by k the residue field

of K and by W = W (k) the Witt ring of k. Let v, be the additive valuation on K
normalized as v,(p) = 1. For any non-negative real number 4, we put

my ={x € Ok | vp(z) > i}, Oki=O0x/my, 7 =Spec(Ox.).

For any extension L/K of valuation fields, we consider the valuation on L extending
vp and define O, my, m%l, Or,; and 71 ; = Spec(Op, ;) similarly. For any element
x € Or 1, we define the truncated valuation v,(x) by

vp(x) = min{v, (), 1}
with any lift £ € O of z. For any x € L, we define the absolute value of z by
‘(E| = pfvp(w)'
We denote by By the set of embeddings F' — K and by B, the subset of Br
consisting of embeddings which factor through the completion Fj,. The set Bp is

decomposed as
Br = [[B,.
plp
For any subset X of F', we denote by X the subset of totally positive elements of
X. Put Fr = F®R and Fj; = Homg(F,R). We denote by Fi'" the subset of Fj;
consisting of linear forms which maps the subset F*>* to Rsq. The group Uy acts
on F and F'" through e — €2.

Let ¢ be any non-zero fractional ideal of F'. For any fractional ideals a, b of
F satisfying ab~! = ¢, we denote by Dec(a, b) the set of rational polyhedral cone
decompositions € = {c},e% of F]RT’"' which is projective and smooth with respect
to the lattice Hom(ab, Z) such that the elements of € are permuted by the action
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of Uy, the set € /Uy is finite and for any € € Uy and o € €, (o) N o # () implies
e = 1, as in [Hid2, §4.1.4]. Here we adopt the convention that o is an open cone.
Note that any two elements of Dec(a, b) have a common refinement which belongs
to Dec(a, b). For any such pair (a,b), we fix once and for all a rational polyhedral
cone decomposition ¢'(a,b) € Dec(a,b) and put Z(c) = {€(a,b) | ab™! = c}.

3.1.1. Hilbert-Blumenthal abelian varieties. Let N > 4 be an integer with p { N
and let ¢ be a non-zero fractional ideal of F. Let S be a scheme over Og. A
Hilbert—Blumenthal abelian variety over S, which we abbreviate as HBAV, is a
quadruple (A, ¢, A, 1)) such that

e A is an abelian scheme over S of relative dimension g.

e . : O — Endg(A) is a ring homomorphism.

e )\ is a c-polarization. Namely, A : A ®o, ¢ ~ AV is an isomorphism of
abelian schemes to the dual abelian scheme AV compatible with Op-action
such that the map

Homop,. (A, AY) ~ Homp, (A, A®0,¢), frsAlof

induces an isomorphism of O p-modules with notion of positivity (P4, PX) ~
(c,cT). Here P4 denotes the Op-module of symmetric O p-homomorphisms
from A to AV, PX is the subset of Op-linear polarizations and any element
v € ¢ is identified with the element (z — = ® v) of Homp, (4, A Qo ).
o Y : D;l ® puy — A is an Op-linear closed immersion of group schemes,
which we call a I'go(V)-structure.
Note that for such data, the Op ® Og-module Lie(A) is locally free of rank one
[DP, Corollaire 2.9]. While the notion of HBAV depends on ¢, we will omit the
reference to ¢ when there is no risk of confusion.
Let L/K be an extension of complete valuation fields and let p be a prime ideal
of O dividing p. Let G be a finite flat group scheme over O with an Op,-action.
We have decompositions

wg = P wgs, Lie(Gx.SLn) = EP Lie(G x SLn)s
BEBy BEBy
according with the decomposition Op, @ W =~ HﬂEBp W. Write wg s ~ @, Or/(a;)
with some a; € Op and we define the S-degree of G by degg(G) = >, vp(as).
Similarly, for any finite flat group scheme H over O with an Op-action, we have

decompositions
H= @Hp, Wy = @ W3
plp BEBF
such that H, is a finite flat closed subgroup scheme of H over O, and wy; g = wy, g
for any 3 € B,. We put degg(H) = degg(H,) for any 3 € B,.

Suppose that G is a truncated Barsotti—-Tate group of level n, height h and
dimension d over Of. For the p-torsion part G[p] of G, the Lie algebra Lie(GV[p] x
Z11) is a free Of, 1-module of rank h —d. The Verschiebung of GV [p] x .77, 1 yields
a map

Lie(Vgvipx.z, ) - Lie(GY[p] x #2.1)® — Lie(GY[p] x S71).

Then the Hodge height Hdg(G) of G is by definition the truncated valuation for v,
of the determinant of a representing matrix of this map. Moreover, if the ring O,
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acts on G, then the above map is also decomposed as the direct sum of maps

Lie(vg\/[p]xYL,l)ﬁ : Lie(gv [p] X YLJ)U_lOﬂ — Lie(gv[p] X yL,l)ﬁ;

where o denotes the natural lift to W of the p-th power Frobenius map on k. If
the Or, 1-module Lie(GY [p] X #11)p is free for any 3 € By, we define the -Hodge
height Hdggz(G) of G as the truncated valuation of the determinant of the map
Lie(ng[p]XyL,l) g. These assumptions are satisfied when G is the p”-torsion part
Alp"] = A[p"], of a HBAV A over Of, or, more generally, when G is an Op,-ADBT,,
[Hat2, §3]. For any 3 € By, we put Hdgg(A) = Hdggz(A[p"]).

3.1.2. Moduli spaces and toroidal compactifications. Let M (un,c) be the Hilbert
modular variety over Ok which parametrizes the isomorphism classes of HBAV’s
(A, ¢, A, ) such that X is a c-polarization and 1 is a g (N)-structure. The scheme
M (py, ¢) is smooth over Ok [Gor, Chapter 3, Theorem 6.9]. We denote by A""
the universal HBAV over M (un, ).

An unramified cusp for M (un,¢) is a triple (a,b,¢n) of fractional ideals a, b of
F satisfying ab~! = ¢ and an isomorphism of O p-modules

¢N : Cl_l/.ZVCl_1 ~ OF/NOF

For each cusp, we have a Tate object Tateq (g) over a certain base scheme [Rap,
§4], which is used to construct a toroidal compactification M (upy,c) of M(un,c).
We recall the definition for unramified cusps. Put M = ab, Mg = M ® R and
My = Hom(M,R). We identify M ® Q with F. Then any % € Dec(a, b) gives a
rational polyhedral cone decomposition of
Mg ={f € Mg | f(M*) C Rso}.
For each o € ¥, put
V={m € Mg |l(m) >0 for any | € o}.
Then we have an affine torus embedding
S = Spec(Ok[q™ | m € M]) = S, = Spec(Ok|[q™ | m € M Na")).

The affine schemes {S,},c# can be glued via S, N S; = S, to define a torus
embedding S — S¢. We denote by S3° and S = UUG% S2° the complements of S
in these embeddings with reduced structures. The formal completions along these
closed subschemes are denoted by S, = Spf(R,) and S¢. By assumption, we can
construct the quotient S¢ /Uy by re-gluing {S, },c# via the action € : S, ~ S, for
any € € Uy. The closed subscheme S3° is defined by a principal ideal I, of the ring
R, satisfying v/ I, =1,. The ring R, is a Noetherian normal excellent ring which
is complete with respect to the I,-adic topology. Put S, = Spec(R,), 52 = V(I,)
and S = S, \ S°, where the latter is an affine scheme and we denote its affine
ring by RY.

Note that the torus with character group a is (aDp)~! ® G,,. For any 1 € a, we

denote by X" the element of O((aDp)~! ® G,,) which the character n defines. We
have an Op-linear homomorphism

q:b— (aDp) ' ® G, (52)

defined by & + (X" s ¢*") with £ € b and n € a. By Mumford’s construction, we
obtain the semi-abelian scheme Tate, (g) over S, such that its restriction to SO is
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an abelian scheme [Rap, §4]. It admits a natural Op-action. Over S2, we have a
natural exact sequence

0 —— 5 (aDr) ™" @ puy —— Tateq,u(q)[V]| 50 xb/b 0,

which defines, for any unramified cusp (a, b, ¢ ), a I'go (IV)-structure on Tateq 5 (q)]| g0
using ¢n. Moreover, the natural isomorphism

((aDp) ™' ® Gm) ®o, ¢ = (6DF) " ® G
induces a ¢-polarization
Aap Tatea’b(q)|gg ®Rop ¢ — Tateb’u(q)\gg ~ (Tatea,b(q)|gg)v.

By these data we consider the Tate object Tateqs(q)lso as a HBAV over SO,
which yields a morphism 89 — M(un,c). Then the toroidal compactification
]\éf@(‘)(,uN, ¢) of M(un,c) over O with respect to Z(c), which we also denote by

M (un,c¢) if no confusion will occur, is constructed in such a way as to satisfy the
following (see [Rap, Théoréme 6.18] and [Dim, Théoréme 7.2 (i)]):

e M(uy,c¢) is projective and smooth over Ok

e M(un,c) is an open subscheme of M (uy,c) which is fiberwise dense and
the complement D of M (uy,¢) is a normal crossing divisor. In particular,
M(un,¢) is quasi-compact.

e The formal completion M (uy, )|}, of M(uy,¢) along the boundary divisor
D contains

I S¢.0)/Un

as a formal open subscheme, where the disjoint union runs over the set of
isomorphism classes of unramified cusps.

e The universal HBAV A" over M (uy,¢) extends to a semi-abelian scheme
A" with Op-action over M (puy, ¢) such that, for any o € €(a,b), the pull-
back of A" by the restriction to SO of the unique algebraization S, —
M (i, c) of the map S, — My, c)|} for any unramified cusp (a,b, ¢x)
is isomorphic to Tatea,[,(q)|gg.

3.1.3. Strict neighborhoods of the ordinary locus and their integral models. Let
IM(un, ) be the p-adic formal completion of M(un,¢). Let M(un,c) be its Ray-
naud generic fiber. Let M(upn, ¢) be the analytification of the scheme M (un, ¢)®@0,
K, which is a Zariski open subvariety of M(juy,¢). The semi-abelian scheme A"*
defines semi-abelian objects A" over M (uy,¢) and A™ over M(uy,¢c) by taking
the p-adic completion and the Raynaud generic fiber. For the zero section e of A"™,

put wjun = e*qu,]/M(uN7c). For any g-tuple x = (kg)gep, in Z, we define

_ L K — kg
wAu117ﬁ = U-}Aun ®OF;B OK; wAun - ® wAun76'

BEBF

K

" similarly. For any 8 € Bp, let hg be the S-partial

Hasse invariant, which is a section of the invertible sheaf w%un’rlo 5@ ngn, 5 on

M(un,c) x # [GK, §2.5] (see also [AG, §7] and [ERX, §3.1]). For any extension
L/K of complete valuation fields, any HBAV A over Of, and any B € By, consider
the element P of M(uy,c)(L) induced by A and a lift hg of hg as a section of

We also define w gun 5 and w
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w%“nﬂ_lo 5 ® w;}m 5 Over an open neighborhood of P. Then we have the equality
of truncated valuations

Hdgs(A) = vp(hs(P)).
If P € M(un,¢)(L) corresponds to a semi-abelian scheme A over O, which is not
an abelian scheme, then we put Hdgg(A) = v, (hs(P)) = 0.

Let v = (vg)gep, be a g-tuple in [0,1] N Q. We denote by M(up,c)(v) and
M(un,c)(v) be the admissible open subsets of M(uy,¢) and M(upn,¢) defined by
v,(hg(P)) < wg for any B € By, respectively. Note that M(uy,¢)(v) is quasi-
compact. We define its integral model M(un,¢)(v) as follows: write vg = ag/bg
with non-negative integers ag and bg # 0. Take a formal open covering M(un,c) =
(J &L such that every hg lifts to a section Bg on each ;. Consider the formal scheme

whose restriction to each §i; is the admissible blow-up of ii; along the ideal (p®#, EZB ),

and its locus where this ideal is generated by ﬁgﬂ . Repeat this for any 8 € Br and
define M(pun,¢)(v) as the normalization in M (un,¢)(v) of the resulting formal
scheme. We denote the special fibers of M (un,¢) and M(un, c)(v) by M (un, )k
and M(pun, ¢)(v)x, respectively. We also denote by 9M(un,¢)(v) the complement
in M(un,c)(v) of the boundary divisor Dy of the special fiber. Then the open
immersion M (un, ¢)(v) — M(un, ¢)(v) is of finite type and [deJ, Proposition 7.2.4]
implies that M (un, ¢)(v)'8 is quasi-compact.

Let v be an element of [0,1] N Q. When vg = v for any 8 € Bp, we write
M(un,¢)(v) as M(un,c)(v) . Moreover, we denote by M (pn,¢)(vior) the quasi-
compact admissible open subset defined similarly to M(uy,¢)(v) with the usual

Hasse invariant
hiot = [ hs
BEBR

instead of hg’s. We also define similar spaces for these two variants, such as
M(un,c)(v) and M(up,c)(vior). Note that IM(un,c)(0) is just the formal open
subscheme of M (., ¢) over which all the B-partial Hasse invariants are invertible.

The formal scheme 9M(py, ¢)(0) is also a formal open subscheme of 9 (uy, ¢)(v)
containing Dy. Let sp : M(uy,¢) = M(un, ), be the specialization map with
respect to 9M(ux, ¢). Then [deJ, Propositions 7.2.1 and 7.2.4] yields

(3.1) M(p, ) ()" = M(uw, ¢)(v) \ sp~" (Dp).

Let R be a topological Og-algebra which is idyllic with respect to the p-adic
topology [Abb, Définition 1.10.1]. By [Abb, Corollaire 2.13.9], any morphism f:
Spf(R) — 9M(un,c) has a unique algebraization f : Spec(R) — M (un,c), and
we have a semi-abelian scheme G = f*A"™ over Spec(R). Taking the reduction
modulo p, we see that f factors through M (1, ¢)(0) if and only if G is ordinary.

Let NAdm be the category of admissible p-adic formal Og-algebras R such that
R is normal. Note that we have R[1/p]°® = R by [BGR, Remark after Proposition
6.3.4/1]. By [Rap, Lemme 3.1], we can see as in [AIP, Proposition 5.2.1.1] that any
morphism Sp(R[1/p]) — M(un,c)(v)"8 corresponds uniquely to an isomorphism
class of a HBAV A over Spec(R) such that Hdgg(A,) < vg for x € Sp(R[1/p]).

We give a proof of the following lemma for lack of a reference.

Lemma 3.1. Let L/K be an extension of complete valuation fields. Let X be a
connected smooth rigid analytic variety over L and let F be an invertible sheaf on
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X. Suppose that f € F(X) vanishes on a non-empty admissible open subset U of
X. Then f =0.

Proof. Take an admissible affinoid covering X = (J,.; &; such that &; is connected
and F is trivial on A; for any i € I. We have X;, NU # 0 for some 9. Then [FvP,
Exercise 4.6.3] implies f|x, = 0.

Put Iy = {i € I | f|lx, = 0}, which is non-empty. [FvP, Exercise 4.6.3] also
implies that X; N X; =0 for any ¢ € Iy and j € I1 := I \ Ip. Then for the subsets

Xy = U/Yi, X = UXi
i€ly i€l

and s € {0,1}, the intersection X; N X; equals X; if ¢ € I, and 0 if ¢ ¢ I;. Hence
X = X ][ X is an admissible covering of X'. Since X is connected, we obtain
X =X, and f =0. (]

Lemma 3.2. Let L/K be an extension of complete valuation fields. Let R be an ad-
missible formal O -algebra such that R[1/p)| is reduced. Suppose that Spec(R/mR)
is reduced and connected. Then Sp(R[1/p]) is connected.

Proof. Take a surjection Or(Ty,...,T,) — PR. Then [BLR, Proposition 1.1] shows
(R[1/p])° = R. Moreover, by [BGR, Remark after Proposition 6.3.4/1] R is in-
tegrally closed in R[1/p]. Thus we have bijections between the sets of connected
components

mo(Sp(R[1/p])) == mo(Spec(R)) =~ mo(Spec(R/mLR)),

from which the lemma follows. O

Lemma 3.3. Let I/k be a finite extension and put W' = W(l). Let K' be the
composite field of K and Frac(W') in Qp. Let R be a Noetherian W -algebra and
let m be a mazximal ideal of R with residue field I. Consider the natural maps

Row W =1, RwOx =1, Rew O —1

induced by R — R/m = 1. We denote the kernels of these maps by m’, n and n’,
respectively. Then the natural maps between complete local rings

RN — (Rw W), RMNOwOx — (R@w Ok )h
are bijective. In particular, we have isomorphisms
(R@w Ok)jp = (Row Okr)p < (Row W)h@w Ok

Proof. For the first map, since R is Noetherian and R/m = [ is perfect there
exists a unique section W’ — R/\ of the natural surjection R}, — [. Thus we
obtain a homomorphism of W’-algebras R @ W’ — RJ.. This induces a map
(R@w W1, — RJ,, which gives the inverse of the first map.

For the second map, since p € m and Ok is totally ramified over W, we have
n = (m, ). This yields R)&w Ok ~ (R@w Ok )h. The last assertion follows by

applying them to R ®w Ok and R @y W'. O

Lemma 3.4. Let X, be either of the rigid analytic varieties

M(pn;e)(v),  M(un,e)(viot)-
Then X,®C,, is connected for any v € [0,1) N Q.
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Proof. Since X, is separated, it is enough to show that for any sufficiently large
finite extension K'/K, the base extension X,®x K’ is connected [Conl, Theorem
3.2.1]. Replacing K by K’, we may assume that K’ = K and every connected
component of X, has a K-rational point.

By Ribet’s theorem (see [Gor, Chapter 3, Theorem 6.19]), the ordinary locus
M (pn,¢)(0)g is geometrically connected. Then DM(pp, ¢)(0), is also geometrically
connected, since it is smooth over k and contains M (un,¢)(0), as a dense open
subset. Since A} is the tube for the immersion My, ¢)(0)r — M(un,c), [Ber,
Proposition 1.3.3] yields the lemma for v = 0.

Consider the case of v > 0. Suppose that X, is not connected. Then we can take
its connected component I/ which does not intersect Xj. Since U is quasi-compact,
there exists a finite admissible affinoid covering U = (J;~, U; of U such that any
[S-partial Hasse invariant can be lifted to a section over U;. Using the maximal
modulus principle on each U;, we see that there exists a positive rational number §
satisfying

max{Hdgs(v) | B € Br} >4

for any x € U. Then, for any rational number ¢ satisfying 0 < ¢ < §, we have
X.nU=190.
On the other hand, let us consider the specialization map

sp : M(pn, €) = M(pw, o)
with respect to M(pun,c). Take any P € U(K) and consider its specialization

P = sp(P). Since P ¢ M(un,¢)(0), the point P corresponds to a HBAV. By [GK,
(2.5.1)] and Lemma 3.3, the complete local ring of M (uy,¢) at P is isomorphic to

the ring Ok |[[ts | B € Br]]. Then [deJ, Lemma 7.2.5] gives an identification

(3.2) sp ' (P) = [] Asl0. ),

BEBR
where for any interval I we denote by Agl the annulus over K with parameter ¢g
defined by the condition |tg| € I. By [GK, §4.2], we may assume that the parameter
i satisfies

i ts(@)),1} (B €1(P))
3.3 Hdg,(A) = { Mten(ts S
(33 s ={ § (8 ¢ (P))
for any @) € sp~!(P) and for any 3 € Br, where A is the HBAV corresponding to
Q and 7(P) is defined by [GK, (2.3.3)].
Suppose X, = M(un,¢)(v). For any positive rational number ¢, put

sp (P)e) = [ Aslps ) x [ Aslo1).
per(P) Bgr(P)

Since sp~!(P)(v)’ is a connected admissible open subset of X, containing P, it is
contained in Y. However, for any ¢ satisfying ¢ < min{d, v}, we have

0#sp ' (P)(e) CX.NU,

which is a contradiction.

When X, = M(un,c)(vtot), take any rational number e satisfying 0 < e <
min{d, v} and v,(tg(P)) > ¢ for any B € Bp. Put w = g~'e. Let V be the
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admissible affinoid open subset of sp~!(P) defined as

V=2 (tg)senr € [ Aslop™™1| TI ltsl=p

BEBF BeT(P)

Since P € V C X, and VN X, # (), by an argument as above we reduce ourselves
to showing that V' is connected.

For this, replacing K by its finite extension we may assume that there exist
a,b € O satisfying v,(a) = v and v,(b) = w. Consider the ring

R = Ok (Tp,Us | BE€Bp)(T)/(Tf —a,bUs —Ts | B € BF)
with f = [Ige, () Ts. Then V = Sp(R[1/p]) and the special fiber
Spec(k[T, Up | B € Bp|[T]/(Tf,Ts | 8 € Br)) = Spec(k[Us | 5 € Bp][T])
is reduced and connected. Then Lemma 3.2 concludes the proof. O

3.1.4. Canonical subgroups over moduli spaces. Let n be a positive integer. Let
v = (vg)gery be a g-tuple satisfying
vg €10,(p—1)/p")NQ

for any 8 € Bp. Note that the 1/(p™(p — 1))-st lower ramification subgroups can
be patched into a rigid analytic family [Hatl, Lemma 5.6]. Let R be an object
of NAdm and put & = Sp(R[1/p]). Let U — M(un,c)(v)"® be any morphism
of rigid analytic varieties over K. This defines a HBAV A"}| over Spec(R). For
any rig-point x € Spec(R), we have the canonical subgroup C,, ((A""|g).) by [Hat2,
Theorem 8.1]. [Hat2, Theorem 8.1 (7)] implies that they can be patched into an
admissible open Op-submodule C,, of A" [p"]|y,. By [AIP, Proposition 4.1.3], it
uniquely extends to a finite flat subgroup scheme C,, of A™|p over Spec(R). Since
C,, agrees with the scheme-theoretic closure of C,, in (A"|g)[p"], we see that C,, is
stable under the O p-action.

On the other hand, on a formal open neighborhood 4 of a point of the boundary
satisfying & C 9 (un, ¢)(0), the unit component A" [p"]°|y is quasi-finite and flat
over $ with constant degree on each fiber by [Rap, p.297 (ii)]. Thus it is finite and
flat. Then, by gluing along 9 (uy,¢)(0), we obtain a finite flat formal subgroup
scheme C,, of A" over M(uy,¢)(v) and its generic fiber C,,, which we refer to as
the canonical subgroup of level n.

Let R be a topological Og-algebra which is quasi-idyllic with respect to the
p-adic topology [Abb, 1.10.1.1]. Since any finitely generated R-module is auto-
matically p-adically complete [Abb, Proposition 1.10.2], any finitely presented flat
formal group scheme over Spf(R) can be identified with a finitely presented flat
group scheme over Spec(R). Thus we have a theory of Cartier duality for any
finitely presented flat formal group scheme G over any quasi-idyllic p-adic formal
scheme and we can define the Hodge—Tate map

T

From the construction, we see that the restriction of the Cartier dual C,/ |sn (., .c)(0)
to the ordinary locus is finite and etale.
Note that, for the function

51 (v) = min([v/(p — 1), +00) N e~'2),

dr
HTg:Q(R)—)Q}gV, x " ()



PROPERNESS OF THE HILBERT EIGENVARIETY 21
the ideal m?}/ =1 g generated by W;?K ) Then we have the following variant of
[AIP, Proposition 4.2.1 and Proposition 4.2.2].

Lemma 3.5. Let v = (vg)ger, be a g-tuple of non-negative rational numbers
satisfying
v:=max{vg | B €Br} < (p—1)/p".
Let R be an object of NAdm. For any morphism of admissible formal schemes
f i Spf(R) — M(un,c)(v) over O, consider the pull-back G = A™|gr by the
unique algebraization Spec(R) — M(un, <) of f and H, = Cnlspt(ry, which is a
subgroup scheme of the formal completion of G.
(1) For any rational number i € e~ *Z>q satisfying i < n —v(p"” —1)/(p — 1),
the natural map wg o, Ok i = wy, Qox Ok, s an isomorphism.
(2) Assume that we have an isomorphism of Op-modules H,\ (R) ~ Op /p"Op.

If there exists a rational number i € e 'Z>q satisfying dx(v) < i < n —

v(p™ —1)/(p — 1), then the cokernel of the linearization of the Hodge—Tate

map

HTyv ®1:H(R) ® R — wy,

is killed by m7"/ @~V
Proof. Since the ordinary case is trivial, by a gluing argument we may assume that
f factors through 9M(uy,c)(v). By replacing Spf(R) with its formal affine open
subscheme, we may assume that R is an integral domain and wq is a free Op ® R-
module of rank one. The first assertion follows by reducing it to [Hat2, Theorem
8.1 (8)] in the same way as [AIP, Proposition 4.2.1]. For the second assertion, take
surjections RY — H(R) ® R ~ (R/p"R)Y and RY ~ wg — wy,. Then the map
HT%y ® 1 can be identified with the reduction of the map defined by some matrix
v € My(R). It suffices to show miv/(pfl)Rg C ~v(R9). Let p be a prime ideal of R
of height one and let Rp be the completion of the local ring R,. [Hat2, Theorem
8.1 (9)] implies m?{v/(pfl)l%g C y(RY) + iR and thus m?{v/(pfl)]%g C y(RY).
This shows m?’/(p_l)Rg C v(Ry) and det(7) # 0. Since R is normal, y(RY) is the
intersection of y(Ry) for every such p and the assertion follows. (]

3.2. Connected neighborhoods of critical points. Let Y., be the moduli
scheme parametrizing the isomorphism classes of pairs (A, H) over schemes S/Spec(Ok),
where A is a HBAV over S with c-polarization and T'gg(N)-structure, and H is a
finite locally free closed Op-subgroup scheme of A[p] of rank p9 over S such that
H is isotropic in the sense of [GK, §2.1]. Then Y., is projective over M (uy,¢)
[Sta, p.415]. For S = Spec(Op) with some extension L/K of complete valuation
fields and an ideal a of Op, we say that H is a-cyclic if the Op-module H(Of) is
isomorphic to Op/a, where L is an algebraic closure of L. Then # is isotropic in
this sense if and only if H is p-cyclic.

Let 9., be the p-adic formal completion of Y., and let )., be its Raynaud
generic fiber. Note that they are separated. By [Rap, Lemme 3.1], we have
Yep(L) =D p(Or) =Y. ,(Or) for any extension L/K of complete discrete valu-
ation fields. In this subsection, we construct a connected admissible affinoid open
neighborhood of a point @ = [(A,H)] of Y, satisfying Hdggz(A) = p/(p + 1) for
any 8 € Br inside the base extension V. ¢, = yc,p@)KCp, assuming f, < 2 for any
plp
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Lemma 3.6. There exists a point of M(un,¢) corresponding to a HBAV A over
the ring of integers O, of a finite extension L/K satisfying Hdgg(A) = p/(p + 1)
for any B € Bp.

Proof. Consider the stratum Wy, of the special fiber M(un,c); as in [GK, §2.5].
Since W, is non-empty, there exists a point P € M(ux, ¢) such that P = sp(P) €
Wg,. for the specialization map sp : M(un,¢) = M(un,¢)i as before. Since
7(P) = B, the identification (3.2) and (3.3) yield the lemma. O

Proposition 3.7. Suppose f, <2 foranyp | p. Let L/K be a finite extension in Qp
and let [ be the residue field of L. Let K' be the composite field of K and Frac(W (1))
in Qp. Let [(A,H)] be an element of Y. ,(Or) satisfying Hdgz(A) = p/(p+ 1) for
any B € Bp and let Q be the element of Y. ,(L) it defines. Let

sp: Vep = (Yep)k = Yep X0, Spec(k)
be the specialization map with respect to 9., and put Q =sp(Q). We define

p

Veo = {cz’ — (A1) € sp(Q) \ L < degy (/M) < 2

Hdgg(A') < pii : for any B € ]Bip} ,

Vc,Q(pjlq):{Q/:[(A,7H/)] €Veo | for anyBeIBBF}.

Then they are admissible affinoid open subsets of V., defined over K' such that
VC7Q®K/CP is connected.

degs (A'[p]/H') <

Proof. By the assumption f, < 2 and [Hat2, Proposition 6.1], we have the equality
degg(Alp]/H) = p/(p + 1) for any 8 € Bp. [Tia, Proposition 4.2] shows that
this value is equal to the one denoted by vg(Q) in [GK, §4.2]. In particular, the
definition of v4(Q) in [GK, §4.2] implies I(Q) = Br with the notation of [GK,
(2.3.2)].

We claim that the complete local ring @Yc,p,Q of Y, at Q is isomorphic to the

ring
(3.4) B' = O [[Xp,Yp | B €Brll/(XsYs —p | 5 € Br)
and there exists gg € (B’)* such that for any finite extension E/K’ and any Og:-

algebra homomorphism z : B’ — Op, the corresponding O g-valued point [(A’, H')]
of Y., satisfies

degy(A'[pl/H') = min{v,(Xp(2)), 1}, Hdgg(A') = min{v,(Xg+gsY;1,5)(2)), 1}

Indeed, let Y; be a moduli scheme over W similar to Y;, considered in [GK,
§2.1]. Let R be the affine algebra of an affine open neighborhood of @ in Y, and let
mg¢ be the maximal ideal of R corresponding to Q. The ring @Yc,p,Q is equal to the
completion of the local ring of R®w Ok at the kernel ng of the map R@w Ok — [
associated to mg.

By Stamm’s theorem [Sta] (see also [GK, Theorem 2.4.1]), the mg-adic com-

pletion R a of the localization R, o 1s isomorphic to the ring

B =W(O)[[Xp,Ys | B €Brl]/(XpYs —p | B €BF)
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Moreover, since Hdgg(A) # 0 for any 3 € Bp, (3.3) implies 7(Q) = Bp. Thus, for
any finite extension F/Frac(W (1)) and any W (l)-algebra homomorphism z : 8 —
Og, the corresponding HBAV A’ satisfies v(tg(x)) = Hdggz(A’). By [GK, Lemma

2.8.1] and the definition of v5(Q) in [GK, §4.2], the isomorphism RmQ ~ 9B gives an
identification of degz and Hdgg for the ring B as claimed before. Then the claim
follows from Lemma 3.3.

By [deJ, Lemma 7.2.5], we have

sp~H(Q) = (Spf(B"))"e.
Thus V¢ is the K’-affinoid variety whose affinoid ring is the quotient of the Tate
algebra
K'(X3,Ys,Up, Vs, Ws | B € Br)
by the ideal generated by
Xg+1 —pUg, X§+1V5 —pP, XgYs—p, Wﬁ(Xﬁ—’_gﬁY:*loﬁ)erl —pP

for any 8 € Bp. From this, we also obtain a similar description of V“Q(zﬁ) as a
K'-affinoid variety.

Next we prove that the base extension V @ C, is connected. Put r = 1/(p+1)
and s = p/(p+1). Fix a (p+ 1)-st root @ = p'/®*+1) of p in Q,. Then the affinoid
ring Bg c, of Ve.0®k'C, is also isomorphic to the quotient of the Tate algebra

Cp(Xp,Yp,Up, Vs, Wp | B € Br)
by the ideal generated by
Xp—wUs, XgVp—w’, Xp¥Vp—wlt, Ws(Xp+gsY 1,5 — @

for any 8 € Br. Note that in the ring Bg ¢, we also have Y3 — wVj = 0. Hence
Bq,c, is isomorphic to the quotient of the ring

CP<U57V[37W[3 | B € BF)
by the ideal generated by
UV —wP ™", Fg:=Ws(Us + " gsV)1.5) — 0P
for any 8 € Bp with some gj; € ng’cp, where
Agc, = Oc,(Us, Vs | B€Br)/(UsVs —w"™" | f € Bp).
From these equations, we see that
Gg:=Vs = Wa(l+g5VsV) 1 5) =0
in this quotient. Since
Fs = ~UsGp mod UV — wP ™1,
we obtain
Bq,c, = Cy(Up, Vs, Ws | B € Br)/(UsVs — w"™", G | B € Br).
Note that the ring
Boc, = Oc,(Us, Vs, W | B € Br)/(UsVs — @, Gp | B € Br)

is a flat Oc,-algebra. Indeed, consider the polynomial ring 2 c,[Wp]. Since the
coefficients of Gg as a polynomial of Wjs generate the unit ideal 2lg c,, by a limit
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argument reducing to the Noetherian case and using [Mat, (20.F), Corollary 2] we
see that the 2Ug ¢, -algebra

Ae.c,[Ws | B € Brl/(Gs | B €Br)

is flat. By [Abb, Proposition 1.10.2 (ii)], the p-adic completion of this algebra is
Bq,c,- Since the Oc,-algebra g ¢, is flat, the p-adic completion B ¢, is also flat
over (’)Cp.

Put G = G mod mc, and

RZFP[Ug,Vg,WB|ﬁEBF], jZ(UBVB,GB ‘ﬁEBF).

Next we claim that the reduction B ¢, = R/J of B ¢, is reduced and Spec(Bg c,)
is connected. For the reducedness, it suffices to show that the localization at every
maximal ideal is reduced. Let 9t be any maximal ideal of R containing .J. Then
we have

1+ gngVf,loﬁ ¢m

since, supposing the contrary, é@ € 9 implies Vg € 9 and 1 € M, which is a
contradiction. Thus, in the ring Rgny we have

Ws = Va(1+ g5VaVi_1,5) " € JRm

for any 8 € Br. Hence the localization (%Q@p)gm is isomorphic to the localization
of the ring

FplUs, Vs | B €Br]/(UsVs | B € Br)
at the pull-back of 9, which is reduced.

Let us show the connectedness. Let By = By [ [ By be a decomposition into the
disjoint union of two subsets. Consider the closed subscheme Fp,, 5, of Spec(Bo,c,)
defined by Us = 0 for § € By and V3 = 0 for 5 € By,. Since every Fg,, B, contains
the point defined by Ug = Vg = W3 = 0 for any 3 € Bp, it is enough to show that
Fg, B, is connected for any such decomposition of Br. Put

Up, 5, = FplUs, Vs | B € Brl/(Us (B € Bu), Vs (B € By)).
Note that the 2p,, g, -algebra

Uz, by (Ws | B € Br]/(Gs | B € Br)
is flat. From this we see that the affine algebra of Fi, g, can be identified with the
subring
Vs

— 1 8eB
1+ g, VaVo-10p feBr

QlEUBV

of Frac(2p, p, ), which is an integral domain. Hence we obtain the connectedness
of B¢, By [deJ, Lemma 7.1.9], sp~!(Q) is reduced and [Conl, Lemma 3.3.1 (1)]
shows that V, &k C, is also reduced. Then Lemma 3.2 shows that V. o®/C,, is
connected. g

Lemma 3.8. Suppose f, < 2 for any p | p. Let L/K be a finite extension. Let
[(A,H)] be an element of Y. ,(Op) satisfying

degg(Alp]/H) <p/(p+1), Hdgg(A4) <p/(p+1)

for any B € Br. Then, for any p | p, we have either Alp], has the canonical
subgroup of level one which is equal to H,, or Hdgz(A) = p/(p+1) for any B € By.
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Proof. Suppose Hdgg (A) < p/(p+1) for some fy € B,. Since we have Hdgg(A) <

p/(p+ 1) for any B € B, the assumption on f, implies that the inequality
Hdgg(A) + pHdg,-105(A) <p

holds for any 8 € B,. By [Hat2, Theorem 4.1], the Op, -ADBT; A[p|, has the
canonical subgroup C,.
Suppose H, # Cp. For any 3 € By, [Hat2, Corollary 5.3 (1)] implies that

Hdgs (p™ " Hy/Hy) = p~ ' Hdg,op(Alplp) = p~ " Hdg,o5(Alp]) < 1/(p+1)
and that A[p],/H, is the canonical subgroup of p~'H,/H,. Thus we have

degs(Alp]/H) = degg(Alplp/Hp) =1 — Hdgﬁ(Pial/Hp) >p/(p+1),
which yields degg(A[p]/H) = p/(p+1) and Hdgg(Alp]) = p/(p+1) for any 3 € By.
This contradicts the choice of (. ([

Corollary 3.9. Suppose f, <2 for any p | p. Let L/K be a finite extension. Let
(A, H')] be an element of Y. ,(OL) such that [(A},H})] € Veg(L). Then, for
any finite flat closed p-cyclic Op-subgroup scheme D of A'[p] over Or satisfying
D NH} =0, we have

Hdgy(A'/D) < 1/(p+1)
for any B € Br and A’[p]/D is the canonical subgroup of A’'/D of level one.

Proof. Write D = @Plp Dy. The assumption implies Dy # H;, for any p | p. If Hj,
is the canonical subgroup of A’[p],, then [Hat2, Corollary 5.3 (1)] implies that
Hdg(A'/D) = Hdgy(p~ ' Dy/Dy) = p~ Hdg,op(A'[p]) < 1/(p+ 1)

for any B € B, and that A'[p],/D, is the canonical subgroup of p~'D,/D, =
(A"/D)[plp- Otherwise, Lemma 3.8 yields Hdgz(A") = p/(p + 1) for any § € B,.
By [Hat2, Proposition 6.1], we see that

degg(A'[plp/Dp) =p/(p+1), Hdgg((A'/D)lplp) =1/(p+1)

for any 8 € B, and that (A’/D)[p], has the canonical subgroup A’[p],/D,. Hence
the HBAV A’/D satisfies

Hdgy(A'/D) < 1/(p+1)
for any 5 € By and it has the canonical subgroup

A'lpl/D = P A'lply/ Dy

plp

of level one. This concludes the proof of the corollary. O

Lemma 3.10. Suppose f, <2 for any p | p. Then we have

Moreover, for any finite extension L/K and any element [(A',H")] of Y:,(OL)
satisfying [(AL, H7)] € Vc,Q(r}H)(L), we have Hdgg(A') < 1/(p+1) for any B € Bp
and the HBAV A’ has the canonical subgroup H’.
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Proof. Recall that we have sp~!(Q) = (Spf(®8’))"® with the ring B’ of (3.4) in the
proof of Proposition 3.7. From the description of degg in terms of the parameter
X of the ring B’, we see that there exists a point [(A’, H')] € Y; ,(Or) with some
finite extension L/K such that [(A},H})] € sp~*(Q) and

degs (A'[pl/H') =1/(p+1)

for any 8 € Bp. Then [Hat2, Lemma 5.1 (1)] implies that Hdggz(A’) = 1/(p + 1)
for any 5 € Bp and thus [(A},H})] € VC,Q(p—il)(L). The last assertion also follows
from [Hat2, Lemma 5.1 (1)]. O

Since Y, is separated, Proposition 3.7 implies that the base extension V. g.c, =
VC7Q® kC, is an admissible affinoid open subset of V. ; c, whose connected com-
ponents are all isomorphic to V, o®x/C,. Each connected component contains an
affinoid subdomain of VC,Q(p—il)@K(Cp which is isomorphic to VQQ(p%)@K/(Cp. By
Lemma 3.10, we have

Vc7Q(pT11)®K’CP # 0.

The point Q € Y. ,(L) defines a point of V., c,(C,) by the natural inclusion

L — C,,, which we also denote by Q. Let V3Q7Cp be the connected component of
Veq,c, containing @ and let V0 o (547) be a copy of Ve o(517)@xC, which is
contained in Vg 0., These are both non-empty admissible affinoid open subsets

Of yc,p,Cp :

3.3. Overconvergent Hilbert modular forms and the eigenvariety. In this
subsection, we recall the construction of sheaves of overconvergent Hilbert modular
forms and the associated eigenvariety, due to Andreatta—lovita—Pilloni [AIP2].

3.3.1. Overconvergent modular forms over Hilbert modular varieties. Put T = Reso,, /Z((Gm).
Let T be its formal completion along the unit section. For any w € e 1Z>1, let T,
be the formal subgroup scheme of T over Spf(Ok) representing the functor

B — Ker(T(B) — T(B/7x%'B))

on the category of admissible formal Ok-algebras 8. Then TY is a quasi-compact
admissible formal group scheme over Of.

Let W be the Berthelot generic fiber of Spf(Ok|[[T(Z,)]]) and we denote the
universal character on this space by

£ T(Zy) = O° (W)™ = Ok [[T(Zp)]] "

Here O° is the sheaf of rigid analytic functions with absolute value bounded by one
and the last equality follows from [deJ, Theorem 7.4.1]. For any morphism X — W
of rigid analytic varieties over K, we denote by k% the restriction

kY T(Z,) S O°(W) = 0°(X)*

of k"™ to X'. Consider the case where X is a reduced K-affinoid variety & = Sp(A).
Then the subring A° of power-bounded elements is p-adically complete. For any
positive integer n, put ¢, = 2 if p =2 and n = 1, and ¢,, = 1 otherwise. When we
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consider the case of p = 2 and n = 1, we assume that 2 splits completely in F'. The
character s is said to be n-analytic if the restriction to TY(Z,) factors as

NM

T%(Zp) —1+p"(Or® Zp) — (A°)%

logi Texp

anp"(OF ® Zy) — 2¢2pA°

with some Zy-linear map 1. In this case, we also say that the morphism &/ — W
is n-analytic. Any & is n-analytic for some n by the maximal modulus principle.
Note that any n-analytic character defines an analytic character TO(Z,) — A*,
even for the case of p = 2 and n = 1. Moreover, put

,1,%1 (p>3)
O0n=194 7 (p=2,n=1)
0 (p=2,n2>2).
Then, for any w € e~ 1Z satisfying
n—1+4+9, <w <n,
any n-analytic character extends to an analytic character TO (Ox) — A*.

Using [Hat2, Theorem 8.1] and Lemma 3.5, we can generalize the construction
in [AIP2, §3.3]. Let n be a positive integer and put

22 (p=>3)
(3.5) Bo={ % (p=2n=1
pp_nl (p:2v n > 2>7
so that we have )
—— < Bj.
p+1 71

Let v = (vg)pep, be a g-tuple in [0, B,,) NQ. Put v = max{vg | 8 € Br}. Let C,
be the canonical subgroup of A" of level n over M(un,¢)(v), as before. Put

M(Fl(pn)a KN, C)(Q) - Isom_/\;l(p.N,c)(y) (C’IH D}?‘l ® :up")'
We denote by M(T'1(p™), i, ¢) (v) the normalization of M(uw, ¢)(v) in M(T1(p™), pn, €)(v).
Note that, since C,/ is finite and etale over M (un, ¢)(0), we have
(3.6) ML ("), a2v+€)(0) = 150y 0y s D © i),

which is a T(Z/p"Z)-torsor over M(uun, ¢)(0).
Let w be an element of e~'Z satisfying

n
-1
n—1+6n<w§n—w—6;{(v),
p—1
which exists if
p"v 2
3.7 1-96, — > =
(3.7) P

Note that the condition (3.7) is satisfied for a sufficiently large K. Let F be the
locally free Or @ Og(r, (pn),un,¢) (v)-module of rank one constructed as in [AIP2,
Proposition 3.4], using Lemma 3.5 for i = w + dx (v). Let

Yo 1 IWE — M(T1(p™), v, ©) (v)
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be the p-adic formal T -torsor over M(I'y(p™), un,¢)(v) classifying, for any R €

NAdm and any morphism of p-adic formal schemes ~y : Spf(R) — I(I'y (p™), v, ¢)(v),
the isomorphisms o : v*F — Or ® R such that the composite

Op/p"Op(R) % CY(R) "5" v* F/r%%y*F & Op @ R/n%"R

sends 1 to 1 [AIP2, §3.4]. We also write 320, as 320, (v). We denote the Raynaud
generic fiber of 320, by ZW, and also by IWI7C(Q). From (3.6), we see that the
moduli interpretation of SQI]LC(O) as above is also valid for the category of quasi-
idyllic p-adic Ok-algebras R.

For the structure morphism

hy : M(T1(p"), v, €) () = M, €)(v),

we put m, = hy 0 y,. We denote by 58, hlie and 78 the induced morphisms
on the Raynaud generic fibers. Let T,, be the formal subgroup scheme of T over
Spf(Ok) whose set of B-valued points are the inverse image of T(Z/p"Z) by the
map T(B) — T(B/75¢B) for any admissible formal Ok-algebra B. The natural
action of TY on 320} induces an action of T, on J2U} over M(un,c)(v) and
also on the Raynaud generic fiber ZW; over M(uy,¢)(v). Then, for any reduced
K-affinoid variety Y and m-analytic morphism U — W, we define

Y ri
Qv = (ng)*(ozwz xu)[_“u]~
By [AIP2, Proposition 3.13], it is an invertible sheaf which is independent of the
choices of n and w. Let D be the boundary divisor of M(un,c). We also put

M (e m4)(v) = HO(M (v, €) () > U, ),
S(u e i) (@) = HO (M, ©)(w) x U, % (=D)).

For any R € NAdm, let us consider tuples (A4, ¢, A\, 9, u, ) over R consisting of
a HBAV (A, 1, A\, v) over Spec(R) such that Hdgs(A,) < vg for any x € Sp(R[1/p]),
an isomorphism of Op-group schemes

u: Cn|R[1/p] ~ D;l @ tpn
for the canonical subgroup C,, of A and an isomorphism
a: YV F~0Or®R

satisfying the compatibility with u as above. By (3.1), any element f € HO(9M(uy, ¢)(v)"&, Q)
can be identified with a rule functorially associating, with any such tuple over R
endowed with a map Sp(R[1/p]) — U, an element f(A, ¢, A, 1, u, @) of R[1/p] satis-
fying
FA M t  u t 7 a) = kY () F(A, 1, A, 1, u, @)
for any t € T(Z,). Similarly, any element f € HO(M(uy, ¢)(0)"8, Q) has a similar
description as a rule over any idyllic p-adic Og-algebra R endowed with a morphism
Spf(R) = M(un, ¢)(0).

For a later use, we also recall the definition of an integral structure of the sheaf
Q" for an n-analytic map x4 : U = Sp(A) — W with some reduced K-affinoid
algebra A. Note that A° is topologically of finite type [BGR, Corollary 6.4.1/6]
and thus £ = Spf(A4°) is an admissible formal scheme over Spf(OQ). The map &Y
extends to a formal character

kY Ty x 4 — Gy x 4.
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‘We put
Qr = (Ww)*(03m+xu)[—“u]~

w

It is a coherent Ogy(,, v ¢)(v) xy-module which is independent of the choice of w such

that its Raynaud generic fiber is - [AIP2, Proposition 3.13]. Since the map h,
is an etale T(Z/p"Z)-torsor over the ordinary locus 9t(pn, ¢)(0), the restriction of
Q" to M(un, ¢)(0) x & is an invertible sheaf.

Let  : T(Z,) — K* be a weight character which is integral, namely it is written
as

T(Zp) = (Or ®Z,)* 5t@ 1 [] B(1)* € K*

BEBR
with some g-tuple of integers (kg)sen,. In this case, the sheaf Q" is isomorphic
to the classical automorphic sheaf [AIP2, Corollary 3.10]. Indeed, consider Z =
Isom (0,6 (OF @ Oy ,e)sWaun)- Since the Raynaud generic fiber of the sheaf
F i w qun, we have a natural map IW;Z — 7, which induces an isomorphism
Wi — 27 We also say that an integral weight « is doubly even if every kg is
divisible by four.

Moreover, we say that a weight character x : T(Z,) — K* is n-integral (resp.
n-doubly even) if its restriction to T%(Z,) is equal to the restriction of a character
of some integral (resp. doubly even) weight (kg)gemr,. Then, from the construction
of the sheaf Q% we see that the pull-back (hH8)*Q% to M(T1(p"), un,¢)(v) is
isomorphic to (7}%)* (@ e, w?{ffﬂ). Note that for the case where p = 2 splits
completely in F, a 1-integral weight is 1-analytic if and only if it is 1-doubly even.

3.3.2. Qwerconvergent arithmetic Hilbert modular forms. We define the weight space
WY for overconvergent Hilbert modular forms as the Berthelot generic fiber of
Spf(Ok|[[T(Zp) x Z¥]]). Any morphism X — WS defines a pair (v, w?) of con-
tinuous characters

v T(Zy) = O°(X)*, w® 1 L) — 0°(X)~
with respect to the supremum semi-norm on X. The map
T(Zp) = T(Zp) x Z5,  t+ (t*,Np/q(t))

induces a morphism k : W¢ — W. For any morphism X — WY, put k¥ =
k(v¥,w?). When X is a reduced K-affinoid variety, we say that (v¥,w?) is n-
analytic if v* and w® are both n-analytic. Note that if (v¥,w?) is n-analytic,
then k% is also n-analytic. We say that a character (v,w) : T(Z,) x Ly — K™ is
integral if it comes from an algebraic character T x G, — Gy,. Then it is written
as
T(Zy) x Z} — K%, (t@1,s)~ [] B(t)ks"
BEBR

with some g-tuple of integers (kg)ger, and an integer ky. We say that it is doubly
even if every kg and kq are divisible by four. We also say that (v, w) is n-integral
(resp. m-doubly even) if its restriction to T%(Z,) x (1 + p"Z,) is equal to the
restriction of some integral (resp. doubly even) character. If (v,w) is n-integral
(resp. n-doubly even), then k(v,w) is also n-integral (resp. n-doubly even).

Let U be a reduced K-affinoid variety and let & — WS be an n-analytic mor-
phism. Note that for any c-polarization A : A ®¢p, ¢ - AY and any x € F>*>F, the
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multiplication by  gives an x~!c¢-polarization
A
A A®p, e X AR, ¢ ~ A,
Then the group A = O3 /U% acts on the space M (uy, ¢, s4)(v) by

([e]-F)A, e, N\, 0, u, @) = M (€) f(A, 1, e N, Y, u, @)
for any f € M(un,c, k%) (v) and e € O3 F. We define
M (e, (M w)) () = M(un, e, 5) (0)%,
S (e, (M, wt)) (@) = S(uw, ¢, ) ()2,

Let F>T () be the subgroup of F** consisting of p-adic units. For any = €
F*+®) we define a map

L,: MG(:“‘N& < (Vu,ﬂ)u))(y) - MG(N’N73771C7 (VZ/{’wU))(y)
by the formula
(L (A e, A\, u,0) = Vu(x)f(A,L,x_l)\,w,wa).

Let Frac(F)® be the group of fractional ideals of F' which are prime to p. Then
the spaces

ME (uy, (M 0*)) (), S (un, (1, w))(v)
of arithmetic overconvergent Hilbert modular forms and cusp forms are defined as
the quotients

D My, (M ut)w) | (L)~ | |z € PHD),

c€Frac(F)(®)

P v, (H ")) | [(Lalf) = f |2 FOHD),

c€Frac(F)(®)

By the same construction, we also have the spaces
MG(:U'Nﬂ(Vuﬂwu))(Utot)v SG(/“LNv(VMku))(vtot)'

3.3.3. Hecke operators and the Hilbert eigenvariety. Next we recall the definition
of Hecke operators on the space of overconvergent Hilbert modular forms, following
[ATP2, §3.7]. Let n, v, v and w be as above. For any HBAV (A4, , \,4) over a base
scheme S/Spec(Ok), the closed immersion © : D;l ® uny — A gives a subgroup
scheme Im(%)) of A which is etale locally isomorphic to D;l /N D;l. Let [ be any
non-zero ideal of Or. We define

Ve(w) € M(pn, e)(v) x M(pn, le)(v)

as the subvariety classifying pairs ((A4,¢, A\, ¢), (4",/, N ,4")) and an isogeny 7 :
A — A’ compatible with the other data such that Ker(m) is etale locally isomorphic
to Op/10p, Ker(m) NIm(¢)) = 0 and Ker(m) N Cy = 0, where C is the canonical
subgroup of A of level one. Consider the projections

p1:Ve(w) = M(un,©)(v), p2:Ve(v) = M(un,lo)(v).

Note that the map p; is finite and etale. For the case where [is a prime ideal dividing
p, we suppose that p~'v,05 < vg for any 3 € By. Set v/ = (v)perr by vy = vp for
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B ¢ Byrand vl = p~vgep for 4 € By. Then [Hat2, Corollary 5.3 (1)] implies that the
map po factors through the admissible open subset M (uy, lc)(v") € M (uy, le)(v).
Let U be a smooth K-affinoid variety and let &/ — W be an n-analytic map.
Then [Hat2, Theorem 8.1 (10)] and the proof of [AIP2, Corollary 3.26] (see also
[ATP, Lemma 6.1.1]) show that the map 7] : was — w4 induces an isomorphism

D3IV, () = pTIW, ((v),
which in turn defines an 1som0rphlsm
* * Y * KU
m o pr(QF) = pa (7).
This gives the Hecke operator

u

HO M (p, ) (w) x U, Q) BB HOWL () x U, ps ™)

(ﬂ'l*)71 0 / *
- H(yc7[(y)><u,p19 )

-1
1\11;'/@(2> Trpl

HO (M (v, ©) () x U, <),

which can be seen as a map M (uy, le, &) (v) — M (un, ¢, &) (v) by [Liit, Theorem
1.6]. We denote this map by T if ([,p) =1 and T} otherwise.
On the other hand, for any ideal [ with (I,pN) = 1, we have a map

sp: M(pn,©)(v) = M(un, Po)(v), (A,u,\0) = (ARe, 710, B ).

Here ¢/ and ¢’ are induced by ¢ and ¢ via the natural isogeny A — A/A[l] ~
A®o, 71 and 2 is the [2¢-polarization on A ®e,, [7! defined by

A
(A®o, I71) @0, Pc = (A0, ¢) @0, | "2 A @0, [~ (A®e, [T},

Then we can show that there exists a natural isomorphism 7" : o~ s’["Q"“u as in
[ATP, Lemma 6.1.1] and we define the operator

St M(un, Pe, k) (v) = M(un, ¢, 6%)(v)

by St = Npsg(l)"2(nf) ! o sf. Since s = id for some positive integer m, every
eigenvalue of the operator S| is p-integral.

To define arithmetic Hecke operators for [ with ([, p) # 1, let v, be the normalized
additive valuation for any p | p. We fix once and for all elements =, € F*** such
that vy (z,) =1 and vy (x,) = 0 for any p’ # p satisfying p’ | p. We define a map

Ty M(MN,QC;IC,HM)(Q) — M(un, ¢, &%) (v)
by f— (4,6, M\ ¢) — f(A,t,zy) 1)). Then we denote the composite
H( )“P([) oTy : MN,H:L‘ )[c K1) (v) = M (un, ¢, k) (v)
plp plp

by Ty. We also write it as U if | divides a power of p. Then the operators
Ty for any [ and Sy for (I,pN) = 1 define actions on MY (ux, (v, w"))(v) and
S (pn, (M, wH))(v) which commute with each other. Note that Ty = T\Ty if
(I,I') =1 and that [Hat2, Theorem 8.1 (10)] implies

Tins + NF/@(m')SmeS_2 (m 1, Np

(3.8) T T :{ Tms o | N

for any maximal ideal m.
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Let v an element of Q N (0, pp%l). Note that the above definitions of Hecke

operators are also valid for S (uy, (M, w"))(v4er). Then the operator U, is a
compact operator acting on S (uy, (Y, w"))(veer) which factors as

SG(NN» (Vu7wu))(vt0t) - SG(NNa (Vuku))(p_lvtot) — SG(NNv (Vuﬂwu))(vtot)

and, for v < (p — 1)/p?, also as

S (s (M, M) (ror) = S (v, (1, 108)) (pror) © S (v, (4, w0H)) (Vo).

Let T be the polynomial ring over K with variables Ty for any [ and S| for
(I, pN) = 1. Then the ring T acts on S (uy, (W, wH))(v) and S (un, (W, wH)) (Viot)
via the Hecke operators defined above.

Now we can construct the eigenvariety from these data, as in [AIP2, §5]. For any
positive integer n, we fix a positive rational number v,, < B,, satisfying v, > v, 41
for any n, where B, is defined by (3.5). We also assume v, < (p —2+v,(2))/p"*
for any n > 2, so that replacing K with its finite extension the condition (3.7) for
v, 1s satisfied for all n.

For any admissible affinoid open subset &/ C W<, we put

n(U) = min{n € Z~o | (M, w")
We define a Banach O(U)-module My, with T-action as

My = S (pn, (M, 0")) (V@) ot )

on which U, acts as a compact operator. The proof of [ATP2, Theorem 4.4] remains
valid also for p = 2 and implies that the O(U)-module My, satisfies the condition
(Pr). For admissible affinoid open subsets U; C Uy of W&, we have n(U;) < n(Uy)
and [AIP2, Proposition 3.14] yields a map

oty vty © My, — S (v, (M, 0")) (Vo) o) = Mt @0,y O(Uh),

where the first arrow is the restriction map. Note that, for any positive rational
numbers v, v satisfying v < v < pv’ < (p — 1)/p, the restriction map

S (v, (M, w)) (veor) = S (v, (141, 0") (vgr)

is a primitive link. Thus the map ayy, 1, is a link satisfying the cocycle condition.
Hence, by applying the eigenvariety machine [Buz, Construction 5.7], we obtain the
Hilbert eigenvariety & — WY as in [AIP2, Theorem 5.1].

is n-analytic}.

3.4. The case over C,. Since we are ultimately interested in overconvergent
Hilbert modular forms over C,, we need to give a slight generalization of the con-
struction in [AIP2] over C,. As before, for any quasi-separated rigid analytic variety
X over K and any coherent O y-module F, we denote the base extensions of X and
F to Cp by A¢, and Fc,, respectively. Similarly, for any quasi-separated admissible
formal scheme X over Spf(Ok) and any coherent Ox-module §, we denote their
pull-backs to Spf(Oc,) by Xo., and Fo.,, respectively. Then, on the Raynaud
generic fiber, we have

(xX78)c, = (xocp)rig, (F8)c, = (gocp)rig.

Let U = Sp(A) be a reduced C,-affinoid variety. From [BLR, Theorem 1.2] and
[Abb, Proposition 1.10.2 (iii)], we see that A° is an admissible formal Oc,-algebra.
Put 4 = Spf(A°). For any morphism &/ — Wc, or U — ng, we have an associated
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character k or (Y, w") and a notion of n-analyticity defined in the same way as
above. Consider the base extensions

" Yw,0¢, n hn,o¢, —
Tw,0c, * jmw,@«;p — gn(rl (p )7 KN, C) (Q)Ocp - gn(:qu C) (Q)Ocp

of the maps 7, hy, and m,. Then, for any n-analytic morphism &/ — Wc,, we can
define the sheaves

" = (qui,gcp)*(OIWZ,cp )[R, o = (Tw,00, )+ (Ozqn+ )=k

u
w,OCp ]

such that Q%" = (+")ri€ is an invertible O K (pun ,6) (0)e
Proposition 1.9.14 and Proposition 1.10.2 (iii)] implies that Q" is coherent and that
its restriction to M(un, ¢)(0)o,, is invertible: The latter follows from a similar ar-
gument to the proof of [Mum, §7, Proposition 2] combined with the fact that h, o
is a T(Z/p"Z)-torsor over M(py, ¢)(0)o., . Using Q| we define M (un, ¢, ) (v)
and its variants in the same way as the case over K.

For any reduced K-affinoid variety V and any n-analytic morphism V — W,

consider the base extension V¢, — W, and the associated character kYer. Then
we can show that there exist natural isomorphisms

(3.9) Q% ), =Q* 7, Q° (=D)c, = Q" " (=D)

in the same way as the proof of [AIP2, Proposition 3.14]. Similarly, for any mor-
phism f : U’ — U of reduced C,-affinoid varieties, we have natural isomorphisms

_xy-module, as before. [Abb,

Cp

(3.10) ot o (—D)) ~ 0 (—D).

Let M*(un,c) be the minimal compactification of M (uy,c). We have a natural

proper map
M(pn, ) = M*(pun,c).

Note that a sufficiently large power of the usual Hasse invariant can be considered
as a global section of an ample invertible sheaf on M*(ux,¢). Let I* (un, ) (viot)
be the normal admissible formal scheme defined similarly to (i, ¢)(vior) using
M*(pun, ¢) instead of M (un,¢). Let M*(uun, ¢)(vior) be its Raynaud generic fiber.
By the above ampleness property, we see that M*(uy, ¢)(viot) is a K-affinoid va-
riety. We also have proper morphisms

p (L1 (p"), o, €) (Vtot) — M (1, €) (Vo)
P& M(T1(p"™), i, ©) (Viot) = M* (i, ©) (Viot)-
By the base extension, these induce proper morphisms
p0e, T (P™), v, ) (0ot )e, — T (pv, ) (Wi,
PEE ML ("), i, ) (Vhot)e, — M (1, ©) (Vrot)c, -

Lemma 3.11. Let V be a reduced K -affinoid variety and let V — WE be an n-
analytic morphism. Then the natural base change map

v %
(px1).(2% (=D))oc, = (poc, x 1)«(2" (=D)o,)
is an isomorphism. Moreover, we have

R(po., x 1)«(2% (~D)or,) =0

Cp

for any q > 0.
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Proof. 1t is enough to show the claim formal locally. Put V = Sp(A) and ¥ =
Spf(A°). Let 9 be a formal affine open subscheme of M*(un, ¢)(vor) and put
X = p~1(9). Since p is proper of finite presentation and Q“V(—D) is coherent,
[Abb, (2.11.8.1)] implies that the restriction

%

Ri(p x 1)«(Q7 (=D))lpxw
is the coherent sheaf associated to the O(Q) x U)-module
H9(X x 0,9 (-D)).

By [AIP2, Corollary 3.20], we have H%(X x 0, Q%" (=D)) = 0 for any ¢ > 0.

Since X is quasi-compact, we can take a finite covering X = [J;_, X; by formal
affine open subschemes X;. Consider the Cech complex for the coherent sheaf
Q" (-D)

0— HO(X x 0,9 (=D)) = C°(Q*" (=D)) = C1(Q* (D)) = - --

with respect to the covering X x U = (J;_, X; x ¥, which is exact by the above
vanishing. From the definition, we see that the sheaf %" (=D) is flat over Ok and
each Og-module Cq(ﬂ”v(—D)) is also flat. By taking modulo p", tensoring Oc,
and taking the inverse limit, we see that the sequence is exact even after taking
—®0, Oc,. This means that the Cech complex for the coherent sheaf Q" (=D)o,
with respect to the formal open covering Xo., xUo., = Ui, Xi0¢, Vo, 1s exact
except the zeroth degree. Taking the zeroth cohomology gives an isomorphism

HO(X x 0,9 (-D))&0, Oc, = H(Xo., x Vo, .2 (~D)oy, )
and the g-th cohomology for ¢ > 0 gives

v

Hq(.}:o% X %oﬂ:p,ﬂn (7D)OC,,) =0.
This concludes the proof. O

Lemma 3.12. Let V be a reduced K -affinoid variety and let V — WE be an n-
analytic morphism. Then the natural map

S (s (Y, W) (010t ) @ Cp — S (v, (077 ;w050 )) (vgor)
is an isomorphism.

Proof. Put ¥V = Sp(A). By taking the Raynaud generic fibers and [Abb, Proposition
4.7.23 and Proposition 4.7.36], we see from Lemma 3.11 that the base change map

. v %
(0" x 1) (2% (=D))c, = (pc, X 1)«(2% (=D)c,)
is an isomorphism. By (3.9), the latter sheaf is isomorphic to the sheaf (pc, x

1)*(Q“VCP (=D)). Since M*(un,¢)(viot)c, X Ve, is a Cp-affinoid variety, taking
global sections yields an isomorphism

HO(M(T1(p™), pinv ©) (i) X V, Q%" (=D))&@C, —

HY(M(T1(p™), v €) (Vtot)c, X Ve, Q2 " (=D)).

Taking the T(Z/p"Z)-equivariant part and the A-fixed part, we obtain the lemma.
O

(3.11)

ch



PROPERNESS OF THE HILBERT EIGENVARIETY 35

Lemma 3.13. Let V = Sp(A) be a reduced K-affinoid variety and let V — W
be an n-analytic morphism. Let x be an element of V(C,) and let z* : A — C,
be the ring homomorphism defined by x. Suppose that the mazximal ideal m, of
Ac, = A®KC, corresponding to x is generated by a regular sequence. Put (v,w) =
(VY (z),wY(x)). Then the specialization map

S (s (WY, wY)) (v0t)@ 4,0+ Cp = S (v, (v, w)) (Vhot)
is an isomorphism.

Proof. This is essentially proved in [AIP2, Proposition 3.23]. Put x¥ = k(vY,w")
and k = k(v,w). By the assumption on m,, we have the Koszul resolution

O—>Acp—>Ag;—>-~-—>A$;—>Acp—>A<cp/mx—>O

with some non-negative integers ni,...,n,, which induces a finite resolution of
the sheaf (1 X z).(Q*(—D)) by finite direct sums of Q’*v(fD)Cp. By Lemma
3.11, the push-forward of this resolution by the map pgf x 1 is exact. Since

M* (N, ¢)(viot)c, X Ve, is a Cp-affinoid variety, the sequence obtained by taking
global sections is also exact. This and (3.11) yield isomorphisms

HO(M(T1(p"), iy ©) (i) X V, Q25" (=D))@4.0-C,

(ML ("), v €) (W0t)c, X Viey, 2 (~D))&a
(M1 ("), fixs ) (Dot ), 25 (— D))

Taking the T(Z/p"Z)-equivariant part and the A-fixed part shows the lemma. O

12

H° ++Cp
HO

12

We can extend naturally the Hecke operators over C,: Let U be a smooth C,-
affinoid variety and let U — ng be an n-analytic morphism. Consider the base
extension of the isomorphism 7

L, : PSIWY ((v)e, ~ piIW] (v)e,,

w,lc

which defines an isomorphism
* * ,M * u
e, - P1 Q") = p3(Q7).

We define the Hecke operator Ty over C, for (I,p) =1 by

HY (M, I6) (0)e, x U, Q) B3 HOVL (v)e, x U, ps™)
(”T,Cp)71
_)

HY(V! (v)e, x U, pi ™)

NF ([)71Tr171 RZA
N H(M(pun, ) (v)c, x U, Q7).

Similarly, we have Hecke operators Ty for ([,p) # 1 and S; over C,. We can
show that they are compatible with the Hecke operators over K and that the
specialization map in Lemma 3.13 is T-linear.



36 SHIN HATTORI

4. g-EXPANSION PRINCIPLE

In this section, we study the g¢-expansion map for arithmetic overconvergent
Hilbert modular forms. We fix once and for all a representative

[CIT(F)® = {c; =0,¢0,...,cn+}
of the strict class group C1T(F) such that every ¢; is prime to p. For any smooth
Cp-affinoid variety U, any n-analytic map U — W(CG,, and any v € QN [0, B,,), we
have isomorphisms

‘]\4G(MN7(Vuawu))(v)2 @ MG(,U'Nacv (Vuku))(v)v

ce[CI+(F)](»)
SC(un, (M )W) = P S (e, (M wt))(v)
c€[CIH(F)](®)

by which we identify both sides. For any element f € MY (uy, (WY, w"))(v), we
write (fc)ce[cﬁ(p)]@) for the image of f by the above isomorphism. We say that f
is an eigenform if it is an eigenvector for any element of T.

(4.1)

4.1. g-expansion of overconvergent modular forms. For any non-zero frac-
tional ideal ¢ of F, let us consider an unramified cusp (a,b,¢) of M(un,c) as
in §3.1.2. Using any polyhedral cone decomposition ¥ € Dec(a, b) of F£’+, we
have the fg—adically complete ring R, and the semi-abelian scheme Tateq,5(q) over
S, = Spec(R,) for any o € €.

Let S, = Spf(R,) be the (p, I, )-adic formal completion of S,. The smoothness
assumption on ¥ implies that there exists a basis &1,...,§, of the Z-module ab
satisfying

(ab) N0 =Zso€1 + -+ 4 Zxo&r + Lérgr + -+ + L&
with some r. For any ring B, we write

B[X<,,X%]:=B[X1,...,X;, X ,,..., X7].

For any extension L/K of complete valuation fields, we denote the p-adic completion
of Op[X<,, XZ,] by O (X<, X%,) and put

L<XST"X:>|:T‘> = OL<XST‘7Xz>tT>[]'/p]'
Then the O-algebra R, is isomorphic to the completion of the ring Ox [X<,, Xfr]
with respect to the principal ideal (X7 - XT) via the map X; — qfi and the ring
R, is isomorphic to the p-adic completion of R,. Hence the ring R, is normal and

the formal scheme S, is an object of the category FSe,. of [de]J, Definition 7.0.1].
In fact, the ring R, is isomorphic to the ring

(4.2) Ox (X<, X5 [Z0/(Z = X1+ Xy).
Moreover, since the natural map
O m[X<r, X3,)/(X1 - Xp)" =
Okml Xy, XE)[ X0, X)) /(X X))

is mJectwe for any positive integer m, by taking the limit we may identify the rings
R and R with Og-subalgebras of the O-algebra

(9K(qi§"'+1 e qﬁg)[[qgl, . ,qg"'}].
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We denote by S’;ig the Berthelot generic fiber of S,. Similarly, we denote by Se
and S’ff the formal completion of S¢ along the boundary of the special fiber and its
Berthelot generic fiber. From the definition, we have formal open and admissible

coverings
So= U 8 SE— | S
ocEE ocEF

Since the quotlent of S by the action of Uy is obtained by a re- glulng, so is the
quotient Se /U and this coincides with the formal completion of Se /Un along the
boundary of the special fiber.

Consider the case ¥ = €'(a,b). Since the map S, — M (un,¢) defined using
Tateq p(¢) induces an open immersion

HS%(a,b)/UN — M(pun, )|

to the formal completion of M (i, ¢)|p of M(pun, ¢) along the boundary divisor D,
taking the formal completion we obtain an open immersion

T S%(a0)/Un = M(un, )1,

to the formal completion M (py, ¢)|p, of M(un,c) along the boundary Dy, of the
special fiber. Let sp : M(un,¢) = M(un,c)r be the specialization map with re-
spect to M(un, ¢). Then [de], Lemma 7.2.5] implies (M(un, )|, )8 =sp~'(Dy).

Let S'Zi,ggcp and S’;‘i’i@p be the base extensions to Sp(C,) of S¥& and S’%jg , respec-
tively. Note that S;lfcp can be identified with the rigid analytic variety over C,
whose set of C,-points is

z; €Oc, (i<7), 2; € Oép (i >r),
ry---x € M,

(4.3) {(wl,...,xg) ecy

for r as above. Then, with the notation of [Con2, Theorem 3.1.5], we have

o o\rig _ grig & \rig __ grig
(Sg)/(cp = Sa,cp, (ch)/(cp = S%,(C,,'
Since the functor (_);% sends formal open immersions to open immersions and
P
formal open coverings to admissible coverings, each S“g is an admissible open
P

subset of SL «c, such that S%g(cp =Upew Sm(C is an admissible covering. Moreover,
we have

(S%/UN)rlg Srl (C /UN

Note that the formation of the tube sp~!(Dy,) is compatible with the base extension
to C,, [Ber, Proposition 1.1.13]. Thus, for ¥ = %(a,b), we obtain maps
(4.4) T S5%, = Sgsc, /Un = M(pn, o),

cEEF
where the first map is a surjective local isomorphism and the second map is an
open immersion factoring through M(ux,¢)(0)c, .
We denote by Rg,ocp, 5’,,7@% and 5’39&7(9% the base extensions to Spf(Oc, ) of Rg,

S, and S¢, respectively. From the identification (4.2), we can show

(4.5) Roo0, = Oc, (Xer, XE)Z)/(Z - Xy - X,).
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Indeed, first note that the ring Rmow is isomorphic to
(4.6) lim lim Oc,n[X<r, X3, Z)/(Z = X1+ X, Z7).
n>0m>0

Since the ring

OCp,n[XS?”’X:;rv 22— X1+ X;)
is Z-torsion free, its Z-adic completion is

Oc, [ X<r, X5 N(20/(Z = X1+ X,).

Similarly, since an elementary argument shows that the ring

Oc, X<, XS2)/(Z - X1 -+ X,)

is p-torsion free, taking the p-adic completion yields the claim (The reason of this
ad hoc proof is that in general we do not know if the completion is compatible with
quotients for non-quasi-idyllic rings).

Lemma 4.1. For any extension L/K of complete valuation fields with residue field
kg, the rings

OL(Xer, XENZN/(Z = X1+ Xy), kX<, XS2]/(Z = X1+ X,)
are integral domains. In particular, the ring éa,o% is an integral domain.

Proof. For the former ring, we can show that it is a subring of the ring
Ry = LX<y XE)Z])(Z = Xy - X,).

It suffices to show that Ry is an integral domain. Since the ring L(X<,, XZ,)
is Noetherian and normal, the ring RL is also normal. Since RL is Z-adically
complete, Z-torsion free and Spec(Ry/(Z)) is connected, we see that Spec(Ry) is
also connected and the lemma follows. We can show the assertion on the latter ring
similarly. (I

From the description (4.3) of ,Su';i%cp, we see that there exists an inclusion

v

O(S5.00,) = Ro0., € O°(55%. ).

By gluing, this yields an inclusion

(4.7) O(S%.0.,) € O°(S55.).
By the description (4.6) of the ring Ra,Ocpa we have a natural inclusion
(4.8) Roo., C ] Oc,d"
£cab

which is compatible with the restriction map ]:2(,7(9Cp — Ro",(’)cp for any o and o’
such that ¢’ is a face of the closure 6. Then we have an isomorphism

0(5'%7(9%) ~ m Rmocp'
S

Note that, if the dimension of the R-vector space Spany (o) generated by the ele-
ments of o is g, then we have

(ab) N0 = Z>0&1 © - ® L>08,
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with some &;,...,&, € ab. Thus any element of Ro,Ocp is a formal power series of
¢*',...,q% and the ring O, [[¢* | £ € (ab) N oV]] can be identified with the subset
{(agq%)ecas € [] Oc,4* | ag =0 for any & ¢ (ab) N},
£cab
From the equality

(ab)™ U {0} =({(ab)N " |0 € %, dimg(Spang(o)) = g},
we have an inclusion
Oc,[la* | € € (ab)" U{0}]] 2 O(S¢ 0., )-
On the other hand, if we identify as
Py ~ I[I R zeie(@B@)s,
BeHomg.a1x. (F,R)

then every boundary 7 of o is outside the closure of the positive cone F]RX "+ of Fg.
Hence, for any positive real number p, the number of elements £ of (ab)™ such that
the distance from & to 7 is less than p is finite. This implies that any element of
Oc,[lg* | € € (ab)* U{0}]] is contained in the completion of the ring

Oc, . a7, a* 6 g*

with respect to the ¢& ---¢fr-adic topology. We can see that this completion is
contained in Ra,Ocp- Therefore, we obtain an identification

Oc,[[¢* | £ € (ab)* U {0}]] = O(S¥ 00, )
which is compatible with the inclusion (4.8).

Let ¢ be any non-zero fractional ideal of F' and let a, b be fractional ideals sat-
isfying ab=! = ¢. Suppose a C o and (a, Np) = 1. Then the natural inclusion
0 C a~! induces isomorphisms

$ap:a ' /Na~'~0/No, ¢,:a'/p"a"" ~o/p"o.

Consider the unramified cusp (a,b,¢qs) of M(un,c). Take € € Dec(a,b) and
o € € as above. By the construction of the Tate object, the map ¢;,b yields a

- q

natural immersion D' & pi,» — Tateq p(g) over S, which induces an isomorphism
WTateq 4 (q) ok OK,n =~ wD;1®Hp" .

Note that the map Trp/q ® 1 : D;l ® G — Gy gives an element (TrF/Q ®1)

of the O ® O(S,;)-module Wp=1gG,, ~ Wratequ(a): By the pull-back, we obtain a

*dT
T

v

Tate object over Spec(R,) with a canonical invariant differential form which are
compatible with those over Spec(R,) for any 7 € € satisfying 7 C 4.

We denote the p-adic completion of S, by S,. We have S, = Spf(}v%g), where
we consider the p-adic topology on R,. Its base extension to Oc, is denoted by
S'g’ocp = Spf (Rg,ocp). Here the affine algebra Rmocp is the p-adic completion of
the ring R, ®oy Oc,-

The identity map R, — R, is continuous if we consider the p-adic topology
on the source and the (p, I, )-adic topology on the target. Then, for the case of
€ = %(a,b), its composite with the p-adic completion of the map S, — M (un,¢)
gives a morphism of formal schemes S, — Sy — My, ¢)(0), and also a morphism
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Se — M(un, ¢)(0) by gluing. Since R, is Noetherian, the moduli interpretation of

UQUIJ(O) as in §3.3.1 is also valid for R,. We have a commutative diagram

Z/an(RJ) - OF/pnOF(RU)

l l

()" (Ry) — (D' @ pyn )" (Ry)

wu,pn ® RG’

WDl g un ® R,

where the top horizontal arrow is the natural inclusion and the other horizontal
arrows are induced by the map Trr,g ® 1. Thus the above moduli interpretation
and the base extension give a morphism of formal schemes over Spf(Oc,)

v

Tap : So.00, = So0., = IW, ()0, -
By gluing, this defines a morphism §<g7ocp — jQIIIJ(O)OCp, which we also denote
by Ta,6-
Lemma 4.2. The natural map Ra,Ocp — émocp is injective. In particular, the
ring Ry o, is an integral domain.
Proof. We have an isomorphism

(4.9) Ry, ~lim i%l( OpnlX<r, XE[12)/(Z — X1 --- X,),

where the direct limit is taken with respect to the directed set of finite extensions
L/K in Q. Since the map

OpnlX<r, X5]/(X1 - X0)™ = O, ol X<r, X5,/ (X1 X))

is injective for any such L/K, the injectivity of the lemma follows from (4.6).
Lemma 4.1 yields the last assertion. ([l

For any finite extension L/K, we write the p-adic completion
R0, 01 = Op(Xr, XE)[Z)/(Z = Xy -+ X,)

also as Ry, . Let w7, be a uniformizer of L. By Lemma 4.1, the ring Ro, /(1) is
an integral domain. Since Rp, is normal, the localization (Ro, )(x,) is a discrete

valuation ring with uniformizer 7y, such that Z is invertible. Put Ry, = h_H}l LK Ro,
and Mo, = h_l’I)lL ) K(ﬂ'L), where the direct limits are taken as above. Then the

localization (Rog)m. = @L/K(ROL)(“L) is a valuation ring. Let O, be its p-
adic completion. By (4.9), the ring RU;OCP coincides with the p-adic completion of
Roo. Since the p-adic topology on R is induced by that on (Roo)moo7 we obtain
an injection RU,@CP — Ok, . This defines a morphism of p-adic formal schemes
Spf(Ok,) — S’U,OCP for any o € €(a,b). In particular, we have the pull-back
of Tateq p(q) over Spec(Ox,) which is a HBAV. Since Ok, is quasi-idyllic, we
have the moduli interpretation of any morphism Spf(Ox_ ) — 3m$,c(0)ocp over
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M(pn,¢)(0)oe, as in §3.3.1. The additional structures of the Tate object over

9

Spec(R,) defines a canonical test object

(Tatea,b(Q)a la,b, )\a,ba wu,ba Uq, b, aa,b)

over Spec(Oy, ). This corresponds via the moduli interpretation to a map

Ta,0,0x,  SPE(Ok,) = I, (0)o,

w,¢

satisfying the following property: The composite 5‘0,@% — gfg,ocp N JQITLC(O)OCP
factors through Sa’(gcp and its restriction to Spf(Ox,) equals 74 5,0, , as in the
diagram

v

80,0, — > 5¢,0¢,

(4.10) J{ iT

Spf(Ok,) — 55.0., —= 3, (D)o, -

Let k € W(C,) be any n-analytic weight. Since the formal scheme 9(u, o) (v)o,
is quasi-compact and the sheaf 2" is coherent, we have

M(pn, ¢, k) (v) = H*(M(pn, ) (v)o., . 7)[1/p] € OOW,, (v)o, )[1/p]-
For any element f. of M(un,¢, k)(v), we define the g-expansion f(q) of f. by
fel@) =731 (fo) € O(Sg.00,)[1/p] = Oc, [l¢° | € € (™) U{O}][1/p].

Thus, for any f = (fc)ce[cﬁ(F)](p), we can write

fc(Q) :aa,c—l(f70)+ Z au,c—l(fvg)q5

£€(e™1)T

with some a, -1 (f,€) € Cp. For any refinement ¢” € Dec(o,¢™!) of ¢, the natural
map 5‘%/’@% — S’gg,ocp induces the identity map on the ring Og, [[¢¢ | £ € (¢7})TU
{0}]][1/p]. Thus we can compute the g-expansion by taking any refinement of the
fixed cone decomposition € (0,¢~t) in Dec(o,c~1). We say that an eigenform f is
normalized if a, o(f,1) = 1.

By (4.2) and (4.5), we have an isomorphism

(RU/IAURO'> ®(’)K O(C,, = RU,OCP /faéo,ocpa
which implies a, -1 (f,0) = 0 if fc € S(un, ¢, x)(v).

4.2. Weak multiplicity one theorem. Let (v,w) € W%(C,) be an n-analytic
weight. Let f = (fc)ccjc1+ ()@ be a non-zero eigenform in SE(un, (v,w))(v). For
any non-zero ideal n C o, let A(n) be the eigenvalue of T, acting on f. We set
®(n) to be the eigenvalue of S, for (n, Np) = 1 and ®(n) = 0 otherwise. We
put pn = (Dp' @ Gy)[n]. Any element ¢ of pn(L) € (Dp' ® Gy)(L) with some
extension L/K defines a ring homomorphism ( : O(D;l ® Gn) — L. We put
¢" = ¢(X") for any n € o0, which gives a homomorphism o/n — L*. We fix an
element ¢ € [C1T(F)]®.
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4.2.1. g-expansion and Hecke operators. For any € € Dec(a,b) and any maximal
ideal m of o, we can find ¢’ € Dec(a,m~1'b) which is a refinement of 4. For any
0 € € and T € ¢’ satisfying 0 O 7, we have natural maps R, — R,, R — RO
and R, — R;. Consider the case a = 0. Let ¢ be an element of un(K). Fix an
isomorphism of o-modules
p:m 'b/b~o/m.
Then we have a natural ring homomorphism
G A A A

We denote by Tate, n-15(¢¢”) the pull-back of Tate, -15(gq) by this map.

On the other hand, we have Dec(a,b) = Dec(a,nb) for any unramified cusp
(a,b,¢) and n € F**. Thus any o € € gives similar rings to R,, RY and R, for
the cusp (a,nb,¢), which are denoted by R, ., R?W and R, ., respectively. We
have a natural ring homomorphism

q" - Rg — Rnﬁg, ¢ — ¢,

We denote by Tateq,s(¢") the pull-back of Tateq (g) by this map.
We will omit entries of test objects (A, ¢, A\, ¥, u, «) for overconvergent Hilbert
modular forms if they are clear from the context.

Lemma 4.3. We have an isomorphism of test objects over nga

(Tateo,nc*1 (Q)a /\o,ncfl) = (Tateo,c*1 (qn)7 77>‘0,c*1 )
Proof. We denote by

¢ the pull-back along the map ¢". Consider the composite
¢! = D' @ Gu(RS) = D' @ Gl (R ,)

of the map a + (X° — ¢*¢ (£ € 0)) and the map ¢", which we also denote by ¢".

We also have a similar map ¢" : n¢™' — D' @ Gm|qn(]%2’g). Then the following

0

n,o 18 commutative.

diagram over R

net ne!

\ /

D;1 @ Gm(R’?],O') - D;1 & Gm(Rg,o)

Dy @ Gulgr (R ;) —=> 1D @ Gualon (RY,)

< S

—1 —1
C c
xn n

This yields an isomorphism Tate, ,-1(¢q) — Tate, .-1(¢") as in the lemma. O

Lemma 4.4. Let m be a mazimal ideal of o satisfying m ¥ pN. Let ¢ be an ele-
ment of [C1T(F)]®). Take any elements x,y € F>T®) such that ¢ = amc and
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¢’ = zy~'m~ ¢ are elements of [C1T(F)]®). Fiz an isomorphism of o-modules
p:(zme)™!/(zc)~! ~ o/m. Then we have

(T )ela) = g2 | Neralm) 2w

~ Npyg(m) v(y) forld )t DL felde)

CEMm (@p)

Proof. For any ¢ € Dec(o0,¢™1) and ¢’ € Dec(m, ¢™1), we choose 6" € Dec(o, (mc) 1)
such that ¥ is a common refinement of ¥ and ¢”’. For any o € ¢ and ¢’ € ¢,
take 7 € €" satisfying 7 C 0,0’. By the diagram (4.10) and the inclusions

Rnocp 2 RT,OCP g OICTv

it is enough to show the equality of the lemma after pulling back to Spf(Ok, ).

Choose an element &, € (xmc)~! such that the map p sends the image of &y, to
1 € o/m. For any ¢ € puw(Q,), we define elements @ and Q( of D;l ® Gm(Rg_l )
by

x’l [EEN qu"] and x"] — qgm"ICW (77 c 0)7

respectively. Let H¢ ¢ be the m-cyclic Op-subgroup of the Tate object Tate, (5¢)-1(q)|ox.
generated by the image of Q(. Then, over Spec(Ox. ), the m-cyclic Op-subgroup
schemes of Tate, (,c)-1(q) are exactly

:umv HQ,( (C S Nm(@p))a

where the former is the closed subgroup scheme induced by py C D;l ® Gm. Then
the pull-back of (T, f):(q) is equal to

(LaTm fer)(Tate, —1(q), Ao,c-1) = V() (T for ) (Tate, -1(q), xil)\o,c—l)
= V(x)(Tme/)(Tatea,(wc)—l (q$)v Ao,(wc)—l)

which equals

v(z)

W fc/(Tateo,(ﬂﬁc)f1 (qx)/.um) + Z fer (Tateg,(:r,c)—l(qx)/HQ7C|qz)

Cel‘m(@p)

For the first term, we have the exact sequence
0 — pim —>= D' @Gy, —>m~ D' @Gy — 0.

For any & € (zc)”!, the natural map D' ® G, — m~'Dp' ® Gy, sends the
Rg,l _-valued point (X7 — ¢*7 (n € 0)) to (X" = ¢7 (n € m)) and this gives an
isomérphism

Tate, (ge)-1(q)/ttm =~ Tatey (zc)-1(q)
compatible with natural additional structures. This implies that the evaluation
fe(Tate, (ge)-1(¢")/pm) equals

fc’ (Tatem,(zc)*1 (qm)a/\m,(rc)*l)
= fc/(m_l Rop Tatea,m(xc)fl(qx),mz)\‘,’m(“)fl)

_ Nejo(m)® o
N W(Lysmfc,)(’ra’teﬂ,(c“)—l(q )’)\07(5”)—1)
 NeomPam) .

) e (Tatea (@™ ).
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For the second term, the subgroup
{(X7 = ¢*1¢7 (n€0)) | €€ ()} CDr' @ Gum(R)-1 ;)

is generated by Q¢ and the image of the subgroup
{(X" = ¢ (n€0)) | €€ (x0)'} C D! @ Gm(RD- )

r—1 o

via the natural map Rg,l . = ]%2,1 .- This yields an isomorphism

Tate,, (ze)-1(q)/Ha.c = Tate, (e)-1(q¢")

compatible with natural additional structures. Hence the lemma follows. (Il
A similar proof also gives the following variant for m | Np.

Lemma 4.5. (1) For any mazximal ideal m | N, take any element x € F*+(®P)
satisfying ¢ = amc € [C1T(F)]®). Fiz an isomorphism of o-modules p :
(zme)~1/(zc)~! ~ o/m. Then we have

(Twf)e(q) = v() Z Je(q“¢P).

"~ Npjo(m 8
F/Q( ) CEHm(Qp)
(2) For any mazimal ideal p | p, take any element x € F*+®) satisfying ¢ =

zay 'pe € [CIT(F))®). Fiz an isomorphism of o-modules p : (v, 'pe) ™1/ (vwy 'e) ™t ~
o/p. Then we have

(Up)elg) = 2

— , wzp_l Py,
Nr o) > falg™ ¢)

CEUy (@p)

4.2.2. g-expansion and Hecke eigenvalues. For any £ € F*, we put x,(§) = Hp‘p ;v;;”(g).

For any non-zero ideal n C o, take n € F*>F satisfying ¢ = n~'n € [CIT(F)]®) and
put
Cn, f) = v~ xp(m)ao,c-1 (f,1).

By Lemma 4.3, this is independent of the choice of . Then we have the following
variant of [Shi, (2.23)] in our setting.

Lemma 4.6. For any non-zero ideal [,n of 0, we have
C(nv T[f) = Z NF/Q(Q)(P(G)C(G_QII‘I, f)
[+nCaCo

Proof. We can easily reduce it to the case | = m® for some maximal ideal m.
Consider the case of m { Np and s = 1. We follow the notation of Lemma 4.4.
Since 271y € (zc)~!, we have

Z Cp(acfln) = Np/g(m).
CEHm(@p)
Lif and only if m | n. Thus Lemma 4.4 implies

_ | Nem)@(m)C(m~in, f) + C(mn, f) (m|n)
oot ={ G (m {n)
and the lemma follows for this case. The case of m | Np and s = 1 can be shown

similarly from Lemma 4.5. For s > 2, using the relation (3.8), we can show the
lemma by an induction in the same way as the classical case. [

Moreover, z~1yn € (¢")
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Proposition 4.7. For any ¢ € [CIT(F)]®) and any n € (¢, put n = nec C o.
Then we have

o1 (f,1) = v(nxp(n) " A(M)ac,o (£, 1).
Proof. We have a,-1(f,n) = v(nxp(n)~")C(n, f) and C(o,f) = ac.o(f.1). By

Lemma 4.6, we obtain
A(n)ao,o(f,1) = A()C(o, f) = C(o, T f)
=Cn, f) =v(n "xp(n) o1 (f,n),

from which the proposition follows. (Il
4.3. g-expansion and integrality. First we show the following lemma.

Lemma 4.8. Let X be a quasi-compact separated admissible formal scheme over
Oc,. Let § be an invertible sheaf on X. We denote by Xz the special fiber of X
and by §g, the pull-back of § to X, .

(1) Suppose that X*& is reduced and X is integrally closed in X*8. Then, for
any non-zero element f € H(X,§)[1/p], the Oc,-submodule of C,,

I={zeC,|afc H'(X,3)}

18 principal.
(2) Let g be an element of HY(X,T). Suppose that the image of g by the map

H(X,§) — H°(X5,,55,)
is zero. Then there exists x € mc, satisfying g € THO(X,3).

Proof. For the first assertion, take a finite covering X = (J;_, {; by formal affine
open subschemes $; = Spf(2;) such that §|y, is trivial. Since X is separated, the
intersection &, ; = 4; NLl; is also affine. Put A, = 4;[1/p], M, = I'(4l;,§) and
M; ; =T 5,§). Then we have a commutative diagram

00— F(x, S) H;:l ml H;j:l D’JTM

| | |

0 ——I'(X,3)[1/p] — H;:1 M[1/p] —= H:J:l M ;[1/pl,

where the rows are exact and the vertical arrows are injective. Put I; = {z € C,, |
xfly, € M;}. Note that I, = C, if f|y, = 0. Since the above diagram implies
I =(,_, I, it is enough to show that I; is principal if f|g, # 0.

By choosing a trivialization, we identify 9, with ; and f|g, € 9;[1/p] with a
non-zero element g; € A;. Note that A; is a reduced Cp-affinoid algebra. Since ;
is an admissible formal Oc,-algebra which is integrally closed in A;, [BGR, Remark
after Proposition 6.3.4/1] implies A9 = ;. Thus, for any z € C,, we have

Tg; € le = |x||gi|sup < L

where |gi|sup is the supremum norm of g; on Sp(A4;). By the maximum modulus
principle, there exists a non-zero element ¢ € C, satisfying |d] = |g;|sup. Hence we
obtain

L={zeC,||z| <67} = 5_1(9@,,

and the first assertion follows.
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For the second assertion, consider the covering X = [J;_, £i; as above. Since the
reduction of gly, is also zero, we can write glg, = x;h; with some x; € mc, and
h; € M;. Replacing z; by a generator z of the ideal (z1,...,z,), we may assume
gly, = xh; for any 4. Since M; and M; ; are torsion free Oc -modules, the elements
h; can be glued to define h € H°(X,§). Then we obtain g = xh and the second
assertion follows. O

Let k € W(C,) be any n-analytic weight. Put
M(pn, ¢, 1)(0) := HO(M(pn, ¢)(0)or, , ) € M(un, ¢, #)(0).

This is an Oc, -lattice of the Banach C,-module M (un, ¢, x)(0). Consider the cusp
(0,¢7 1 id), the fixed cone decomposition € = % (0,¢" 1) € Dec(o,¢!) and 0 € €.
By the definition of the g-expansion, every coefficient of the g-expansion of f €
M(pn, ¢, £)(0) is an element of Oc,. We also have the following converse, which
can be considered as a g-expansion principle for our setting.

Proposition 4.9. Let f. be any element of M(uy,c,k)(0). If every coefficient of
the q-expansion fc(q) is in Oc,, then we have f € M(un, ¢, £)(0).

Proof. Put M = My, ¢)(0), My (p™))°d = M(T1 (p™), v, ¢)(0) and T =

TJQHLC(O). Recall that ©* is invertible on 9°™d. We denote the reduction of 95?‘(’55

by Dj?ﬂo—fd. Consider the commutative diagram
p

To,c—1

v v

Slﬁoa:p - 7T1;1(S(77Oa:p) - 77;1(‘?(570%) - jﬂﬂ(ggp

~ | |-

& S yyrord
So,0c, — > S¢.0, — Mg, -

Recall that f. € (9(3%%&)[1/17}. The assumption on fc(q) implies 77 _,(f.) €

O(Ss.0c,)-
Consider the special fiber

T JAE T (T ()

of the map m,, and the closed immersion i : 95?]%“1 — 952?5&1 . From the construction
p

of the sheaf £"|grora as the fixed part of a T(Z/ p”Z)—epquivariant Oc,-flat sheaf

P
on a T(Z/p™Z)-torsor, we see that the subsheaf QK‘@cggp - (W“’)*iji,c(o)% is
formal locally a direct summand. Since m, is affine, for any morphism of formal

schemes f: 5 — 95??5? , the composite of natural maps
P

f*(ﬂﬂiﬁt‘ggp) - f*(ﬂw)*ojﬁn‘ggp - (7Tw|n,;1(s))*07r;1(s)
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is injective. This yields a commutative diagram

Q¥ (MG ) ———— 0(3W3!)

| |

(4.11) (g ) ———— 00wy

| l

S5 (S%,Fp) — O(ﬁﬁl(g%ﬁp))

P

7O

with injective horizontal arrows, where the base extension S%,FP = S%@kﬁ‘p is equal
to the special fiber of gcgpcp.

On the Tate object Tate, .-1(q) over Spec(R,), we defined the canonical trivi-
alization of the canonical subgroup and that of the TY (S, )-set J2°™(S,), which
are denoted by u, -1 and o, -1. For any a € T(Z/p"Z), we fix its lift & € Ty, (Z,)
satisfying 1 = 1. Since R, is Noetherian, the moduli interpretation of J90°™ is
available over R, and these trivializations give isomorphisms

S Xgora MT1 ("))~ [ Sor 7m0’ (Se) = ][ Sox TS,
a€T(Z/p"Z) a€T(Z/pnZ)
Here the latter is an isomorphism of formal T -torsors given by (au, -1, dc, 1)
at the a-component. By the base extension, we also have similar isomorphisms over
Oc,. Since the latter isomorphism is defined by (u, 1,0, -1) at the component

a = 1, the unit section on this component coincides with the above map 5’0,@% —
WJ;I(SU,OCP)'

For any formal character y of T,

the x-part of the TY -representation (9(5‘0,0% X
TY) is a free Rg,ocp -module of rank one with a generator s,. Then we have

fc|ﬂ-7;1(5'mon ) € H (Ra,(’)cp [1/p]ss—1).
T aeT(z/p7)
Write this element as (Fys,-1)aet(z/pnz) With F, € Rg,ocp [1/p]. Since k(1) =1
and 77 _i(fc) € R,yo%, we obtain Fy € RU,OC,; Since f. is £~ !-equivariant for
the T, (Z,)-action, we have F,, = k(a)F;. Since the image of the character s is
contained in Oép, we see that Fj, € ]r'igyocp for any a € T(Z/p"Z). This means

(4.12) Felnit oo, ) € O (80,06,)-

To prove the proposition, we may assume f. # 0. Consider the ideal J = {z €
Oc, | fc € M(un, ¢, %)(0)}, which is principal by Lemma 4.8 (1). Put J = (z) and
suppose & € mc,. Then the g-expansion xf.(q) is also integral, and zero modulo
mc,. Thus the commutative diagram (4.11) and (4.12) imply that the pull-back of

xfc € ﬂfi({)jtgcp) to Z’*Qn|§%ﬁp (Sg,p,) vanishes.

Note that the reduction of §<g7ocp — i)jl?grs induces the map on the special fiber
P

Ser, = (Se.0c, )5, = M1y, ¢z, .
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Let M(un,¢)g,|p, be the formal completion of M(uy,¢)s, along its boundary
Dg, . Recall that this map induces maps

S¢r, = Ser,/Un = M(un, ), D, »

where the first arrow is a surjective local isomorphism and the second arrow is an
open immersion. Hence xf. vanishes on a formal open subscheme of the formal
completion M (un, ¢)g n D, - We know that the smooth scheme zmord is irreducible.
Since the sheaf QF is 1nve§t1ble on the ordinary locus, Krull’s 1ntersect10n theorem
implies that z f. vanishes on a non-empty open subscheme of zm;;:d, and thus it also
vanishes on zmord Then Lemma 4.8 (2) implies that z f. € yM(un, ¢, £)(0) for some
y € mg,- Slnce “the Oc,-module M(puy, ¢, £)(0) is torsion free, this contradicts the
choice of 2. Thus we obtain = € Of ¢, and fc € M(un, ¢, £)(0), which concludes the
proof of the proposition. (I

Corollary 4.10. Let f = (fc)ce[Cﬁ(F)](p) be a non-zero eigenform in the space
S (un, (v,w))(v) of weight (v,w) € WY(C,). For any non-zero ideal n of o, the
Hecke eigenvalue A(n) is p-integral.

Proof. By (3.8), it is enough to show the case where n is a maximal ideal m.
Put ¥ = k(v,w). Note that by Lemma 3.1 and Lemma 3.4, the restriction map
S (pn, (v,w))(v) = S (un, (v,w))(0) is injective. We consider A(m) as an eigen-
value of the operator Ty, acting on

M= @ Mun,cr)0).
ce[CIH+(F))(P)
This is a Banach C,-module with respect to the p-adic norm | — | defined by the
Oc,-lattice
M:= € Mun,cr)0).
cg[CIH (F)](®
Namely, we put
|f| = inf{|z|~* | reCy, xf € M}.

By Lemma 4.8 (1), we can find an element € C, of largest absolute value
satisfying = f. € M(un, ¢, «)(0) for any ¢ € [C1T(F)]®). The norm |f| is equal to
|z|~1. Moreover, any coefficient of the g-expansion z f.(q) is contained in Oc,. By
Lemma 4.6, so is z1y, f. Hence Proposition 4.9 shows zTy, f € M. This implies

Tuf] _ |2
A = =
Am)| = S5 <

and the corollary follows. O

Corollary 4.11. Let f = (fc)ccjcr+(py» be a normalized eigenform in SC(un, (v,w))(v)
of weight (v,w) € W (C,). Then we have

a1 (f,m) € Oc,
for any ¢ € [C1T(F)]®) and any n € (¢71)7F.
Proof. This follows from Proposition 4.7 and Corollary 4.10. O
Corollary 4.12. Let (v,w) be an element of WE(C,).
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(1) Foranyc € [CIH(F)]P), there exists an admissible affinoid open subset S, C
M(pn,¢)(v)c, such that (75&)~1(S.) meets every connected component of

IW, (v)c, and, for any normalized eigenform f = (fe)eejcr+(ryw in
S (un, (v,w))(v), the restriction fel(rizy-1(s,) has absolute value bounded
by one.

(2) Let f = (fo)ecort(rym be any element in the space S (un, (v,w))(v). If
fe(q) =0 for any ¢ € [CIT(F)]®), then f = 0.
(3) Let f = (fo)ccicrt e and f = (f)cejcr+ (py» be normalized eigenforms
in S (un, (v,w))(v). Suppose that the eigenvalues of the Hecke operator
T, acting on f and [’ are the same for any non-zero ideal n C 0. Then
f=r.
Proof. Let us prove the first assertion. For any o € ¢ = % (0,c¢™ 1), Corollary 4.11
and (4.7) show that 77 _,(fc) is a rigid analytic function on g;ifcp with absolute
value bounded by one. As in the proof of Proposition 4.9, we can show that
f c|(7r$g),1( gie. ) is a rigid analytic function with absolute value bounded by one.

Since the natural map S*;}gcp — gft;gcp/ Uy is a surjective local isomorphism, the
restriction fc|(wrig),1( U5 JUN) is also with absolute value bounded by one. Thus,
o )

for any non-empty admissible affinoid open subset S, C g;ﬁcp/ Uy, the absolute
value of f‘L(ﬂZﬁg)—l(Sc) is bounded by one. Since g%%c,,/UN is an admissible open
subset of M(un,¢)(v)c,, we see that S, is also its admissible open subset.

On the other hand, the rigid analytic variety M(un,¢)(v)c, is connected by
Lemma 3.4. Since the map

BiE  M(T1 ("), v, ) V), — M, (),

is finite and etale [Con2, Theorem A.2.4], it is surjective on each connected com-
ponent of the rigid analytic variety M(I'1(p"), un,¢)(v)c, and thus (hL8)~(S;)
meets every connected component of it.

We claim that the map

Tt IV (0)c, = MT1(p"), iv, ) (v)e,
induces a bijection
mo(IWy ((v)c,) = mo(M(T1(p"), un, ©)(v)c,)

between the sets of connected components. Indeed, by [Conl, Corollary 3.2.3], it
is enough to show the claim with C, replaced by a finite extension L/K. By a
finite base extension, we may assume L = K. Since the formal schemes Jﬂﬂz,c(v)
and M(T1(p"), pn, ¢)(v) are both normal, it is enough to show a similar assertion
for the formal model 7,. Since it is a formal T -torsor, it is surjective and the
map between the sets of connected components is also surjective. Let 2) be any
connected component of (1 (p™), un,¢)(v) and let {X;};es be the set of con-
nected components of jﬁﬂz’c(v) which ~,, maps to ). Suppose §J > 2. Since 7,
is finitely presented and flat, it is open and the connectedness of ) implies that
Y (X;) N yw(Xj) # 0 for some j # j'. However, for any element y of this inter-
section, the fiber 7, (y) is connected since it is isomorphic to the special fiber of

TY, which is a contradiction. Since 4# is surjective, the claim shows that every
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connected component of IW;;C(U)CP meets the admissible open subset (7!i8)~1(S,)
and the first assertion follows.

Now suppose that f.(q) = 0 for any ¢ € [C17(F)]®). Then we have Jel (iey 15y =
0. Since the rigid analytic variety IW$7C(U)CP is smooth over C,,, the first asser-
tion and Lemma 3.1 show the second assertion. The third assertion follows from
Proposition 4.7 and the second one. O

4.4. Normalized overconvergent modular forms in families. Let U/ = Sp(A)
be a smooth C,-affinoid variety and put 4 = Spf(A°). Let U — ng be an n-
analytic morphism and consider the associated weight characters (14, w") as before.
Let f = (fc)cejcrt () be an eigenform in the space SE(un, (W, w))(v). Recall
that each f, is an element of O(JQH;)C(U)@CP x 4)[1/p]. For the cusp (o,c¢71,id) of
M (un,¢) and any o € € = €(0,c¢7 1), we have the map

To,e—1 X 1: S'UVOC,, X i — Hﬂﬂ;c(v)ocp x 4

over M(uy, ¢)(v)og, x L.
As in §4.1, we see that the ring RJ,OCP ®Ocp A° is isomorphic to the completion
of the ring
Al g

with respect to the (p, % - - - ¢*)-adic topology for some &1,...,&, € e NoY and
thus it can be considered as a subring of the ring

A°<qigr+1, . ,qi59>[[q51 ey qgr]].

Hence we obtain the map of the ¢'-coefficient

v

przq/l 1 O(Se,0c, x W)[1/p] — A.
For any eigenform f € S (un, (WM, w"))(v) as above, we put a4 ,(f, 1) = plrzll((T,L0 X
1 (f)) € A,

For any x € U(C,), put (v,w) = (M (x),w"(z)). The specialization f(r) =
(fe())ceicrt (py 1s an element of the space SE(un, (v,w))(v) over C,, and we have
the usual ¢'-coefficient a, o(f(x), 1) of the g-expansion of f(x). By the commutative
diagram

To,0 X1

So.00, X =" 3W) ,(v)o., x U

To,o

we obtain

(4.13) ag o (f,1)(2) = a0, (f(2),1).

Lemma 4.13. Suppose that f(z) # 0 for any x € U(C,). Then we have
a%{)a(f, 1) e A*.

In particular, the specialization f'(x) of ' = azéo(f, 1)~1f is a normalized eigen-
form with the same eigenvalues as f(x) for any x € U(C,).
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Proof. We claim that a, o(f(z),1) # 0 for any € U(C,). Indeed, suppose that
@o,0(f(x),1) = 0 for some z € U(C,). Since f(z) is an eigenform, Proposition 4.7
implies that the g-expansion f(x).(q) of f(x) is zero for any ¢ € [C1T(F)]®). By
Corollary 4.12 (2) we have f(z) =0, which is a contradiction.

Now (4.13) implies that a¥ ,(f,1)(x) # 0 for any = € U(Cp). Hence we obtain
a4, (f,1) € A% O

4.5. Gluing results. Here we prove two results on gluing overconvergent Hilbert
modular forms, based on the theory of the g-expansion developed above. Let X =
Sp(R) be any admissible affinoid open subset of WY. Put n = n(X) and v = v,, as
in §3.3.3. Consider the Hilbert eigenvariety £|x — X, which is constructed from
the input data

(R’ SG(”N? (VX7 wX))(Utot); Ta Up)
4.5.1. Gluing local eigenforms.

Lemma 4.14. Let U = Sp(A) be a smooth C,-affinoid variety and let U — Xc, be
a morphism of rigid analytic varieties over C,. Let f be an eigenvector of the space
S (un, (W, wh)) (viot)ORA for the action of T such that for any x € U(C,), the
specialization

f((E) € SG(/JJNv (VXv wX))(vtot)®R,x*Cp

is non-zero. Then the image of f by the natural map
S (uns (%, w™)) (Vi) O RA = S (i, (W) (V10 )
is an eigenform with the same property.

Proof. Put (v,w) = (W (z),w"(z)). Then we have the commutative diagram

S (uw, (v w)) (Vo) ORA ———= S (pw, (4, w)) (Vior)

| |

SE (s (v, W) (Vrot) OR,a+ Cp ——= S (uwy, (1, w)) (Viot) 9,0+ Cp

T

SG(MN’ (Va w))(vtot)'

Here the lowest two arrows are the specialization maps. Since W€ is smooth, the
maximal ideal of R® kC, corresponding to x is generated by a regular sequence. By
Lemma 3.13, the left oblique arrow is an isomorphism. This implies the lemma. [

Proposition 4.15. Let Z be a smooth rigid analytic variety over C, which is
principally refined. Let ¢ : Z — (€|x)c, be a morphism of rigid analytic varieties
over C,. Then there exist an element

fe @ o0a@w] (v, x 2)
ce[CIT(F)]|®

and an admissible affinoid covering Z = J;c;U; such that the restriction fly, for
each i € I is an eigenform of S (un, (W9, w"))(vser) with eigensystem o* : T —
O(2) — OU;) and f(z) is normalized for any z € Z.
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Proof. By Proposition 2.5 (2), there exist an admissible affinoid covering Z =
U,er Ui, Us = Sp(A;) with a principal ideal domain A; and an eigenvector f; in the
space

S (un, (Y, w)) (v4or) O R A
such that for any z € U;, we have f;(z) # 0 and

(h@1)fi = (1@ ¢"(h))f:

for any h € T. By Lemma 4.14, the image f/ of f; in the space S (i, (19, W) (Vo)
is an eigenform with eigensystem ¢* : T — A; such that f/(z) # 0 for any z € U;.
Since U; is smooth, by Lemma 4.13 we may assume that f/(z) is a normalized
eigenform for any z € U;. For any z € U; NU; and any h € T, the h-eigenvalues of
fi(2) and f}(2) are both ¢*(h)(2). Since they are normalized eigenforms, Corollary
4.12 (3) implies that the images of f/(z) and f}(2) in SE (un, (i (2),w"i (2)))(0)
agree with each other. By Lemma 3.1 and Lemma 3.4, we obtain f;(2) = fi(z).

Since the rigid analytic variety IWLC(Utot)(CP x Z is reduced, this equality means
that f! and f]’» coincide with each other as rigid analytic functions on

H IW;,c(Utot)CP X (Z/{z ﬂZ/{])
ce[CIH(F)](®)
Thus we can glue f/’s to produce an element
fe @ O(Iwz,c(vtot)Cp X Z).
ce[CIH (F)] ()

This concludes the proof. ([

4.5.2. Gluing around cusps. Consider the unit disc D¢, over Sp(C,) centered at
the origin O. Put D = Dc, \ {O}.

Lemma 4.16. Let Z be a quasi-compact reduced rigid analytic variety over Cp.
Then the ring O(Z x Dép) can be identified with the ring Rz of power series
Y nez anT™ with a, € O(Z) such that

4.14 I =0, L - =0
(4.14) G supfan(2)] =0, lim supla_n(2)lp

for any rational number p satisfying 0 < p < 1.

Proof. For any non-negative rational number p < 1, let A[p, 1]c, be the closed
annulus with parameter T' over C, defined by p < |T| < 1. Then we have an
admissible covering

D = | Alp 1,

p—0+
of Dgp.
First suppose that Z = Sp(A) is affinoid. Let p be a rational number satisfying
0 < p < 1. We denote by | — |sup the supremum norm on A. Since A is reduced,

[BGR, Theorem 6.2.4/1] shows that | — |syp defines the Banach topology on A.
Then the ring O(Sp(A) x A[p, 1]c,) can be identified with the ring of power series
Y nez anT" with a,, € A such that

(4.15) ngrfoo |an|sup = 0, ngrfoo la—n|supp™"™ = 0.
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This identification is compatible with the restriction to Alp’, 1]c, for any p < p/,
and also with the restriction to any affinoid subdomain of Sp(A). In particular, the
natural map

O(Sp(A4) x Alp,1]c,) = O(Sp(4) x Alp’ 1]c,)
is injective for any p < p’ and thus
O(Sp(4) x D& ) = (1] O(Sp(4) x Alp, 1]c,)-
p—0+
This yields an isomorphism ®z : O(Z x 'Dép) ~ Rz when Z is affinoid, which is
compatible with the restriction to any affinoid subdomain of Z.

For Z not necessarily affinoid, take a finite admissible affinoid covering Z =
Uier Ui with Ui = Sp(4;). Take f € O(2 x D¢ ) and write

Z a; I

neZ

Dy, (f

with a;, € A;. Then a;,’s can be glued to obtain an element a,, € O(Z). Put
O(f) =>_,czanT™. Since I is a finite set, we can check that a,,’s also satisfy (4.14)
and thus ®(f) € Rz. On the other hand, for any element g = >, a,T" of Rz,
put ¥(g); = > ,cznlu, T Then ¥(g); € Ry, and the elements @Z;il(\ll(g)i) €
O(U; x Dg ) can be glued to obtain an element ¥(g) € O(Z x D¢ ). Then ® and
¥ are inverse to each other and the lemma follows. O

Next we show the following variant of [BuC, Lemma 7.1].

Lemma 4.17. Let Z be a quasi-compact smooth rigid analytic variety over C,. Let

V be an admissible open subset of Z which meets every connected component of Z.

Let f be an element of O(Z x Dép). Suppose that f|vXDg extends to an element
P

of O(V x Dg¢,). Then f extends to an element of O(Z x Dc,)).

Proof. By taking an admissible affinoid open subset of the intersection of V and
each connected component of Z and replacing V with their union, we may assume
that V is quasi-compact. By Lemma 3.1, the assumption on V yields injections

O2) = 0V), 0O(Zx Dép) — OV x D(ép) — OV xDg,).

From Lemma 4.16, we see that the intersection of O(Z x ’D(ép) and O(V x Dc,)
inside O(V x Dép) is the set of formal power series 3 -, a,T" with a, € O(2)
satisfying

lim supla,(2)] =0,

n—+00 ,cz

which is equal to O(Z x Dc,). O

Lemma 4.18.
OO(DEP) - O(Dcp)-

Proof. Let f = > ., a,T" be an element of OO(Dép). Consider the Newton
polygon of f. Then the assumption implies that any point (n,v,(a,)) lies above
the line y = —ra for any non-negative rational number r, which forces a,, = 0 for
any n < 0. (]
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Proposition 4.19. Let ¢ : Dép — (€lx)c, be a morphism of rigid analytic va-
rieties over C, such that the composite Dép — (€lx)c, — Ac, extends to an

n-analytic map D¢, — Ac,. Let (VDCP,MDCP) be the weight associated to the map
D¢, — Xc,. Suppose that, for some non-negative rational number v’ < (p—1)/p™,
we are given an element

f=(f)eercrtmym € @ O(Iwi,c(”')cp x Dép)
ce[CIH(F)]®

and an admissible affinoid covering DEP = U,cr Ui such that the restriction f|y,

for each i € I is an eigenform of SC(un, (WY, w"))(v') with eigensystem ©* :
T — O(D¢,) — OU;) and f(z) is normalized for any z € Dg . Then there exists
an eigenform ' € S (un, (WP, wP))(v') such that f'(2) is normalized for any
z € Dc, and it is an eigenform with eigensystem p*(z) : T — (’)(Dép) — C, for

any z € Dép.

Proof. Consider the map w%& : IW] (v')¢, — M(un,¢)(v')c, as before. Let S,
be an admissible affinoid open subset of M(uy,¢)(v')c, as in Corollary 4.12 (1).
Put Z, = (758)71(S,). Then Z. is an admissible open subset which meets every
connected component of ZW,, .(v')c, such that f.(z)|z, has absolute value bounded
by one for any z € D(ép. Hence f| 7.xpy lso has absolute value bounded by one.

Note that Z, is quasi-compact, since m,, is quasi-compact. By Lemma 4.16, we
can write

T Z anT"
Cp

ne”Z

with some a,, € O(Z.). Lemma 4.18 implies a,(z) = 0 for any z € Z. and any
n < 0. Since Z. is reduced, we obtain a,, = 0 for any n < 0 and thus

f"Itng c O(Ic X D(Cp).

Therefore, by Lemma 4.17 we see that f. extends to an element f. of O(IW;C(U’)CP X
Dc,).

Write D¢, = Sp(C,(T)). Note that the ring O(ZW,, .(v')¢c, % Dc,) is T-torsion
free. We claim that, if f. # 0, then there exists a non-negative integer m, satisfying

fe € T™O@W] (V)c, x Dc,) \ T OE@W (), x Dc,).
Indeed, since IWLC(U’ )c, is smooth, we can take an admissible affinoid covering
WS (e, = J ViV =5p(4))
JjeJ
such that every A; is a Noetherian domain. Suppose that
fee () TmO@WY (v)c, x Dc,).
m>0

Since A;(T) is also a Noetherian domain, Krull’s intersection theorem implies
fc|vj><DCp =0 for any j € J and thus f. = 0, which is a contradiction.
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Put m = min{m, | ¢ € [CI"(F)]®), f. # 0}. Let f! be the unique element of
O(IW$7C(UI)CP x Dc,) satisfying f. = T™ f{. Since the maps
O(IW:;,C(U/)(C,, X D([jp) — O(IWIJ(U/)C,; X 'Dép)
= [[o@wy (v)e, xt)
iel
are injective by Lemma 3.1, the element fc’ is also kP -equivariant and A-stable.

Moreover, note that the restriction map O(V x D¢,) — O(V x D(ép) is injective for

any C,-affinoid variety V. For the boundary divisor D of M(un,¢)(v')c,, we have
the commutative diagram

m

O((3#) (D) x De,) —— O((m%5)~1(D) x Dc,)

O((x) (D) x DZ,) — = O((x15) (D) x D, ).

where the vertical arrows are injective and the bottom arrow is bijective. This
implies that the element f; is a cusp form. Hence the collection f" = (f{).cicr+(mym
is an element of S (ux, (VP , wP% ))(v') such that f/(z) # 0 for any z € Dc,,.
Let A(n) be the image of T, (resp. S,) by the map ¢* : T — (’)(Dgp). By
Corollary 4.10, the specialization A(n)(z) is p-integral for any z € Dép. Thus
Lemma 4.18 shows A(n) € O(Dc,). By the above injectivity, we see that f"is an

eigenform on which Ty, (resp. Sy) acts by A(n). Now Lemma 4.13 concludes the
proof of the proposition. O

5. PROPERNESS AT INTEGRAL WEIGHTS

Let £ — WY be the Hilbert eigenvariety as in §3.3.3. Let D¢, be the unit disc
over Sp(C,) centered at the origin O and put D(ép = Dc, \ {O}. In this section, we
prove the following main theorem of this paper.

Theorem 5.1. Suppose that F is unramified over p and for any prime ideal p | p
of F, the residue degree f,, satisfies f, <2 (resp. p splits completely in F') forp > 3
(resp. p=2). Consider a commutative diagram

©
Dy — g,
J/ 4 l
G
DCP ’(ZJ W(C:D
of rigid analytic varieties over Cp,, where the left vertical arrow is the natural inclu-
sion. Suppose that ¥ (O) is 1-integral (resp. 1-doubly even) in the sense of §3.5.2.

Then there exists a morphism D¢, — &c, of rigid analytic varieties over C, such
that the above diagram with this morphism added is also commutative.

Before proving the theorem, we summarize the structure of the proof.

Step 1: By shrinking the disc, we reduce the theorem to the case where v is
l-analytic.
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Step 2: Using Proposition 4.15, we convert the map ¢ to an analytic function

f on

H Iwzyc(vtot)@p X D(E(p
c€[ClIH(F)]®)

with some small v > 0 such that locally on ’Dép it gives a normalized
eigenform with eigensystem determined by .
Step 3: By analytic continuation via the Up-operator, we extend f to

11 W (541)c, x DE .
ce[CIT(F)) @)

By Proposition 4.19, we may assume that f can be extended to the puncture
so that it defines a normalized eigenform over Dc,.

Step 4: Using results in §3.2, we show that U,f can be evaluated on the
connected neighborhood V?’Q’(Cp for any critical point ), modulo passing
to a finite covering r: Y}, — Ve .

Step 5: Supposing f(O) is of infinite slope, we deduce a contradiction by a
combinatorial argument using critical points in the spirit of Buzzard and
Calegari. Then Proposition 2.7 yields a desired extension of ¢ to Dc,.

Proof. Step 1. Let ey,..., e, be a basis of the Z,-module 2p(Or ® Z,) and put
E; = exp(e;) € 1+2p(Op®Z,). Similarly, let e;+1 be a basis of the Z,-module 2pZ,
and put Eg11 = exp(egt1) € 1+ 2pZ,. Let (v™,w"™) be the universal character
on WY, Note that ng is the disjoint union of finitely many copies of the open
unit polydisc defined by

|X1| < 1,...,‘Xg+1| <1

with parameters X1, ..., X,41: the connected components are parametrized by the
finite order characters

e: T(Z/2pZ) x (Z/2pZ)* — O¢,

and on each connected component, the point defined by X; — x; corresponds to
the character (v, w) satisfying v(E;) = 1+a; for any ¢ < g and w(Eg41) = 1+2g41.

Put ¢ =pif p > 3 and ¢ = 16 if p = 2. Since ¢(O) is l-integral, it comes from
a K-valued point of WY, which we also denote by 1(O). This corresponds to a
finite order character ¢p and a map X; — x; with some z; € qOg. For p = 2,
the assumption that ¢ (O) is 1-doubly even implies that e¢ is trivial on the torsion
subgroup of 1+ 2(OF ® Zs). Put B} = (—1)P"'E,. The group 1+ p(Or ® Z,) is
topologically generated by E;’s and E/’s. We have

(0, W) (By) = (v, w™) (B)) = 1+ X,

on the eo-component of W&, Let U = Sp(R) be the admissible affinoid open
subset of the ep-component of WY defined by |X; — z;| < |g| for any 4. Then
1+ X, =1+ +(X;—x;) €1+ ¢gR° and the universal character (v"*,w"") is
1-analytic on U.

We denote by D, c, the closed disc of radius p centered at the origin over C,.
Consider the element ¢*(X;)(T) of the ring O(Dc,) = C,(T’). Since ¥*(X;)(0) =
x;, there exists a positive rational number p < 1 such that

[t < p = [¥7(Xi) (1) — x| < g
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for any i. This means ¢/(D,.c,) C Uc,. If we can construct a morphism D, ¢, — Ec,
which makes the diagram in the theorem commutative, then by gluing we obtain
the desired map D¢, — &c,. Thus, by shrinking the disc, we may assume that 1
factors through Uc, .

Step 2. Put n =1 and v = v;. We may assume v < 1/(p + 1) so that we have

.A;l(,uN7 c)('Utot) Cc M(MN? C)(ﬁ)

By Remark 2.4, the rigid analytic variety Dép is principally refined. Applying
Proposition 4.15 to the map ¢ : D(ép — (€lu)c,, we obtain an element

fe @ o@wi. (v, x D)
ce[CIH+(F)]®
and an admissible affinoid covering Dép = U, Ui such that the restriction fly, for
each i € I is an eigenform of S (uy, (M, w"?))(vser) With eigensystem * : T —
O(Dg ) — O(U;) and f(2) is normalized for any z € D¢ .

Step 3. Since ¢* comes from the eigenvariety &, the Up-eigenvalue ¢*(U,) €
OU;) of flu, satisfies *(Up)(2) # 0 for any z € U;(C,), and thus we have
©*(Up) € OU;)*. Since U, improves the overconvergence from v to pv, taking
©*(Up)"*Up(fu,) repeatedly, we can find an eigenform

9; € SG(IU/Na (Vui7MUi))(p7L)

with eigensystem ¢* : T — O(Dép) — O(U;) which extends fly,. Note that for
any z € U;(C,) we have a commutative diagram

S, (M, W) (547) S (p, (M, wt)) (veor)

| |

S (uw, (W (2), w5 (2)) (57) —= S (uw, (0 (2), 0 (2))) (Vhor),

where the horizontal arrows are the restriction maps and the vertical arrows are
the specialization maps. This implies that the specialization g;(z) is also non-zero
for any z € U;(C,). Since the g-expansion is determined by the restriction to
the ordinary locus, g;(z) is also normalized for any z € U;(C,). Since the Hecke

eigenvalues of g;(z) are also given by the eigensystem ¢*(z) : T — O(U;) LN C,, a
gluing argument as in the proof of Proposition 4.15 shows that g;’s can be glued.
In other words, we may assume

fe @ 0@Wi.i)c, x D).
ce[CIH (F)](»)

By Proposition 4.19, we may replace f by an eigenform of the space S (i, (v, wPe» ) Gir)
such that every specialization on Dc, is normalized, which we also denote by

f = (f)eercr+ (F)m- By Lemma 3.13, we have an isomorphism

S (un, (W, w0)) (et ) O m,ok(2) 22 S (v, (V7% (2), WP (2))) (veor)
for any z € Dc,. Thus the map T — O(Dc,) defined by the eigenvalues of f is a
family of eigensystems in S (un, (4, w"))(vior) over D¢, such that its restriction
to D¢ is ¢* : T — O(Dg ). In particular, it is of finite slopes over D¢ . If f(O)
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is of finite slope, then Proposition 2.7 yields a morphism D¢, — & |ucp with the
desired property.

Step 4. Put ¢(0) = (v(0),w(0)) and k = k(v(0),w(0)), which are 1-integral
by assumption. Let k1 = (kg)gep, be the integral weight corresponding to the
restriction k[ro(z,). For any non-zero fractional ideal ¢ of F', let Xc = M(un, c)rie
be the Raynaud generic fiber of the p-adic formal completion M (uy, ) of M (py, c).
We also write X (v') = M(un,c)(v')8 for any v' < 1. For any v < (p — 1)/p
and the morphism hy : M(T1(p), pun, ©)(v') = M(un, c)(v'), we put h = hi® and
XL(0) = B LA ().

Consider the rigid analytic variety )., as in §3.2 and the natural projection
7 Vep = Xeo Put Vep(vV) = 77 1(X.(v')). For the universal p-cyclic subgroup
scheme H"" over Y ,, we put

V!, =Isomy,  (Dp' ® pp, H™).

We denote by 7 the natural projection V! p > Vep- Put 7t =7or and y1 () =

(771)*1(26}( ")). We write the base extensmns to C, of these maps also as h, 7, r and
1 respectively. We consider U} := X} ( 7)asa Zarlskl open subset of Y} p(p Jrl)

Then we have an isomorphism h*Q"‘ o~ ( ) Q%1 . . Note that the sheaf h*Q2" in

this case of 1-integral weight is isomorphic to the sheaf h*Q"1 ~ h*w:}l‘m as in
P

§3.3.1. The sheaf (7!)*Q"1 is defined over the whole rigid analytic variety V! ».Cp
and satisfies (7!)*Qr1 e = h*Q". Thus, when c lies in [C1T(F)]®), the element
f:(O) defines

ge = h"fe(0) = () fe(O)r . € HUee,, (7)™ (=D)),
on which any element a of the Galois group T(Z/pZ) of h : Ul — X, (p+1) acts
trivially. Namely, for any point [(A,u)] of U}(Q,) with an Op-closed immersion
w:Dp' @ p, — A and any a € T(Z/pZ), we have g.(A, au) = gc(A, u).

Moreover, we define ch,p as the scheme over K classifying triples (A, u, D) con-
sisting of a HBAV A over a base scheme over K with c-polarization, an Opg-closed
immersion u : D;l ® pp — A and a finite flat closed Op-subgroup scheme D which
is etale locally isomorphic to Op /pOF satistying Im(u) N.D = 0. We denote by Z!
the analytification of ch’p restricted to X.. We have two projections

qi: Z;”c,p - yziflc,p’ 92 Z;”c,p - yclvp
(A,u, D) — (A u) (A,u,D)— (A/D, ),

where 4 is the image of u in A/D. Put Z! (v') = ¢, (YL, (V).

We denote the restriction of the rigid analytic variety )! defined in §3.3.3

to (o7
to X, (p+1) also by Y. P(;D+1) We have a finite etale morphism

qlil(u;;*lc) - yzlflc,p(ﬁ)’ (A7u’ H) = (AvH)'

The base extensions of these maps to C, are also denoted by ¢, g2 and II, re-
spectively. By [Hat2, Corollary 5.3 (1)], we have ¢ '(U,_,,) C ¢ ' (U¢) and thus
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a U e c,) C 5 (Ul ). This yields commutative diagrams
— q
ug}cp u}} rec,) qll(u;qc’cp) 1 ~Ul, e,
hl ln nl lh
1 1 1 1
Yoo, = V()oY Grrle, = Gmrelfirles

where the latter is cartesian.
We have an isomorphism of changing polarizations

Ly : M(pn,¢) = M(un,p~'e),  (A,X) = (A,pA),

which induces an isomorphism X, ( 1) = Xp- and similarly for other rigid

(L)
analytic varieties defined above. Let xp €F X T be the element we fixed in §3.3.3 to

define U, and put z = p~* Ly, 20 € FX’*"(I’). Then [, also induces an isomorphism

v(0) (@)l : H (X1 (37 )c,, Q%) = HO (X (7 )c,, 25),

(o P

which is compatible with the map L;o[],, } on S (un,p~te, (v(0), w(O)))(ﬁ)
Note that, under the identification (4.1), by composing L, we identify the operator
U, with a tuple of endomorphisms on S%(ux, ¢, (V(O),U)(O)))(p%) for each ¢ €
I (P,

Take any point Q = [(A,H)] € Y. ,(Or) with some finite extension L/K such
that Hdggz(A) = p/(p+1) for any 8 € Br, which exists by Lemma 3.6. Consider the
admissible open subsets V, o, V?,Q,(cp and V?)Q)Cp(p%) of Yepc, defined in §3.2.
For the point 1,(Q) € Y,-1.,(OL), we also have similar admissible open subsets
Vp=161,(Q)s V;?—lc,lp(Q),Cp and V,?—lc,z,,(Q) c, (m) of ¥p-1¢p,c, Which are equal to
the images of Ve g, Ve o ¢, and Vg ¢ (
we have

5 Jrl) by l,, respectively. By Corollary 3.9,

4 T WVpren, @) S g5 UL

Taking the base extension, we also have

G0 @) € Ve @0)) € a7 Ule,).
Similarly, Lemma 3.10 shows r‘l(VS,lc,ZP(Q)ch (p+1 ) C L{ . Since the weight
#1 is integral, we have a natural isomorphism 7 : g3 (7 Ly Q"“l —> q; (m1)* Q" over

Z L p From these and the above commutative dlagramb, we see that the operator
U extends to an operator

Ug: H'Ul e, (7)) = HO(r ' (W gc,), (7))
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which makes the following diagram commutative.

HOWU e, () 27) — s HO(r L (W0 ), () 05

h* H (™ (Vg e, (7). (71)Q%)
I+
HO(X(7)c, . %) CAERIRD

P

Step 5. Now suppose that f(O) is of infinite slope. Then

(UQgc) P=1(V0 1 = (h*Upr(O))

=0.
.cp(pr1))

P10V g e, (D))

Since Vf)’Q’(Cp is connected and r is finite and etale, the map r defines a surjection
from each connected component of r~*(1? Q.C, ) to V? Q c, Since the admissible
open subset VY, ¢ (pil)
every connected component of r~ (Vc Q.C, ). Thus Lemma 3.1 implies Ugg, = 0.

In particular, if the point [(A4, A, £)] € Yc,p(OQp) satisfies Hdgz(A) = p/(p + 1) for
any B € Bp, then for any Op-isomorphism m : D;l ® pp ~ L, we have
(5.1) > 9:(A/D,pA,m) =0,

DrNLk=0

is non-empty, we see that r~ (Vc 0.C (ml_l)) intersects

where the sum is taken over the set of finite flat closed p-cyclic Op-subgroup schemes
D of Alp| satisfying Dx N Lk = 0 and A is the induced pe-polarization. We will
omit pA from test objects as above.

Lemma 5.2. For any p-cyclic Op-subgroup scheme H of A[p] and any O g-isomorphism
u: DR @ p, — (Alpl/H)k, we have g (A/H,u) = 0.

Proof. For any p-cyclic Op-subgroup scheme M of A[p], write M = @, M.
Similarly, any Op-closed immersion m : ’D7 ®pp — Ak defines a closed immersion
my : Dp' /pDp' @ pp — Alp]i for any p | p. By fixing a generator of the principal
Op-module Dy /pDF and a prlmltlve p-th root of unity in Q,, we identify an
Op-closed immersion m : Dj ' pp — Ag with an element of Afp ]((@p) Let B
be the set of maximal ideals of O dividing p. For any subset S C B, we put
S¢ =9\ S and
Ms=PM,, M =P M, My=M*=0.
pes pese

We define mg and m® similarly. We write Im(m) also as (m).

For any p | p, we fix non-zero elements ey 1 € H,(Q,) and e, 2 € A[p](Q,) such
that {ep 1,ep 2} forms a basis of the o/p-module A[p](Q,). Put I, = {ey1,apep1 +
ep2 | ap € 0/p} and eg; = (ep;)pes for ¢ = 1,2. We claim that, for any element
m? of [1pese Ips we have

(5.2) Z ge(A)(Hs x D%),e52 x mS) =0,

DEN{mS)=0



PROPERNESS OF THE HILBERT EIGENVARIETY 61

where the sum is taken over the set of finite flat closed (]],cge p)-cyclic Op-
subgroup schemes D? of A satisfying D7- N (m®) = 0.

To show the claim, we proceed by induction on #S. The case of S = 0 is
(5.1). Suppose that the claim holds for some S # 9B. Take p € S¢ and put
S’ = SU{p}. Fix m* € [l4e(sye 1q- Taking the sum of (5.2) over the set

{m® =my, xm% | m, € I}, we obtain

> X S A/ (Hs x Dy x D). a5y <y x m¥) =0

mp €Iy Dy kN(mp)=0 D5 N(mS')=0

We compute terms in this sum for each D,.

o 11 D,(Qy) = (0/p)ep = Hy(Q,) and Dy i 1 (my) = 0, then my = apeps +
ep,2 With some a, € o/p. In this case, m, is equal to the image €, 5 of e, 2.

e If D,(Q,) = (0/p)(apep1 + €p2) and Dy x N (my) = 0, then we have either
My = ep1 O My = bpey 1 +ep o with some b, # a, € o/p. In each case, M,
is equal to the element &, or (b, — ap)ép 1.

Thus the sum of the terms in which D,’s of the second case appear is equal to

P YT DT ge(A)(Hs x (o/p)(apepitepa) x DY),

DS N(mS’y=0ap€o0/p

es2 X epq X mS").

This equals

plr Z ge(A/(Hs x D%),es2 x ep1 x m%),

DEN(ep,1 xmS)=0
which is zero by the induction hypothesis (5.2). What remains is the sum of the
terms of D,’s of the first case, which equals
PP S g4/ (s x DY) esa xm®) =0
D N(mS"y=0

and the claim follows. Setting S = B, we obtain g.(A/H, ey 2) = 0. For any u as
in the lemma, the map u, corresponds to ayé, o for some a, € (o/p)*. Thus we
have

gE(A/H>u> = gc(A/Haé‘B,2) =0

and the lemma follows. O

Consider the admissible open subset of ). , defined by
{[(A, A, H)] | Hdgs(A) = p/(p+ 1) for any § € Bp}
and let V be a non-empty admissible affinoid open subset of it. Note that the map
W :Dep = Vepr (ANH) = (A/H,p\ Alpl/H)

is an isomorphism. By [Hat2, Proposition 6.1], we have r~1(W(V)) C U!. Con-
sider the base extensions W¢, : Ve pc, = Vepc, and V¢, where the latter is an
admissible affinoid open subset of V., c,. By Lemma 5.2, 7* f.(O) vanishes on the
subset W(V)(Q,) of the admissible affinoid open subset W¢, (Ve,) = W (V)¢

D
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Lemma 5.3. Let A be a reduced K-affinoid algebra. Put X = Sp(A), Ac, =
A®KC, and X¢, = Sp(Ac,). We consider the set X(Q,) as a subset of Xc,(Cp)
by the natural inclusion Qp — C,. Suppose that an element f € Ac, satisfies
f(z) =0 for any v € X(Q,). Then f = 0.

Proof. For any positive rational number &, we put
Ue ={z € X, | [f(2)] < e}
We can find an element f. € A ®x Q, such that
|(f — fo)(z)| < e for any x € Xc,.

Then we have U, = {z € Xc, | |fe(x)| < }. Take a finite extension L/K satisfying
f- € AL = A®k L. Put X;, = Sp(Ar). The assumption implies X (Q,) C UL,
namely |f.(x)| < e for any x € X(Qp). This shows X1, = {z € X, | |f-(2)| < ¢}.
Since the formation of rational subsets is compatible with base extensions, we have
Xc, = U. for any € > 0, which implies f(z) = 0 for any # € X¢,. Since Xc, is
reduced, we obtain f = 0 and the lemma follows. O

Since the invertible sheaf 7*(2" is the base extension to C,, of a similar invertible
sheaf over K, it is trivialized by the base extension of an admissible affinoid cov-
ering over K. By Lemma 5.3, we have 7" f¢(O)|w(v)., = 0. Thus fc(O) vanishes

on the admissible open subset m(W(V)¢,) of M(un, C)(ﬁ)cp- By Lemma 3.4,
M(MN,C)(ﬁ)CP is connected. By Lemma 3.1, we obtain f.(O) = 0 for any c,
which contradicts the fact that f(O) is normalized. This concludes the proof of the

theorem. m
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§3'4: 7T'w,Ofcpv 7’[1},0@117 hn,Ova M*(HNac)a m*(,uNac)(UtOt)7 M*(,UN,C)('Utot)a
P, P, poc,, Pe.

§4: [CL(F)]W, f.

§4'1: ga, RO’) OL[XSMX;tr]’ OL<X§T7X:>tr>’ L<X§T5X:>tr>7 g;igv S/V(gv g(l;ig’
(—)%;p7 Rg,ocp, Sg,ocp, gcg()cp, S, R07Ocp7 Ta,b> Ok, fel@), ao,cfl(f’g)

§4.2: A(n), (), pn, C"

§4.2.1: R, ., RO, Ry,

§4.3: M(un,¢, k)(0), S

§4.4: aﬁ{o(f, 1)

§5: U, X, Xc(vl)a h, Xcl(vl)v yc,p(vl)a T, ycl,pa 7T1a ycl,p(v/)v uclv 9oy ZC,p7 Zc,p7

q1, 92, Zc,p(v/)a II

q", Tateq,5(q")
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