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EIGENVARIETY AT INTEGRAL WEIGHTS: THE

CASE OF QUADRATIC RESIDUE FIELDS

SHIN HATTORI

Abstract. Let p be a rational prime. Let F be a totally real
number field such that F is unramified over p and the residue
degree of any prime ideal of F dividing p is ≤ 2. In this paper,
we show that the eigenvariety for ResF/Q(GL2), constructed by
Andreatta-Iovita-Pilloni, is proper at integral weights for p ≥ 3.
We also prove a weaker result for p = 2.
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1. Introduction

Let p be a rational prime and N a positive integer which is prime
to p. We fix an algebraic closure Q̄p of Qp and denote its p-adic com-
pletion by Cp. Let WQ be the weight space for GL2,Q, which is a rigid
analytic variety over Qp such that the set of Cp-valued points WQ(Cp)
is identified with the set of continuous homomorphisms Q×

p → C×
p .

In [CM, Buz], Coleman-Mazur and Buzzard defined a rigid analytic
curve CN with a morphism κ : CN →WQ such that the set of Cp-valued
points CN(Cp) is in bijection with the set of normalized overconvergent
elliptic eigenforms of tame level N which are of finite slopes, in such
a way that the eigenform f corresponding to a point x ∈ CN(Cp) is of
weight κ(x). The curve CN is called the Coleman-Mazur eigencurve,
and it has played an important role in arithmetic geometry, since it
turned out to be useful to control p-adic congruences of elliptic modular
forms. After their construction of the eigencurve, much progress has
been made to generalize it to the case of automorphic forms on algebraic
groups other than GL2,Q. Now we have, for various algebraic groups G
over a number field, a similar rigid analytic variety E to the Coleman-
Mazur eigencurve over a weight space WG for G, which is called the
eigenvariety for G.

Despite of their importance, we still do not know much about the
geometry of eigenvarieties. For example, we do not even know if an
eigenvariety has finitely many irreducible components. One of the
topics of active research is the smoothness of eigenvarieties at clas-
sical points. For the Coleman-Mazur eigencurve, we know that the
smoothness at classical points in many cases [BeC1, BD, Hid1, Kis1].
Belläıche-Chenevier [BeC2] studied tangent spaces of their eigenvariety
for unitary groups at certain classical points, and applied it to showing
the non-vanishing of a Bloch-Kato Selmer group. On the other hand,
Belläıche proved the non-smoothness of the eigenvariety for U(3) at
classical points [Bel]. It is natural to think that such geometric infor-
mation of eigenvarieties is related to deep p-adic properties of automor-
phic forms.

Another interesting topic, which this paper concerns with, is a proper-
ness of eigenvarieties over weight spaces. Since eigenvarieties are not
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of finite type over weight spaces, they are not proper in the usual
sense. Instead, we consider the following geometric interpretation of
the non-existence of holes: Let DCp = Sp(Cp⟨T ⟩) be the closed unit
disc centered at the origin O and D×

Cp
= DCp \ {O} the punctured disc.

For any quasi-separated rigid analytic variety X , we write XCp for the
base extension of X to Sp(Cp). Suppose that we have a commutative
diagram of rigid analytic varieties

D×
Cp

//

��

ECp

��
DCp

//

==

WG
Cp
,

where the vertical arrows are the natural maps. Then we say that
the eigenvariety E is proper if there exists a morphism DCp → ECp such
that the above diagram is still commutative with this morphism added.
Roughly speaking, this means that any family of overconvergent eigen-
forms of finite slopes on G parametrized by the punctured disc can
always be extended to the puncture. However, note that what eigenva-
rieties parametrize are in general not eigenforms themselves but eigen-
systems occurring in the space of overconvergent automorphic forms.
We also note that the naive interpretation of the non-existence of holes
that any p-adically convergent sequence of overconvergent eigenforms
of finite slopes converges to an overconvergent eigenform of finite slope,
is false [CS, Theorem 2.1].

For the properness of the Coleman-Mazur eigencurve CN , Buzzard-
Calegari first proved the properness of CN for the case where p = 2
and N = 1 [BuC]. It was followed by Calegari’s result [Cal] on the
properness of CN at integral weights: he showed the existence of the
map DCp → CN,Cp as in the definition of the properness if the image of
the puncture O in the weight space corresponds to a classical weight.
One of the key points of their proofs is to show that any non-zero
overconvergent elliptic eigenform of infinite slope does not converge on
a certain region of a modular curve, while any overconvergent elliptic
eigenform of finite slope does converge on a larger region. In [BuC],
they deduced the former from the theory of canonical subgroups, es-
pecially a behavior of the Up-correspondence for elliptic curves with
Hodge height p/(p + 1), while the latter is a consequence of a stan-
dard analytic continuation argument via the Up-operator. Recently,
the properness of the Coleman-Mazur eigencurve was proved in full
generality by Diao-Liu [DL] by using p-adic Hodge theory, especially
the theory of trianguline p-adic representations in families.
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For algebraic groups other than GL2,Q, the properness of eigenvari-
eties has not been known. Note that in Diao-Liu’s proof of the proper-
ness of the Coleman-Mazur eigencurve, in order to apply p-adic Hodge
theory, it seems crucial that we have a Galois representation, not just
a Galois pseudo-representation, over (the normalization of) the eigen-
curve. This is a consequence of the fact that we can convert pseudo-
representations into representations over smooth rigid analytic curves
[CM, Remark after Theorem 5.1.2]. Thus at present it is unclear if
their proof can be generalized to show the properness of eigenvarieties
of dimension greater than one on the components where the residual
Galois representations attached to automorphic forms are absolutely
reducible.

The aim of this paper is to generalize the method of Buzzard and
Calegari to the case of Hilbert modular forms and to obtain the proper-
ness of the Hilbert eigenvariety constructed by Andreatta-Iovita-Pilloni
[AIP2] at integral weights in some cases.

To state the main theorem, we fix some notation. For any totally real
number field F with ring of integers OF , put G = ResF/Q(GL2) and
T = ResOF /Z(Gm). Let K/Qp be a finite extension such that F ⊗ K
splits completely. Let WG be the weight space for G over K as in
[AIP2, §4.1]. By definition, we have

WG = Spf(OK [[T(Zp)× Z×
p ]])

rig

and the set of Cp-valued points WG(Cp) can be identified with the set
of pairs of continuous characters

ν : T(Zp)→ C×
p , w : Z×

p → C×
p .

We say that the weight (ν, w) is 1-integral if its restriction to 1+p(OF⊗
Zp)× (1+pZp) comes from an algebraic character T×Gm → Gm. This
restriction corresponds to a pair ((kβ)β, k0) of a tuple (kβ)β of integers
indexed by the set of embeddings β : F → K and an integer k0. We
say that a 1-integral weight is 1-even if every kβ and k0 are even. Then
the main theorem in this paper is the following.

Theorem 1.1 (Theorem 6.1). Let F be a totally real number field
which is unramified over p. Let K/Qp be a finite extension in Q̄p such
that F ⊗K splits completely. Let N ≥ 4 be an integer prime to p. Let
E → WG be the Hilbert eigenvariety of tame level N over K constructed
in [AIP2, §5].

Suppose that for any prime ideal p of F dividing p, the residue degree
fp of p satisfies fp ≤ 2 (resp. p splits completely in F ) if p is odd (resp.
even). Then E is proper at 1-integral (resp. 1-even) weights. Namely,
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any commutative diagram of rigid analytic varieties over Cp

D×
Cp

φ //

��

ECp

��
DCp ψ

//

==

WG
Cp

can be filled with the dotted arrow if ψ(O) corresponds to a 1-integral
(resp. 1-even) weight.

For the proof, we basically follow the idea of Buzzard and Calegari
[BuC, Cal]. Thus the key step in our case is also to show that any
non-zero overconvergent Hilbert eigenform f of 1-integral weight and
infinite slope does not converge on the locus where all the partial Hodge
heights are no more than 1/(p+ 1) in a Hilbert modular variety.

Let us explain briefly how to show this non-convergence property,
following [BuC]. For simplicity, we assume that f is of integral weight,
namely the weight (ν, w) corresponds to an algebraic character T ×
Gm → Gm. For any Hilbert-Blumenthal abelian variety (HBAV) A
with an OF -action over the integer ring OL of a finite extension L/K,
we say that a finite flat closed OF -subgroup scheme H of A over OL
is p-cyclic if its generic fiber is etale locally isomorphic to the constant
group scheme OF/pOF . We say that A is critical if every β-Hodge

height of A is equal to p/(p+ 1) for any embedding β : F → K. Then
we show that for any critical A and any p-cyclic subgroup scheme H of
A, the quotient A/H has the canonical subgroup A[p]/H of level one
and its β-Hodge heights are all 1/(p + 1) (Proposition 3.12). This is
where the assumption on residue degrees is used in the most crucial
way. It is unclear if the claim holds without this assumption: At least,
we have a counterexample of a similar assertion for truncated Barsotti-
Tate groups if we drop the assumption on fp (Remark 3.13).

Consider the Hilbert modular variety classifying pairs (A,H) of a
HBAV A and its p-cyclic subgroup scheme H. Let U be the locus
where H is the canonical subgroup of A. Another thing we need here
is to show that for any (A,H) with A critical, the corresponding point
[(A,H)] of the Hilbert modular variety has a connected admissible affi-
noid open neighborhood intersecting U such that, if an overconvergent
Hilbert eigenform f of integral weight converges on the locus where
all the β-Hodge heights are ≤ 1/(p + 1), then we can evaluate Upf
on this neighborhood (Proposition 4.6). This implies that, if f is in
addition of infinite slope, then we have (Upf)(A,H) = 0 for any critical
A and any p-cyclic subgroup scheme H. From this, by a combinatorial
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argument (Lemma 6.2), we obtain f(A/H, A[p]/H) = 0 for any such
(A,H), which yields f = 0 and the above non-convergence property
follows. It seems that this argument using a connected neighborhood
cannot be generalized immediately to the case where f is not of locally
algebraic weight, since in this case Upf is defined only on the locus U
(even after taking a finite etale cover) and it cannot be evaluated for
any critical A.

Note that the theory of canonical subgroups of level one for the
Hilbert case was established by Goren-Kassaei [GK]. In this paper,
we re-interpret and slightly generalize their result using the Breuil-
Kisin classification of finite flat group schemes, following the author’s
previous works [Hat2, Hat3] and Tian’s [Tia]. This construction of
canonical subgroups via the Breuil-Kisin classification gives a more
precise theory of canonical subgroups of higher level than in [AIP2].
This enables us to enlarge the locus in the Hilbert modular variety
where the sheaves of overconvergent Hilbert modular forms are defined
from the original locus given in [AIP2], and to include the case of p < 5
in the main theorem.

What the Hilbert eigenvariety E of [AIP2] parametrizes are eigen-
systems in the space of overconvergent Hilbert modular forms. Thus,
to follow the strategy of Buzzard and Calegari to reduce the proper-
ness to the above non-convergence property of overconvergent modular
forms, we have to convert a family of eigensystems of finite slopes, or a
morphism from a rigid analytic variety to E , into a family of eigenforms
and vice versa. The latter direction can be treated (Proposition 2.7)
as in the proof of [BeC2, Proposition 7.2.8]. For the former direction,
we first prove that any family of eigensystems over any smooth rigid
analytic variety over Cp can be lifted locally to a family of eigenforms
(Proposition 2.5). This can be considered as a version of Deligne-
Serre’s lifting lemma [DS, Lemme 6.11]. Then we glue the local eigen-
forms using a weak multiplicity one result, after we normalize the local
eigenforms with respect to the first q-expansion coefficient (Proposition
5.15). This use of the weak multiplicity one and the normalization via
a q-expansion coefficient hinders us from generalizing the main theorem
to the case of GSp2g where the sheaf of overconvergent Siegel modu-
lar forms and the Siegel eigenvariety are constructed in a similar way
[AIP].

Once we have a family of overconvergent Hilbert eigenforms f of
finite slopes parametrized by D×

Cp
associated to the family of eigen-

systems φ : D×
Cp
→ ECp , we extend its domain of definition in the
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Hilbert modular variety as large as possible by an analytic continua-
tion using the Up-operator. Since the Hecke eigenvalues are of absolute
values bounded by one, we can show that the q-expansion defines a
rigid analytic function around a cusp parametrized by D×

Cp
which is of

absolute value bounded by one. Such a function automatically extends
to the puncture, and a gluing shows that f also extends to the punc-
ture (Proposition 5.19). Since we analytically continued f to a large
region, the specialization f(O) at the puncture is also defined over the
same large region. Thus the non-convergence property of eigenforms of
infinite slope mentioned above implies that f(O) is also of finite slope,
which gives us an extended map DCp → ECp .

The organization of this paper is as follows. In Section 2, we recall
Buzzard’s eigenvariety machine [Buz] on which the construction of the
Hilbert eigenvariety in [AIP2] relies, and we prove results to convert a
family of eigensystems into local eigenforms and vice versa. Section 3
is devoted to developing the theory of canonical subgroups using the
Breuil-Kisin classification of finite flat group schemes. In particular,
we prove the key result on a behavior of the Up-correspondence on the
critical locus. In Section 4, we recall the definition of overconvergent
Hilbert modular forms and the construction of the Hilbert eigenvariety,
both due to Andreatta-Iovita-Pilloni [AIP2], including generalizations
of some of their results to the case over Cp. We also give a connected
neighborhood of any critical point in a Hilbert modular variety, which
is another key ingredient of the proof of Theorem 1.1. In Section 5, we
prove properties of the q-expansion for overconvergent Hilbert modular
forms. These are used to produce a global eigenform by gluing local
eigenforms obtained from a family of eigensystems, and also to extend
a family of overconvergent Hilbert eigenforms over the punctured unit
disc to the puncture. Combining these results, we prove Theorem 1.1
in Section 6.
Acknowledgments. The author would like to thank Fabrizio An-
dreatta, Ruochuan Liu and Vincent Pilloni for kindly answering his
questions on their works, and Tadashi Ochiai for helpful comments on
an earlier draft. He also would like to thank Shu Sasaki for enlightening
discussions on p-adic modular forms and encouragements.

2. Lemmata on Buzzard’s eigenvariety

Let p be a rational prime and K a finite extension of Qp in Q̄p.
In this section, we establish two lemmata on Buzzard’s eigenvariety
machine [Buz]. In the first lemma, we show that any family of Hecke
eigensystems over a smooth rigid analytic variety over Cp lifts locally to
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a family of eigenforms. The second one enables us to convert any family
of Hecke eigensystems of finite slopes over a reduced rigid analytic
variety into a morphism to the eigenvariety.

2.1. Buzzard’s eigenvariety machine. First we briefly recall the
construction of Buzzard’s eigenvariety. Let R be a reduced K-affinoid
algebra. Let M be a Banach R-module satisfying the condition (Pr)
of [Buz, §2]. We write Endcont

R (M) for the R-algebra of continuous R-
endomorphisms of M . Let T be a commutative K-algebra endowed
with a K-algebra homomorphism T → Endcont

R (M). Let ϕ be an el-
ement of T. Suppose that ϕ acts on M as a compact operator. We
call such a quadruple (R,M,T, ϕ) an input data for the eigenvariety
machine over K.

For suchM andM ′, a continuous R-linear T-module homomorphism
α : M ′ → M is called a primitive link if there exists a compact R-
linear T-module homomorphism c : M → M ′ such that ϕ acts on M
as α ◦ c and it acts on M ′ as c ◦ α. A continuous R-linear T-module
homomorphism α : M ′ → M is called a link if it is the composite of a
finite number of primitive links.

Let P (T ) = 1 +
∑

n≥1 cnT
n be the characteristic power series of ϕ

acting onM , which is an element of the ring R{{T}} of entire functions
over R. The spectral variety Zϕ for ϕ is the closed analytic subvariety
of Sp(R)×A1 defined by P (T ). We denote the projection Zϕ → Sp(R)
by f .

The eigenvariety E associated to (R,M,T, ϕ) is the rigid analytic
variety over Zϕ defined as follows: Let C be the set of admissible affi-
noid open subsets Y of Zϕ satisfying the condition that there exists an
affinoid subdomain X of Sp(R) such that Y ⊆ f−1(X) and the map
Y → X induced by f is finite and surjective. We can show that C is
an admissible covering of Zϕ [Buz, §4, Theorem], and we refer to C as
the canonical admissible covering of Zϕ.

Let Y = Sp(B) be an element of C andX = Sp(A) as above. Suppose
that X is connected. Then the A-algebra B is projective of constant
rank d. In the ring of entire functions A{{T}} over A, we can show
that P (T ) can be written as P (T ) = Q(T )S(T ) with some S(T ) ∈
A{{T}} and a polynomial Q(T ) of degree d over A with constant term
one, and that we have a natural isomorphism A[T ]/(Q(T )) ≃ B. Put
Q∗(T ) = T dQ(T−1). By the Riesz theory [Buz, Theorem 3.3], the
restriction MA of M to X = Sp(A) can be uniquely decomposed as
MA = N ⊕ F , where N is a projective A-module of rank d such that
Q∗(ϕ) acts on N as the zero map and it acts on F as an isomorphism.
Since Q∗(0) ̸= 0, the operator ϕ is invertible on N . Let T(Y ) be the
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A-subalgebra of Endcont
A (N) generated by the image of T. Then the

A-algebra T(Y ) is finite and thus a K-affinoid algebra. Moreover, we
have a natural A-algebra homomorphism A[T ]/(Q(T )) ≃ B → T(Y )
sending T to (ϕ|N)−1. Put E(Y ) = Sp(T(Y )). If X is not connected,
by decomposing X into connected components as X =

⨿
iXi, we put

E(Y ) =
⨿

i E(Y |Xi
). Then these local pieces can be glued along the

admissible covering C and define the eigenvariety E → Zϕ [Buz, §5]. By
[Buz, Lemma 5.3], the rigid analytic varieties E and Zϕ are separated.

By the construction, the natural map E → Zϕ is finite and the struc-
ture morphism E → Sp(R) is locally (with respect to both the source
and the target) finite. Moreover, we have a K-algebra homomorphism
T→ O(E) such that, for any admissible affinoid open subset V of Zϕ,
the induced map T⊗K O(V )→ O(E|V ) is surjective.

In some cases we can glue this construction to define the eigenvariety
over a non-affinoid base space. LetW be a reduced rigid analytic vari-
ety over K. Let T be a commutative K-algebra and ϕ an element of T.
Suppose that, for any admissible affinoid open subset X ⊆ W , we are
given a Banach O(X)-module MX satisfying the condition (Pr) with a
K-algebra homomorphism T → Endcont

O(X)(MX) such that the image of
ϕ is a compact operator. Suppose also that for any admissible affinoid
open subsets X1 ⊆ X2 ⊆ W , we have a continuous O(X1)-module ho-
momorphism α :MX1 →MX2⊗̂O(X2)O(X1) which is a link and satisfies
a cocycle condition. Then the eigenvarieties for (O(X),MX ,T, ϕ) can
be patched into the eigenvariety E → Zϕ →W [Buz, Construction 5.7],
where Zϕ denotes the spectral variety overW constructed by gluing the
spectral varieties over X.

Let L/K be an extension of complete valuation fields (of height one).
For any quasi-separated rigid analytic variety X over K and any co-
herent OX -module F , we can define base extensions XL := X⊗̂KL and
FL of X and F functorially (see [BGR, 9.3.6] and [Con1, §3.1]). If
the extension L/K is finite, then they are just the fiber product and
the pull-back in the usual sense. Otherwise, it seems unclear if it has
usual properties as a fiber product: for an open immersion j : U → X ,
what we know in this case is that the base extension jL : UL → XL
is also an open immersion if j is quasi-compact (for example, if X
is quasi-separated and U is an admissible affinoid open subset) or a
Zariski open immersion. At any rate, [BGR, Proposition 9.3.6/1 and
Corollary 9.3.6/2] implies that the base extension takes any admissible
affinoid covering of X to that of XL. We write the set of L-valued
points XL(L) also as X (L).
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We say that a K-algebra homomorphism λ : T → L is an L-valued
eigensystem inM if there exist an admissible affinoid open subset X ⊆
W , an element x ∈ X(L) given by a K-algebra homomorphism x∗ :
O(X) → L and a non-zero element m of MX⊗̂O(X),x∗L such that we
have hm = λ(h)m for any h ∈ T. It is said to be of finite slope if
λ(ϕ) ̸= 0. Then there exists a natural bijection between E(L) and the
set of L-valued eigensystems λ in M of finite slopes [Buz, Lemma 5.9].
We state the following lemma for the reference, which is in fact shown
in [Buz].

Lemma 2.1. Let (R,M,T, ϕ) be an input data for the eigenvariety
machine over K and let E → Zϕ be the associated eigenvariety over
X = Sp(R). Let L/K be an extension of complete valuation fields and
take z ∈ E(L). Let x ∈ X(L) and y ∈ Zϕ(L) be the images of z. Let
λ : T → L be the L-valued eigensystem in M corresponding to z. Let
m be a non-zero element of M⊗̂R,x∗L satisfying hm = λ(h)m for any
h ∈ T. Take an admissible affinoid open subset V in the canonical
admissible covering of Zϕ satisfying y ∈ V (L). Put W = f(V ) =
Sp(A). Suppose W is connected. Let P (T ) be the characteristic power
series of ϕ acting onM , Q(T ) the factor of P (T ) in A{{T}} associated
to V and MA = N ⊕ F the corresponding decomposition of MA, as
above.

(1) λ(h) = h(z) in L, where h(z) is the specialization at z of the
image of h by the map T→ O(E).

(2) The decomposition

M⊗̂R,x∗L = N ⊗A,x∗ L⊕ F ⊗̂A,x∗L

is the one corresponding to the factor Qx(T ) of Px(T ), where
Px(T ) and Qx(T ) are the images of P (T ) and Q(T ) in L{{T}}
by x∗, respectively.

(3) Qx(λ(ϕ)
−1) = 0 and m ∈ N⊗A,x∗L.

Proof. The first assertion follows from the proof of [Buz, Lemma 5.9].
The second one follows from [Buz, Lemma 2.13] and the uniqueness of
the decomposition in [Buz, Theorem 3.3]. For the third one, note that
the definition of the map E(V )→ V implies Qx(λ(ϕ)

−1) = Q∗
x(λ(ϕ)) =

0. Since Q∗
x(ϕ)m = Q∗

x(λ(ϕ))m = 0, the second assertion implies
m ∈ N⊗A,x∗L. □

2.2. Lifting lemma à la Deligne-Serre. In this subsection, we con-
sider the problem of converting a family of eigensystems into a family
of eigenforms. First we show the following local lemma.
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Lemma 2.2. Let L be a complete valuation field which is algebraically
closed. Let A be an L-affinoid algebra and let N be a projective A-
module of finite rank. Let T be a finite A-algebra equipped with an A-
algebra homomorphism T → EndA(N). Let S be an L-affinoid algebra
which is an integral domain and let φ : T → S be a homomorphism of
L-affinoid algebras. For any x ∈ Sp(S), we write mx for the associated
maximal ideal of S. Assume that, for any x ∈ Sp(S), the induced map

φ(−)(x) : T → S/mx

is an S/mx-valued eigensystem in N . Namely, we assume that, for any
x ∈ Sp(S), there exists a non-zero element fx ∈ N ⊗A S/mx satisfying
(h⊗ 1)fx = (1⊗ φ(h)(x))fx for any h ∈ T .

(1) There exists a non-zero element F ∈ N ⊗A S satisfying (h ⊗
1)F = (1⊗ φ(h))F for any h ∈ T .

(2) Assume moreover that S is a principal ideal domain. We write
F (x) for the image of F in N ⊗A S/mx. Then there exists F as
in (1) satisfying F (x) ̸= 0 for any x ∈ Sp(S).

Proof. Put P = Ker(φ : T → S), which is a prime ideal of T . Consider
the multiplication map µ : T ⊗A T/P → T/P , and put

Q = Ker(µ) = Ker(T ⊗A T/P → T/P → S).

Then the ideal Q is a minimal prime ideal. Indeed, since the A-algebra
T is finite, the T/P -algebra T ⊗A T/P is also finite and thus the latter
ring is a finite extension of a quotient of T/P . Since the quotient
(T ⊗A T/P )/Q is isomorphic to T/P , we have the inequality

dim(T/P ) ≥ dim(T ⊗A T/P ) ≥ ht(Q) + dim(T/P ),

which implies ht(Q) = 0.
The ideals nx = φ−1(mx) and n̄

′
x = (φ◦µ)−1(mx) are maximal ideals

of the rings T and T ⊗A T/P , respectively. We write n̄x for the inverse
image of mx by the map T/P → S, which is also a maximal ideal. Via
the map 1 ⊗ φ : T ⊗A T/P → T ⊗A S, the ring T ⊗A T/P acts on
N ⊗A S/mx for any x ∈ Sp(S).

First we claim that n̄′
x = AnnT⊗AT/P (fx). Since n̄′

x is a maximal
ideal and fx ̸= 0, it is enough to show n̄′

x ⊆ AnnT⊗AT/P (fx). Since
L is algebraically closed, the ideal Im(nx ⊗A T/P ) + Im(T ⊗A n̄x) is
a maximal ideal contained in n̄′

x, and thus they are equal. For any
h ∈ T , we denote its image in T/P by h̄. Take elements h ∈ T
and h′ ∈ nx. We have (h ⊗ h̄′)fx = 0. On the other hand, we also
have (h′ ⊗ 1)fx = (1 ⊗ φ(h′)(x))fx = 0 by assumption. This implies
(h′ ⊗ h̄)fx = 0 and the claim follows.
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Next we claim that the localization (N ⊗A T/P )Q of the T ⊗A T/P -
module N ⊗A T/P at Q is non-zero. Suppose the contrary. Since the
T ⊗A T/P -module N ⊗A T/P is finite, we can find s /∈ Q satisfying
s(N ⊗A T/P ) = 0. Take any x ∈ Sp(S). We have s(N ⊗A T/nx) = 0.
Since L is algebraically closed, we have L = T/nx = S/mx and we
also see that s(N ⊗A S/mx) = 0. In particular, we have sfx = 0 and
s ∈ AnnT⊗AT/P (fx) = n̄′

x. Thus we obtain

s ∈
∩

x∈Sp(S)

n̄′
x =

∩
x∈Sp(S)

(φ ◦ µ)−1(mx) = (φ ◦ µ)−1(
∩

x∈Sp(S)

mx).

The assumption that S is a reduced L-affinoid algebra implies∩
x∈Sp(S)

mx = 0.

Hence s ∈ Ker(φ ◦ µ) = Q, which is a contradiction.
Therefore we obtain Q ∈ SuppT⊗AT/P

(N ⊗A T/P ). Since Q is a
minimal prime ideal, it is also contained in AssT⊗AT/P (N ⊗A T/P ).
Namely, the prime ideal Q is written as Q = AnnT⊗AT/P (G) with some
non-zero element G of N ⊗A T/P . Since the A-module N is projective,
the natural map 1⊗φ : N ⊗AT/P → N ⊗AS is an injection. Thus the
image F = (1⊗ φ)(G) is non-zero. Moreover, since h⊗ 1− 1⊗ h̄ ∈ Q
for any h ∈ T , we have the equality (h ⊗ 1)G = (1 ⊗ h̄)G. Hence we
obtain (h⊗ 1)F = (1⊗ φ(h))F and the assertion (1) follows.

Now assume that S is a principal ideal domain. Then each maximal
ideal mx of S is generated by a single element tx. Put

Σ(F ) = {x ∈ Sp(S) | F (x) = 0}.

Since the A-module N is projective and the Krull dimension of S is no
more than one, we see that Σ(F ) is a finite set. For any x ∈ Σ(F ),
the element F lies in Ker(N ⊗A S → N ⊗A S/mx) = mx(N ⊗A S). By
Krull’s intersection theorem, there exists a positive integer cx satisfying
F ∈ tcxx (N ⊗A S) \ tcx+1

x (N ⊗A S). Put F = tcxx H with some non-
zero element H of N ⊗A S. We have H(x) ̸= 0 and Σ(H) ⊊ Σ(F ).
Since the S-module N ⊗A S is torsion free, the element H also satisfies
(h⊗ 1)H = (1⊗φ(h))H for any h ∈ T . Repeating this, we can find F
as in the assertion (1) satisfying Σ(F ) = ∅. □

Remark 2.3. Let Sp(S) be a connected affinoid subdomain of the unit
disc DCp = Sp(Cp⟨T ⟩). Note that Cp⟨T ⟩ is a principal ideal domain,
since it is a unique factorization domain of Krull dimension one. [BGR,
Proposition 7.2.2/1] implies that S is a regular ring of Krull dimension
no more than one such that every maximal ideal is principal. Since
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Sp(S) is connected, we see that S is a principal ideal domain. Hence
the assumption of Lemma 2.2 (2) is satisfied in this case.

We say that a rigid analytic variety X is principally refined if any
admissible covering of X has a refinement by an admissible affinoid
covering X =

∪
i∈I Ui such that the affinoid algebra of each affinoid

open subset Ui in the refined covering is a principal ideal domain.

Remark 2.4. Remark 2.3 implies that any open subvariety of DCp is
principally refined.

For the eigenvariety associated to an input data (R,M,T, ϕ), the
above lemma implies the following proposition.

Proposition 2.5. Let (R,M,T, ϕ) be an input data for the eigenvariety
machine over K and let E → Zϕ → Sp(R) be the associated eigenvari-
ety. Let L/K be an extension of complete valuation fields such that L
is algebraically closed. Let X be a smooth rigid analytic variety over L
and let φ : X → EL = E⊗̂KL be a morphism of rigid analytic varieties
over L.

(1) There exist an admissible affinoid covering X =
∪
i∈I Ui and

a non-zero element Fi ∈ M⊗̂RO(Ui) for each i ∈ I satisfying
(h ⊗ 1)Fi = (1 ⊗ φ∗(h))Fi for any h ∈ T, where φ∗ : T →
O(E)→ O(Ui) is the map induced by φ.

(2) Assume moreover that X is principally refined. We write k(x)
for the residue field of x ∈ Ui and Fi(x) for the image of Fi in
M⊗̂Rk(x). Then we can find Fi as in (1) satisfying Fi(x) ̸= 0
for any x ∈ Ui.

Proof. Let C be the canonical admissible covering of Zϕ. For any V ∈ C,
we have the K-affinoid variety E(V ) = Sp(T(V )), as before. Then
EL =

∪
V ∈C E(V )L is an admissible affinoid covering of EL. Let f :

Zϕ → Sp(R) be the natural projection and write as f(V ) = Sp(A).
For any V ∈ C such that f(V ) is connected, take an admissible affinoid
covering φ−1(E(V )L) =

∪
i∈IV Ui such that Ui = Sp(Si) is connected

for any i ∈ IV . From the construction of the eigenvariety, we have a
natural decomposition M⊗̂RA = N ⊕ F into closed A-submodules N
and F . Note that the A-module N is finite and projective. Since the
complete tensor product commutes with the direct sum, the Si-module
N ⊗A Si is a submodule of M⊗̂RSi.

For any i ∈ IV , consider the natural map φ∗ : T→ T(V )→ Si. For
any x ∈ Ui = Sp(Si), the composite Sp(k(x)) → Ui → EL corresponds
to a k(x)-valued eigensystem of T in M of finite slope. Namely, there
exists a non-zero element gx of M⊗̂Rk(x) = N⊗Ak(x) ⊕ F ⊗̂Ak(x)
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satisfying (h⊗1)gx = (1⊗φ∗(h)(x))gx for any h ∈ T and (ϕ⊗1)gx ̸= 0.
Lemma 2.1 (3) implies gx ∈ N⊗Ak(x). Since Ui is connected and
smooth, the ring Si is an integral domain. Applying Lemma 2.2 (1)
to (A⊗̂KL,N⊗̂KL,T(V )⊗̂KL, Si), we obtain a non-zero element Gi ∈
N ⊗A Si = (N⊗̂KL)⊗̂A⊗̂KL

Si satisfying (h ⊗ 1)Gi = (1 ⊗ φ∗(h))Gi

for any h ∈ T. Setting Fi to be the image of Gi by the injection
N ⊗A Si →M⊗̂RSi, the assertion (1) follows.

For the assertion (2), by assumption we may assume that each Si is
a principal domain. Then Lemma 2.2 (2) allows us to find Gi satisfying
in addition Gi(x) ̸= 0 for any x ∈ Ui. Since we have a commutative
diagram

N ⊗A Si �
� //

��

M⊗̂RSi

��

N ⊗A k(x) �
� // M⊗̂Rk(x)

such that the horizontal arrows are injective, we obtain Fi(x) ̸= 0 for
any x ∈ Ui. □

2.3. Belläıche-Chenevier’s argument. Let (R,M,T, ϕ) be an input
data for the eigenvariety machine over K and let E → Zϕ → Sp(R)
be the associated eigenvariety. Let L/K be an extension of complete
valuation fields. Put RL = R⊗̂KL. Let X be a rigid analytic variety
over L equipped with a morphism κ : X → Sp(RL). For any x ∈ X,
we have a natural ring homomorphism κ∗(x) : R → k(x). A ring
homomorphism φ : T → O(X) is said to be a family of eigensystems
in M over X if, for any x ∈ X, there exists a non-zero element fx of
M⊗̂R,κ∗(x)k(x) such that (h ⊗ 1)fx = (1 ⊗ φ(h)(x))fx for any h ∈ T.
It is said to be of finite slopes if φ(ϕ)(x) ̸= 0 for any x ∈ X. This
is the same as saying that φ(ϕ) ∈ O(X)×. In this subsection, we
show that we can convert a family of eigensystems of finite slopes over
a reduced base space into a morphism to the eigenvariety, following
[BeC2, Proposition 7.2.8]. First we recall the following lemma.

Lemma 2.6. (1) Let f : X → Y be a morphism of rigid analytic
varieties over L with X reduced. Let Z be a closed analytic
subvariety of Y . Suppose f(X) ⊆ Z. Then f factors through
Z.

(2) Let f, f ′ : X → Y be two morphisms of rigid analytic varieties
over L with X reduced and Y separated. Suppose that these
morphisms define the same map between the underlying sets.
Then f = f ′.
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Proof. For the first assertion, we may assume that X = Sp(R1), Y =
Sp(R2) and Z = Sp(R2/I) for some ideal I of R2. Consider the as-
sociated ring homomorphism f ∗ : R2 → R1 and put J = Ker(f ∗).
By assumption, every maximal ideal m of R1 satisfies (f ∗)−1(m) ⊇ I.
Since R1 is Jacobson and reduced, we obtain

I ⊆
∩

m∈Sp(R1)

(f ∗)−1(m) = (f ∗)−1(
∩

m∈Sp(R1)

m) = (f ∗)−1(0) = J.

Hence the assertion (1) follows. The second assertion follows from the
first one applied to (f, f ′) : X → Y ×L Y and the diagonal Y →
Y ×L Y . □
Proposition 2.7. Let (R,M,T, ϕ) be an input data for the eigenvariety
machine over K and let E → Zϕ → Sp(R) be the associated eigenva-
riety. Let L/K be an extension of complete valuation fields. Let X
be a reduced rigid analytic variety over L equipped with a morphism
κ : X → Sp(RL). Suppose that we have a family of eigensystems of
finite slopes φ : T → O(X) in M over X. Then there exists a unique
morphism Φ : X → EL such that the diagram

X
Φ //

κ ##G
GG

GG
GG

GG
EL

��
Sp(RL)

is commutative and, for any x ∈ X, the eigensystem over k(x) corre-

sponding to Sp(k(x))→ X
Φ→ EL is the map φ(−)(x) : T→ k(x).

Proof. Let C be the canonical admissible covering of Zϕ. Take any
V = Sp(B) ∈ C and put f(V ) = Sp(A) as in the proof of Proposition
2.5. Let I be a finite subset of T such that its image in T(V ) is a
system of generators of the finite B-algebra T(V ). We denote by AI

VL

the affine space over VL = V ⊗̂KL whose variables are indexed by I.
We have a morphism of rigid analytic varieties

iV,I : E(V )L → AI
VL
, z 7→ (h(z))h∈I .

From the definition of I, we see that the map iV,I is a closed immersion.
On the other hand, we also have a morphism of rigid analytic vari-

eties

µ : X → Sp(RL)× A1
L, x 7→ (κ(x), φ(ϕ)−1(x)).

Let P (T ) ∈ R{{T}} be the characteristic power series of ϕ acting on
M . For any x ∈ X, let Px(T ) be the image of P (T ) in k(x){{T}} by the
map κ∗(x) : R → k(x). By [Buz, Lemma 2.13], it is the characteristic
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power series of ϕ acting onM⊗̂R,κ∗(x)k(x). By assumption, there exists

a non-zero element gx of M⊗̂R,κ∗(x)k(x) satisfying
(h⊗ 1)gx = (1⊗ φ(h)(x))gx.

Then Lemma 2.1 (3) implies Px(φ(ϕ)(x)
−1) = 0. By using the assump-

tion that X is reduced and Lemma 2.6 (1), we see that the morphism
µ factors through Zϕ,L.

For any V ∈ C, put XVL = µ−1(VL). For any I as above, we consider
the morphism of rigid analytic varieties over VL

jV,I : XVL → AI
VL
, x 7→ (φ(h)(x))h∈I .

By [Buz, Lemma 5.9] and Lemma 2.1 (1), for any x ∈ XVL there
exists a unique point zx ∈ E(k(x)) satisfying φ(h)(x) = h(zx) for any
h ∈ T. We claim that zx ∈ E(V )L. Indeed, we may assume that
f(V ) is connected. Let Q(T ) be the factor of P (T ) corresponding to
V and Qx(T ) its image by κ∗(x). Let N be the direct summand of
MA corresponding to V . For any x ∈ XVL , we have µ(x) ∈ VL and
Qx(φ(ϕ

−1)(x)) = Q∗
x(φ(ϕ)(x)) = 0. Hence Q∗

x(ϕ)gx = 0 and thus
gx ∈ N ⊗A k(x). From the proof of [Buz, Lemma 5.9], this implies
zx ∈ E(V )L and the claim follows.

In particular, we have jV,I(x) = iV,I(zx) for any x ∈ XVL and thus
jV,I(XVL) ⊆ iV,I(E(V )L). Since iV,I is a closed immersion and XVL is
reduced, Lemma 2.6 (1) yields a unique morphism ΦV,I : XVL → E(V )L
over VL which makes the following diagram commutative.

XVL

ΦV,I //

jV,I ##F
FF

FF
FF

FF
E(V )L� _

iV,I

��
AI
VL

We claim that the morphism ΦV,I is independent of the choice of a
finite subset I of T as above. Indeed, for any x ∈ XVL , we have
ΦV,I(x) = i−1

V,I(jV,I(x)) = zx, which depends only on x. Since X is
reduced and E is separated, Lemma 2.6 (2) implies the claim. Moreover,
by the same reason we can glue the morphisms ΦV,I along V ∈ C and
obtain a morphism Φ : X → EL. Since the requirement on Φ in the
proposition is the same as Φ(x) = zx, it is satisfied by the morphism Φ
we have constructed. Lemma 2.6 (2) ensures the uniqueness. □

3. Theory of canonical subgroups

The theory of canonical subgroups is a powerful tool to study over-
convergent modular forms and the dynamics of the Up-correspondence
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on Shimura varieties. For the Hilbert modular varieties, such a theory
was established successfully by Goren-Kassaei [GK], using the geome-
try of the modular varieties over a field of characteristic p. In order to
obtain more precise information on the Up-correspondence which was
needed for an application, Tian [Tia] combined Goren-Kassaei’s work
with the approach in [Hat2] of using the Breuil-Kisin classification of
finite flat group schemes over complete discrete valuation rings. In this
section, we recall their theory of canonical subgroups and give a slight
generalization, including its higher level version, which is necessary for
the sequel. Moreover, we prove a key property of the Up-correspondence
on the critical locus.

3.1. Breuil-Kisin modules. Let k be a perfect field of characteristic
p and W = W (k) the Witt ring of k. Put Wn = W/pnW . We denote
by σ both the p-th power Frobenius map on k and its natural lift on
W . Let K be a finite totally ramified extension of Frac(W ) of degree
e. We denote its ring of integers by OK . Let π be a uniformizer of K.
Let vp be the additive valuation on K normalized as vp(p) = 1. For
any non-negative real number i, we put

m⩾i
K = {x ∈ OK | vp(x) ≥ i}, OK,i = OK/m⩾i

K .

For any extension L/K of valuation fields, we consider the valuation
on L extending vp and define m⩾i

L and OL,i similarly. We write as

Si = Spec(OK,i), SL,i = Spec(OL,i).

We denote the maximal ideal of OL by mL. For any element x ∈ OL,1,
we define the truncated valuation vp(x) by

vp(x) = min{vp(x̂), 1}

with any lift x̂ ∈ OL of x. For any x ∈ L, we define the absolute value
of x by |x| = p−vp(x). Let us fix an algebraic closure K̄ of K and extend
vp naturally to K̄. Put GK = Gal(K̄/K). We fix a system (πn)n≥0 of
p-power roots of π in K̄ such that π0 = π and πpn+1 = πn for any n.
Put K∞ =

∪
n≥0K(πn) and GK∞ = Gal(K̄/K∞).

Let E(u) ∈ W [u] be the monic Eisenstein polynomial for π and set
c0 = p−1E(0) ∈ W×. Put S = W [[u]] and Sn = S/pnS. The ring
S1 = k[[u]] is a complete discrete valuation ring with additive valuation
vu normalized as vu(u) = 1. We also denote by φ the σ-semilinear
continuous ring homomorphism φ : S→ S defined by u 7→ up.

An S-module M is said to be a Breuil-Kisin module (of E-height
≤ 1) ifM is a finitely generatedS-module equipped with a φ-semilinear
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map φM : M→M such that the cokernel of the linearization

1⊗ φM : φ∗M = S⊗φ,S M→M

is killed by E(u). We refer to φM as the Frobenius map of the Breuil-
Kisin module M and often write as φ abusively. A morphism of Breuil-
Kisin modules is defined as anS-linear map compatible with Frobenius
maps. Let Mod1,φ

/S1
be the category of Breuil-Kisin modules M such

that the underlying S-module M is free of finite rank over S1. We
denote by Mod1,φ

/S∞
the category of Breuil-Kisin modules M such that

the underlying S-module M is finitely generated, p-power torsion and
u-torsion free.

The category Mod1,φ
/S∞

admits a natural notion of duality, which is

denoted by M 7→ M∨ [Liu1, Proposition 3.1.7]. Here we give its ex-
plicit definition for the full subcategory Mod1,φ

/S1
. For any object M of

Mod1,φ
/S1

, let e1, . . . , eh be its basis. Write as

φM(e1, . . . , eh) = (e1, . . . , eh)A

with some A ∈ Mh(S1). Consider its dual M
∨ = HomS1(M,S1) with

the dual basis e∨1 , . . . , e
∨
h . We give M∨ a structure of a Breuil-Kisin

module by

φM∨(e∨1 , . . . , e
∨
h) = (e∨1 , . . . , e

∨
h)

(
E(u)

c0

)
tA−1,

which is independent of the choice of a basis.
Consider the inverse limit ring

R = lim←−
n≥0

(OK̄,1 ← OK̄,1 ← · · · ),

where every transition map is the p-th power Frobenius map. The ab-
solute Galois group GK acts on R via the natural action on each entry.
We define an element π of R by π = (π0, π1, . . .). The ring R is a com-
plete valuation ring of characteristic p with algebraically closed fraction
field, and we normalize the additive valuation vR on R by vR(π) = 1/e.
We define m⩾i

R and Ri = R/m⩾i
R as before, using vR. We consider the

Witt ring W (R) as an S-algebra by the continuous W -linear map de-
fined by u 7→ [π]. Then we have the following classification of finite flat
group schemes over OK [Bre, Kis2, Kim, Lau, Liu2].

Theorem 3.1. (1) There exists an exact anti-equivalence

G 7→M∗(G)
from the category of finite flat group schemes over OK killed
by some p-power to the category Mod1,φ

/S∞
. If G is a truncated
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Barsotti-Tate group of level n over OK, then the S-module
M∗(G) is free over Sn.

(2) Let n be a positive integer satisfying pnG = 0. Then there exists
a natural isomorphism of GK∞-modules

G(OK̄)→ HomS,φ(M
∗(G),Wn(R)).

Moreover, we have lgZp
(G(OK̄)) = lgS(M

∗(G)).
(3) Let G∨ be the Cartier dual of G. Then there exists a natural iso-

morphism M∗(G∨)→M∗(G)∨ which, combined with the natural
isomorphism of (2), identifies the pairing of Cartier duality

⟨−,−⟩G : G(OK̄)× G∨(OK̄)→ µpn(OK̄)
with the natural perfect pairing

HomS,φ(M
∗(G),Wn(R))× HomS,φ(M

∗(G)∨,Wn(R))→ Wn(R).

(4) For any non-negative rational number i, we define the i-th lower
ramification subgroup Gi of G as the scheme-theoretic closure in
G of Ker(G(OK̄) → G(OK̄,i)). Then there exists an ideal In,i
of Wn(R) such that the isomorphism of (2) induces an isomor-
phism

Gi(OK̄) ≃ HomS,φ(M
∗(G), In,i)

for any i ≤ 1. Moreover, we have I1,i = m⩾i
R .

Proof. The assertions (1) and (2) are contained in [Kim, Corollary 4.3]:
the assertion on truncated Barsotti-Tate groups of level n over OK
follows from the fact that they are pn-torsion parts of p-divisible groups
[Ill, Théorème 4.4 (e)], and the equality on the length follows from the
natural isomorphism of (2). The assertion (3) follows from a similar
assertion on p-divisible groups [Kim, §5.1] and a dévissage argument
as in [Hat1, Proposition 4.4]. The assertion (4) is [Hat4, Theorem 1.1
and Corollary 3.3]. □

Next we recall, for any extension L/K of complete valuation fields,
the definitions of invariants associated to a finite flat group scheme G
over OL which is killed by pn with some positive integer n. For any
finitely presented torsion OL-module M , write as M ≃

⊕
iOL/(ai)

with some ai ∈ OL and put deg(M) =
∑

i vp(ai). Since G is finitely
presented over OL, the module ωG of invariant differentials of G is a
finitely presented OL-module. We put deg(G) = deg(ωG), and refer to
it as the degree of G.

Let L̄ be an algebraic closure of L. Note that any element x ∈ G(OL̄)
defines a homomorphism

x : G∨ ×OL
Spec(OL̄)→ Gm ×OL

Spec(OL̄)
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by Cartier duality. We define the Hodge-Tate map by

HTG : G(OL̄)→ ωG∨ ⊗OL
OL̄, x 7→ x∗

dT

T

and, for any positive rational number i, the i-th Hodge-Tate map by
the composite

HTG,i : G(OL̄)
HTG→ ωG∨ ⊗OL

OL̄ → ωG∨ ⊗OL
OL̄,i

of HTG and the reduction map. We often denote them by HT and HTi.
Suppose that G is a truncated Barsotti-Tate group of level n, height

h and dimension d over OL. Consider the p-torsion part G[p]. Note
that the Lie algebra Lie(G∨[p] × SL,1) is a free OL,1-module of rank
h − d. The Verschiebung of G∨[p] × SL,1 induces a map on the Lie
algebra

Lie(VG∨[p]×SL,1
) : Lie(G∨[p]×SL,1)

(p) → Lie(G∨[p]×SL,1).

The truncated valuation for vp of the determinant of a representing
matrix of this map is independent of the choice of a basis of the Lie
algebra, which we call the Hodge height of G and denote by Hdg(G).
Finally, for any truncated Barsotti-Tate group G of level one over OK
and any element i of e−1Z≥0, the quotient M

∗(G)i = M∗(G)/ueiM∗(G)
has a natural structure of a φ-module induced by φM. We put

Fil1M∗(G)i = Im(1⊗ φ : φ∗M∗(G)i →M∗(G)i).

It also has a natural structure of a φ-module induced by φM. By the
isomorphisms of k-algebras S1/(u

e) → OK,1 defined by u 7→ π and
Ri → OK̄,i defined by the zeroth projection pr0 for i ≤ 1, we identify
the both sides. For any x ∈ S1/(u

e), we define the truncated valuation
vu(x) by vu(x) = min{vu(x̂), e} with any lift x̂ ∈ S1 of x. Then these
invariants of G on the side of differentials can be read off from the
associated Breuil-Kisin module, as follows.

Proposition 3.2. (1) For any finite flat group scheme G over OK
killed by p, there exists a natural isomorphism

M∗(G)/(1⊗ φM∗(G))(φ
∗M∗(G))→ ωG

and we have

deg(G) = e−1vu(det(φM∗(G))).

(2) Suppose that G is a truncated Barsotti-Tate group of level one.
Then we have a natural isomorphism

Lie(G∨ ×S1)→ Fil1M∗(G)1.



PROPERNESS OF THE HILBERT EIGENVARIETY 21

The OK,1-module Fil1M∗(G)1 is a direct summand of M∗(G)1
of rank h − d. Moreover, we have the equality of truncated
valuations

Hdg(G) = e−1vu(det(φFil1M∗(G)1)).

(3) Suppose that G is a truncated Barsotti-Tate group of level one.
For any positive rational number i ≤ 1, the i-th Hodge-Tate
map coincides with the composite

G(OK̄)→ HomS,φ(M
∗(G), R)→ HomS(Fil

1M∗(G)1, Ri)

≃ HomOK
(Lie(G∨ ×S1),OK̄,i) ≃ ωG∨ ⊗OK

OK̄,i.

Proof. The first isomorphism is shown in [Tia, Proposition 3.2] and
the others are in [Hat2, §2.3]. Note that though [Hat2] assumes p > 2,
the same proof remains valid also for p = 2 by using [Kim] instead of
[Kis2]. □
3.2. Zpf -groups. Let f be a positive integer. We assume that the
residue field k of K contains the finite field Fpf . Let Bf be the set of
embeddings of Fpf into k. Any β ∈ Bf has the canonical lifts Zpf → OK
and Qpf → K, which we also denote by β. Then any W ⊗Zpf -module
M is decomposed as

M =
⊕
β∈Bf

Mβ

according with the decomposition W ⊗ Zpf ≃
∏

β∈Bf
W .

Let L/K be any extension of complete valuation fields and L̄ an
algebraic closure of L. A group scheme G over OL is said to be a Zpf -
group if it is equipped with an action of the ring Zpf . Then we have
the decompositions

ωG =
⊕
β∈Bf

ωG,β, Lie(G ×SL,n) =
⊕
β∈Bf

Lie(G ×SL,n)β.

When G is finite and flat over OL, we define the β-degree of G by
degβ(G) = deg(ωG,β). We have deg(G) =

∑
β∈Bf

degβ(G). Moreover,

for any exact sequence of finite flat Zpf -groups over OL
0 // G ′ // G // G ′′ // 0,

the equality degβ(G) = degβ(G ′) + degβ(G ′′) holds.
Let n be a positive integer. A Zpf -group G over OL is said to be

a truncated Barsotti-Tate Zpf -group of level n if G is a truncated
Barsotti-Tate group of level n, height 2f and dimension f such that
ωG is a free OL,n ⊗ Zpf -module of rank one. Note that for such G, we
have degβ(G) = n. We say that such G is Zpf -alternating self-dual if
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it is equipped with an isomorphism of Zpf -groups i : G ≃ G∨ over OL
such that the perfect pairing defined via Cartier duality

G(OL̄)× G(OL̄)
1×i→ G(OL̄)× G∨(OL̄)

⟨−,−⟩G→ µpn(OL̄)

satisfies ⟨x, i(ax)⟩G = 1 for any x ∈ G(OL̄) and a ∈ Zpf . In this case,
we also say that the isomorphism i is Zpf -alternating. Then the map i
is skew-symmetric: namely, we have the commutative diagram

G i //

can.
��

G∨

−1
��

G∨∨
i∨

// G∨.

For p ̸= 2, an isomorphism of Zpf -groups i : G ≃ G∨ is Zpf -alternating
if and only if it is skew-symmetric. We abbreviate Zpf -alternating self-
dual truncated Barsotti-Tate Zpf -group of level n as Zpf -ADBTn. For
a Zpf -ADBTn G over OL, the OL,n ⊗ Zpf -modules ωG, Lie(G ×SL,n),
ωG∨ , Lie(G∨ ×SL,n) are all free of rank one. Moreover, the action of
the Verschiebung on Lie(VG∨[p]×SL,1

) can be written as the direct sum
of σ-semilinear maps

Lie(VG∨[p]×SL,1
)β : Lie(G∨[p]×SL,1)σ−1◦β → Lie(G∨[p]×SL,1)β.

Note that the both sides are free OL,1-modules of rank one, and by
choosing their bases, this map is identified with the multiplication by
an element aβ ∈ OL,1. We define the β-Hodge height Hdgβ(G) of G as
the truncated valuation of aβ, namely

Hdgβ(G) = vp(aβ),

which is independent of the choice of bases. From the diagram in the
proof of [Far, Proposition 2] and [Con3, Lemma 2.3.7], we obtain the
equality

Hdgβ(G) = Hdgβ(G∨).
A Breuil-Kisin module M is called a Zpf -Breuil-Kisin module if M is

equipped with an S-linear action of the ring Zpf commuting with φM.
A morphism of Zpf -Breuil-Kisin modules is that of Breuil-Kisin mod-
ules compatible with Zpf -action. The Zpf -Breuil-Kisin modules whose
underlyingS-modules are free of finite rank overS1 (resp. finitely gen-
erated, p-power torsion and u-torsion free) form a category, which we
denote by Zpf -Mod1,φ

/S1
(resp. Zpf -Mod1,φ

/S∞
). Note that M 7→ M∨ de-

fines a notion of duality also for these categories. The anti-equivalence
M∗(−) of the Breuil-Kisin classification induces an anti-equivalence
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from the category of finite flat Zpf -groups over OK killed by some p-

power to Zpf -Mod1,φ
/S∞

.

To give an object M of Zpf -Mod1,φ
/S1

(resp. Zpf -Mod1,φ
/S∞

) is the same

as to give a free S1-module M of finite rank (resp. a finitely generated
S-module M which is p-power torsion and u-torsion free) equipped
with a decomposition into S-submodules M =

⊕
β∈Bf

Mβ and a φ-

semilinear map φM,β : Mσ−1◦β → Mβ, which we often write as φβ,
for each β ∈ Bf such that the cokernel of the linearization 1 ⊗ φβ :
φ∗Mσ−1◦β → Mβ is killed by E(u). Since 1 ⊗ φ : φ∗M → M is
injective, the map 1⊗φβ is also injective. Hence we see that if M ̸= 0,
then Mβ ̸= 0 for any β ∈ Bf . Since E(u)M ⊆ (1⊗ φ)(φ∗M), we have
E(u)Mβ ⊆ (1⊗ φβ)(φ∗Mσ−1◦β).

Let M be any object of Zpf -Mod1,φ
/S1

. The last inclusion implies that

the free S1-modules Mβ have the same rank for any β ∈ Bf , which is
equal to

f−1rankS1(M) = dimF
pf
(HomS1,φ(M, R)).

Moreover, Proposition 3.2 (1) implies that, if G is the finite flat group
scheme over OK corresponding to M, then we have

(3.1) degβ(G) = e−1 lgS1
(Coker(1⊗ φβ : φ∗Mσ−1◦β →Mβ)).

Lemma 3.3. Let G be a finite flat Zpf -group over OK. Then we have

degβ(G) + degβ(G∨) = lgS(M
∗(G)β).

Proof. Let H be the scheme-theoretic closure in G of G(OK̄)[p]. It is a
finite flat closed Zpf -subgroup of G killed by p. Since the both sides are
additive with respect to exact sequences of finite flat Zpf -groups over
OK , by an induction we may assume that G is killed by p.

Put M = M∗(G). Let Aβ be the representing matrix of the map
φM,β : Mσ−1◦β → Mβ with some bases. From the definition of the
dual, we see that the representing matrix of the map φM∨,β with the
dual bases is c−1

0 E(u)tA−1
β . Then the equality (3.1) implies

degβ(G) + degβ(G∨) = e−1vu(det(Aβ) det(c
−1
0 E(u)tA−1

β ))

= rankS1(Mβ).

This concludes the proof. □
For any M ∈ Zpf -Mod1,φ

/S1
and i ∈ e−1Z ∩ [0, 1], we put Mβ,i =

Mβ/u
eiMβ. Then the map φβ induces anS1-semilinear mapMσ−1◦β,i →

Mβ,i, which we denote also by φβ. We define

Fil1Mβ,i = Im(1⊗ φβ : φ∗Mσ−1◦β,i →Mβ,i).
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3.3. Tian’s construction. Let G be a Zpf -ADBT1 over OK of β-
Hodge height wβ. Put M = M∗(G) and M1 = M/ueM. Then each
Mβ is a free S1-module of rank two. By Proposition 3.2 (1) and (2),
we have an exact sequence of φ-modules over OK,1 ⊗ Zpf

0 // Fil1M1
// M // M1/Fil

1M1
// 0,

where the OK,1⊗Zpf -modules Fil1M1 and M1/Fil
1M1 are free of rank

one. In particular, this splits as a sequence of OK,1 ⊗ Zpf -modules.
Hence we also have a split exact sequence of OK,1-modules

0 // Fil1Mβ,1
// Mβ,1

// Mβ,1/Fil
1Mβ,1

// 0,

where the modules on the left-hand side and the right-hand side are
free of rank one. As in the proof of [Hat2, Theorem 3.1], we can choose
a basis {eβ, e′β} of Mβ satisfying eβ ∈ (1 ⊗ φ)(φ∗Mσ−1◦β) such that

the image of eβ in Mβ,1 is a basis of Fil1Mβ,1 and the image of e′β in

Mβ,1/Fil
1Mβ,1 gives its basis. Then we can write as

(3.2) φ(eσ−1◦β, e
′
σ−1◦β) = (eβ, e

′
β)

(
aβ,1 aβ,2
ueaβ,3 ueaβ,4

)
with some invertible matrix(

aβ,1 aβ,2
aβ,3 aβ,4

)
∈ GL2(S1).

For any Zpf -group G over OK killed by p, a finite flat closed Zpf -
subgroup H of G over OK is said to be cyclic if the Fpf -vector space
H(OK̄) is of rank one. Note that, for such H, the free S1-module
M∗(H)β is of rank one for any β ∈ Bf . If G is a Zpf -ADBT1, then
the proof of [GK, Lemma 2.1.1] shows that the Fpf -subspace H(OK̄)
is automatically isotropic with respect to the Zpf -alternating perfect
pairing on G(OK̄). Moreover, since finite flat closed subgroup schemes
of G over OK are determined by their generic fibers, this implies that
the Zpf -alternating isomorphism i : G ≃ G∨ induces an isomorphism
H ≃ (G/H)∨.

Now the existence theorem of the canonical subgroup of level one for
a Zpf -ADBT1 over OK is as follows.

Theorem 3.4. Let G be a Zpf -ADBT1 over OK with β-Hodge height
wβ. Put w = max{wβ | β ∈ Bf}. Suppose that the inequality

wβ + pwσ−1◦β < p
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holds for any β ∈ Bf . Then there exists a finite flat closed cyclic Zpf -
subgroup C of G over OK satisfying

degβ(G/C) = wβ.

Moreover, the group scheme C is the unique finite flat closed cyclic
Zpf -subgroup of G over OK satisfying

degβ(C) + p degσ−1◦β(C) > 1

for any β ∈ Bf . We refer to C as the canonical subgroup of G. It has
the following properties:

(1) Let G ′ be a Zpf -ADBT1 over OK satisfying the same condition
on the β-Hodge heights as above and C ′ the canonical subgroup
of G ′. Then any isomorphism of Zpf -groups j : G → G ′ over
OK induces an isomorphism C ≃ C ′.

(2) C is compatible with base extension of complete discrete valua-
tion rings with perfect residue fields.

(3) C is compatible with Cartier duality. Namely, (G/C)∨ is the
canonical subgroup of G∨.

(4) The kernel of the Frobenius map of G × S1−w coincides with
C ×S1−w.

(5) If w < p/(p+ 1), then C = G(1−w)/(p−1).
(6) If w < (p− 1)/p, then C(OK̄) coincides with Ker(HTi) for any

rational number i satisfying w/(p− 1) < i ≤ 1− w.
(7) If w < (p − 1)/p, then C = Gi for any rational number i satis-

fying 1/(p(p− 1)) ≤ i ≤ (1− w)/(p− 1).

Proof. Note that, since we have w < 1 by assumption, Proposition 3.2
(2) implies

wβ = e−1vu(aβ,1).

The existence and the uniqueness in the theorem are due to Tian
[Tia, Theorem 3.10]: the Zpf -subgroup C is defined as the finite flat
closed Zpf -subgroup of G over OK corresponding to the quotient N =
M/L via the Breuil-Kisin classification, where L =

⊕
β∈Bf

Lβ is the

unique Zpf -Breuil-Kisin submodule ofM satisfying Lβ,1−wβ
= Fil1Mβ,1−wβ

for any β ∈ Bf . In particular, the S1-module Lβ is generated by

δβ = eβ + ue(1−wβ)yβe
′
β

with some yβ ∈ S1. The assertions (1) and (2) follow from the unique-
ness.

Let us prove the assertion (3). Note that, since Hdgβ(G) = Hdgβ(G∨),
the Zpf -ADBT1 G∨ over OK also has the canonical subgroup C ′. By
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Lemma 3.3, we have

degβ((G/C)∨) = 1− degβ(G/C) = 1− wβ
and the uniqueness assertion of the theorem and the assumption on wβ
imply C ′ = (G/C)∨.

The assertion (4) is also due to Tian [Tia, Remark 3.11]. Here we give
a short proof for the convenience of the reader. Since 1− w ≤ 1− wβ,
the construction of L implies

(3.3) L1−w = Fil1M1−w.

Then Proposition 3.2 (1) shows that the natural map

ωG/C ⊗OK,1−w → ωG ⊗OK,1−w
is zero. By [Far, Proposition 1], the closed subgroup scheme (G/C)∨ ×
S1−w of G∨×S1−w is killed by the Frobenius. Comparing the rank, the
former coincides with the kernel of the Frobenius of the latter. Since
G∨ ×S1−w is a truncated Barsotti-Tate group of level one, we see by
duality and [Ill, Remark 1.3 (b)] that C ×S1−w also coincides with the
kernel of the Frobenius of G ×S1−w.

Next we consider the assertion (5). It can be shown similarly to
[Hat2, Theorem 3.1 (c)]. For any S1-algebra A, we define an abelian
group H(M)(A) by

H(M)(A) = HomS1,φ(M, A),

where we consider A as a φ-module with the p-th power Frobenius
map. If we take the basis {eβ, e′β}β∈Bf

of M as above, it is identified

with the set of f -tuples of elements (xβ, x
′
β) ∈ A2 satisfying

(3.4) (xpσ−1◦β, (x
′
σ−1◦β)

p) = (xβ, x
′
β)

(
aβ,1 aβ,2
ueaβ,3 ueaβ,4

)
.

We define the subgroup H(M)i(R) of H(M)(R) by

H(M)i(R) = Ker(H(M)(R)→ H(M)(Ri)).

Similarly, we have the subgroup H(N)(R) of H(M)(R). Note that we
have an exact sequence

0 // H(N)(R) // H(M)(R) // H(L)(R) // 0

which can be identified with the exact sequence of abelian groups

0 // C(OK̄) // G(OK̄) // (G/C)(OK̄) // 0.

Since degβ(G/C) = wβ, the basis δβ of Lβ satisfies

φβ(δσ−1◦β) = λβδβ with vR(λβ) = wβ.
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Thus any element ofH(L)(R) can be identified with an f -tuple (zβ)β∈Bf

in R satisfying

(3.5) zpσ−1◦β = λβzβ

for any β ∈ Bf .

Lemma 3.5. For any element (zβ)β∈Bf
̸= 0 of H(L)(R), we have

vR(zβ) ≤
w

p− 1
for any β ∈ Bf .

In particular, H(L)i(R) = 0 for any i > w/(p− 1).

Proof. From the equation (3.5), we see that (zβ)β∈Bf
̸= 0 if and only if

zβ ̸= 0 for any β ∈ Bf . This equation also implies

pvR(zσ−1◦β) = vR(zβ) + wβ

for any β ∈ Bf and thus

vR(zσ−1◦β) =
1

pf − 1

f−1∑
l=0

pf−1−lwσl◦β ≤
w

p− 1
,

which concludes the proof. □
We claim that H(N)(R) = H(M)(1−w)/(p−1)(R). Indeed, take any

element (xβ, x
′
β)β∈Bf

of the left-hand side. Take the element yβ ∈ S1

such that

δβ = eβ + ue(1−wβ)yβe
′
β

is a basis of the S1-module Lβ. Then (xβ, x
′
β)β∈Bf

∈ H(N)(R) if and

only if xβ + ue(1−wβ)yβx
′
β = 0 for any β ∈ Bf . The equation (3.4)

implies

(x′σ−1◦β)
p = x′β(−aβ,2ue(1−wβ)yβ + ueaβ,4)

and thus

pvR(x
′
σ−1◦β) ≥ vR(x

′
β) + 1− wβ.

Hence we have

vR(x
′
σ−1◦β) ≥

1

pf − 1

f−1∑
l=0

pf−1−l(1− wσl◦β) ≥
1− w
p− 1

for any β ∈ Bf and we obtain (xβ, x
′
β)β∈Bf

∈ H(M)(1−w)/(p−1)(R).
Conversely, let (xβ, x

′
β)β∈Bf

be an element ofH(M)(1−w)/(p−1)(R). By
the equation (3.4), we have

(3.6) (xβ, u
ex′β) = (xpσ−1◦β, (x

′
σ−1◦β)

p)

(
aβ,1 aβ,2
aβ,3 aβ,4

)−1
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for any β ∈ Bf . Recall that the matrix on the right-hand side is an
element of GL2(S1). Hence we obtain

vR(xβ) ≥
p(1− w)
p− 1

and the element zβ = xβ + ue(1−wβ)yβx
′
β satisfies

vR(zβ) ≥
p(1− w)
p− 1

for any β ∈ Bf . By the assumption w < p/(p+ 1), we have

w

p− 1
<
p(1− w)
p− 1

and Lemma 3.5 implies zβ = 0 for any β ∈ Bf . Therefore we obtain
(xβ, x

′
β)β∈Bf

∈ H(N)(R), from which the claim follows. Now Theorem
3.1 (4) shows the assertion (5).

Let us show the assertion (6). This is shown similarly to [Hat2,
Theorem 3.1 (2)]. Since i ≤ 1− w, Proposition 3.2 (3) and (3.3) show
that the kernel of the map HTi is equal to the kernel of the natural
map

G(OK̄) ≃ H(M)(R)→ H(L)(R)→ H(L)(Ri).

Since i > w/(p − 1), Lemma 3.5 implies H(L)i(R) = 0 and the right
arrow in the above map is injective. Thus Ker(HTi) coincides with the
inverse image of

H(N)(R) = Ker(H(M)(R)→ H(L)(R))
by the isomorphism G(OK̄) ≃ H(M)(R), which is C(OK̄). The asser-
tion (7) follows from the lemma below. □
Lemma 3.6. Let G be a Zpf -ADBT1 over OK with β-Hodge height wβ.
Put w = max{wβ | β ∈ Bf} and

in =
1

pn−1(p− 1)
− w

p− 1
, i′n =

1

pn(p− 1)
.

Suppose w < (p − 1)/pn for some positive integer n. Let C be the
canonical subgroup of G, which exists by Theorem 3.4. Then we have

C = Gim = Gi′m
for any 1 ≤ m ≤ n.

Proof. This can be shown in the same way as [Hat4, Lemma 5.2]. We
follow the notation in the proof of Theorem 3.4. By Theorem 3.1 (4)
and Theorem 3.4 (5), it is enough to show

HomS,φ(M,m
⩾i′n
R ) ⊆ H(N)(R).



PROPERNESS OF THE HILBERT EIGENVARIETY 29

We identify an element x of the left-hand side with a solution (xβ, x
′
β)β∈Bf

of the equation (3.4) in R satisfying vR(xβ), vR(x
′
β) ≥ i′n for any β ∈ Bf .

From the equality (3.6), we have vR(xβ) ≥ pi′n > w/(p − 1). Since we
have 1− wβ ≥ 1− w > w/(p− 1), the element zβ = xβ + ue(1−wβ)yβx

′
β

satisfies

vR(zβ) > w/(p− 1).

Thus Lemma 3.5 implies zβ = 0 for any β ∈ Bf and x ∈ H(N)(R). □

The description of the Hodge-Tate map via the Breuil-Kisin classi-
fication also yields a torsion property of the Hodge-Tate cokernel, as
follows.

Lemma 3.7. Let G be a Zpf -ADBT1 over OK with β-Hodge height wβ.
Put w = max{wβ | β ∈ Bf}. Suppose w < (p−1)/p. Then the cokernel
of the linearization of the Hodge-Tate map

HT⊗ 1 : G(OK̄)⊗OK̄ → ωG∨ ⊗OK
OK̄

is killed by m
⩾w/(p−1)

K̄
.

Proof. For this, we first show the following lemma.

Lemma 3.8. Let M be a finitely generated OK̄-module. Let N be an
OK̄-submodule ofM . Suppose that there exist positive rational numbers
r > s satisfying m⩾s

K̄
M ⊆ N +m⩾r

K̄
M . Then we have m⩾s

K̄
M ⊆ N .

Proof. Put Q = m⩾s
K̄
(M/N). Since the assumption implies m⩾r−s

K̄
Q =

Q, Nakayama’s lemma shows Q = 0 and m⩾s
K̄
M ⊆ N . □

Put M = ωG∨ ⊗OK
OK̄ and

N = Im(HT⊗ 1 : G(OK̄)⊗OK̄ → ωG∨ ⊗OK
OK̄).

We claim that

m
⩾w/(p−1)

K̄
Coker(HT1−w ⊗ 1 : G(OK̄)⊗OK̄ → ωG∨ ⊗OK

OK̄,1−w) = 0.

This is equivalent to the inclusion

m
⩾w/(p−1)

K̄
M ⊆ N +m⩾1−w

K̄
M.

The assumption w < (p − 1)/p implies w/(p − 1) < 1 − w and thus
Lemma 3.7 follows from the claim and Lemma 3.8.

Now let us prove the claim. Consider the basis δβ of Lβ as in the proof
of Theorem 3.4. Using this, we identify each element of H(L)(R) with
an f -tuple (zβ)β∈Bf

in R satisfying the equation (3.5). By Proposition
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3.2 (3) and (3.3), the cokernel of the claim is identified with the cokernel
of the natural map

H(L)(R)⊗R→ HomS1(L, R1−w) = L∨ ⊗R1−w,

(zβ)β∈Bf
⊗ 1 7→

∑
β∈Bf

δ∨β ⊗ zβ.

Note that the abelian group H(L)(R) has a natural action of the ring
Fpf defined by

α(zβ)β∈Bf
= (β(α)zβ)β∈Bf

for any α ∈ Fpf .

Take a generator α0 of the extension Fpf/Fp and a non-zero element
(zβ)β∈Bf

of H(L)(R). Then the subset {αl0(zβ)β∈Bf
}l=0,1,...,f−1 forms a

basis of the Fp-vector space H(L)(R). Hence the image of the natural
map above is generated by the entries of the f -tuple

(δ∨β ⊗ 1)β∈Bf
(β(αl0)zβ)β,l = (δ∨β ⊗ 1)β∈Bf

diag(zβ)β∈Bf
(β(αl0))β,l.

Since the matrix (β(αl0))β,l is invertible in Mf (R), the cokernel is iso-
morphic as an R-module to⊕

β∈Bf

R1−w/(zβ).

Thus the claim follows from Lemma 3.5. □

3.4. Goren-Kassaei’s theory. Here we analyze the variation of β-
Hodge heights by taking quotients with cyclic Zpf -subgroups. For the
case of abelian varieties, it was obtained by Goren-Kassaei [GK, Lemma
5.3.4 and Lemma 5.3.6].

Lemma 3.9. Let G be a Zpf -ADBT1 over OK with β-Hodge height
wβ. Let H be a finite flat closed cyclic Zpf -subgroup of G over OK. Put
vβ = degβ(G/H).

(1) If we have

vβ + pvσ−1◦β < p for any β ∈ Bf ,

then wβ = vβ and G has the canonical subgroup, which is equal
to H.

(2) If we have

vβ + pvσ−1◦β > p for any β ∈ Bf ,

then wβ = p(1−vσ−1◦β) and G has the canonical subgroup, which
is not equal to H. We refer to any H satisfying this inequality
as an anti-canonical subgroup of G.
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(3) If both of the inequalities in (1) and (2) are not satisfied, then

wβ + pwσ−1◦β ≥ p for some β ∈ Bf .

Proof. LetP andQ be the Breuil-Kisin modules corresponding to G/H
and H, respectively. We have an exact sequence of S1-modules

0 // Pβ
// Mβ

// Qβ
// 0

for any β ∈ Bf . Note that S1-modules Pβ and Qβ are free of rank
one. Let {fβ, f ′

β} be a basis of the free S1-module Mβ such that fβ is
a basis of Pβ and the image of f ′

β is a basis of Qβ. We can write as

(3.7) φβ(fσ−1◦β, f
′
σ−1◦β) = (fβ, f

′
β)

(
aβ bβ
0 cβ

)
with some aβ, bβ, cβ ∈ S1 such that vR(aβ) = vβ and vR(cβ) = degβ(H) =
1− vβ. Thus we obtain

Fil1Mβ,1 = ⟨aβfβ, bβfβ + cβf
′
β⟩.

Since it is a direct summand of Mβ,1 of rank one over OK,1, we have

(3.8)

 vR(aβ) = 0 (vβ = 0),
vR(bβ) = 0 (0 < vβ < 1),
vR(cβ) = 0 (vβ = 1)

and

Fil1Mβ,1 =

{
⟨fβ⟩ (vβ = 0),
⟨bβfβ + cβf

′
β⟩ (vβ > 0).

Moreover, in Mσ◦β,1 we have

(3.9)

{
φσ◦β(fβ) = aσ◦βfσ◦β,

φσ◦β(bβfβ + cβf
′
β) = (bpβaσ◦β + cpβbσ◦β)fσ◦β + cpβcσ◦βf

′
σ◦β.

Now let us consider the assertion (1). The assumption implies vσ◦β <
1 for any β ∈ Bf . Hence wσ◦β is equal to the valuation of the coefficient
of fσ◦β of the right-hand side of the equality (3.9) in both cases.

• If vβ = 0, then wσ◦β = vR(aσ◦β) = vσ◦β.
• If 0 < vβ < 1, then vR(bβ) = 0 and

wσ◦β = vR(b
p
βaσ◦β + cpβbσ◦β).

The assumption also yields vσ◦β < p(1 − vβ) and thus we have
wσ◦β = vσ◦β.

Thus G satisfies the assumption of Theorem 3.4 and has the canonical
subgroup C. Since degβ(H) = 1 − vβ, the uniqueness of the theorem
implies H = C.
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Next we treat the assertion (2). The assumption implies vσ◦β > 0
for any β ∈ Bf .

• If 0 < vσ◦β < 1, then vR(bσ◦β) = 0 and

wσ◦β = vR(b
p
βaσ◦β + cpβbσ◦β).

By assumption we have vσ◦β > p(1 − vβ) and thus we obtain
wσ◦β = p(1− vβ).
• If vσ◦β = 1, then vR(cσ◦β) = 0. This implies that wσ◦β is equal
to the valuation of the coefficient of f ′

σ◦β of the equality (3.9),
namely

wσ◦β = vR(c
p
βcσ◦β) = p(1− vβ).

From this we see that G has the canonical subgroup C. If C = H, then
we have

vβ = degβ(G/H) = wβ = p(1− vσ−1◦β)

for any β ∈ Bf , which contradicts the assumption.
The assertion (3) can be shown as in [GK, Corollary 5.3.7]: Take

β′ ∈ Bf such that vβ′ + pvσ−1◦β′ ≤ p. Let i ≥ 1 be the minimal integer
satisfying vσi◦β′+pvσi−1◦β′ ≥ p. The minimality shows that β = σi−1◦β′

satisfies

(3.10) vβ + pvσ−1◦β ≤ p, vσ◦β + pvβ ≥ p.

We claim that
wβ ≥ vβ, wσ◦β ≥ p(1− vβ).

Indeed, if vβ = 0 then the first inequality is trivial. If 0 < vβ < 1, then
(3.9) implies

wβ =

{
vR(aβ) (vσ−1◦β = 0),
vR(b

p
σ−1◦βaβ + cpσ−1◦βbβ) (vσ−1◦β > 0).

From this and (3.10), we obtain wβ ≥ vβ. If vβ = 1, then (3.9) gives

wβ =

{
1 (vσ−1◦β = 0),
vR(c

p
σ−1◦βcβ) = p(1− vσ−1◦β) (vσ−1◦β > 0)

and the inequality wβ ≥ vβ follows from (3.10).
Let us consider the second inequality. If vσ◦β = 0, then (3.10) implies

vβ = 1 and the inequality is trivial. If 0 < vσ◦β < 1, then (3.9) implies

wσ◦β =

{
vR(aσ◦β) (vβ = 0),
vR(b

p
βaσ◦β + cpβbσ◦β) (vβ > 0)

and from (3.10) we obtain wσ◦β ≥ p(1− vβ) for both cases. If vσ◦β = 1,
then we have vβ ≥ (p− 1)/p > 0 and

wσ◦β = vR(c
p
βcσ◦β) = p(1− vβ).
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This concludes the proof of the claim. Now we have

wσ◦β + pwβ ≥ p(1− vβ) + pvβ = p

and the assertion (3) follows. □
Lemma 3.10. Let n be a positive integer. Let G be a Zpf -ADBTn+1

over OK with Zpf -alternating isomorphism i : G ≃ G∨. Let H be a
finite flat closed cyclic Zpf -subgroup of G[p] over OK. Then p−nH/H
is a Zpf -ADBTn over OK, with its Zpf -alternating isomorphism of self-
duality induced by i.

Proof. We know that p−nH/H is a truncated Barsotti-Tate group of
level n over OK . Put H′ = (G[p]/H)∨. Since H(OK̄) is isotropic, the
map i induces an isomorphism H ≃ H′. On the other hand, Cartier
duality gives a natural isomorphism j : p−nH′/H′ ≃ (p−nH/H)∨ satis-
fying

⟨x̄, j(ȳ)⟩p−nH/H = ⟨x, y⟩G
for any x ∈ p−nH(OK̄) and y ∈ p−nH′(OK̄), which can be shown as
in [Hat2, §4, Proof of Theorem 1.1(b)]. Thus these maps induce a
Zpf -alternating isomorphism

p−nH/H i→ p−nH′/H′ j
≃ (p−nH/H)∨.

It remains to prove that the OK,n ⊗ Zpf -module ωp−nH/H is free of
rank one. Consider the decomposition

ωp−nH/H =
⊕
β∈Bf

ωp−nH/H,β.

Since we know that the left-hand side is free of rank f as an OK,n-
module, each ωp−nH/H,β is a free OK,n-module of rank fβ with some
non-negative integer fβ. For n = 1, we have exact sequences

0 // ωH,β
×p // ωp−1H,β // ωG[p],β // 0,

0 // ωp−1H/H,β // ωp−1H,β // ωH,β // 0

and thus lgOK
(ωp−1H/H,β) = lgOK

(ωG[p],β). Since theOK,1-module ωG[p],β
is free of rank one, we obtain fβ = 1 and the lemma follows. □
Corollary 3.11. Let G be a Zpf -ADBT2 over OK with β-Hodge height
wβ. Suppose that the inequality

wβ + pwσ−1◦β < p

holds for any β ∈ Bf . Theorem 3.4 ensures that the canonical subgroup
C of G[p] exists.
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(1) For any finite flat closed cyclic Zpf -subgroup H ̸= C of G[p] over
OK, we have

Hdgβ(p
−1H/H) = p−1wσ◦β for any β ∈ Bf .

Moreover, p−1H/H has the canonical subgroup G[p]/H.
(2) Suppose that the inequality

wβ + pwσ−1◦β < 1

holds for any β ∈ Bf . Consider the Zpf -ADBT1 p
−1C/C over

OK. Then we have

Hdgβ(p
−1C/C) = pwσ−1◦β for any β ∈ Bf .

Moreover, G[p]/C is an anti-canonical subgroup of p−1C/C.

Proof. For the assertion (1), Lemma 3.9 (3) implies that H is an anti-
canonical subgroup and

degβ(G[p]/H) + p degσ−1◦β(G[p]/H) > p,

Hdgβ(G[p]) = p(1− degσ−1◦β(G[p]/H)) = p degσ−1◦β(H).
Hence we have

degβ((p
−1H/H)/(G[p]/H)) + p degσ−1◦β((p

−1H/H)/(G[p]/H)) < 1.

Lemma 3.9 (1) shows that p−1H/H has the canonical subgroup G[p]/H
and

Hdgβ(p
−1H/H) = degβ(H) = p−1Hdgσ◦β(G).

Let us consider the assertion (2). Since degβ(G[p]/C) = wβ, we have

degβ((p
−1C/C)/(G[p]/C)) = degβ(C) = 1− wβ.

The assumption implies

degβ((p
−1C/C)/(G[p]/C)) + p degσ−1◦β((p

−1C/C)/(G[p]/C)) > p

and Lemma 3.9 (2) yields the assertion. □
3.5. Critical locus. In this subsection, we investigate the behavior of
the Up-correspondence at the locus where all the β-Hodge heights are
p/(p+ 1).

Proposition 3.12. Suppose f ≤ 2. Let G be a Zpf -ADBT2 over OK
with Hdgβ(G) = wβ. Suppose wβ = p/(p + 1) for any β ∈ Bf . Then,
for any finite flat closed cyclic Zpf -subgroup H of G[p] over OK, we
have

degβ(G[p]/H) =
p

p+ 1
, Hdgβ(p

−1H/H) = 1

p+ 1

and p−1H/H has the canonical subgroup G[p]/H.
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Proof. Put M = M∗(G[p]) and P = M∗(G[p]/H). We take a basis
{eβ, e′β} of the S1-module Mβ as in §3.3 and consider the equation
(3.2). Take xβ, yβ ∈ S1 such that the element fβ = xβeβ + yβe

′
β is

a basis of the free S1-module Pβ of rank one. Then there exists an
f -tuple (λβ)β∈Bf

in S1 satisfying

(3.11)

(
aβ,1 aβ,2
ueaβ,3 ueaβ,4

)(
xpσ−1◦β
ypσ−1◦β

)
= λβ

(
xβ
yβ

)
for any β ∈ Bf . Note that vR(aβ,1) = p/(p+ 1). Since the matrix(

aβ,1 aβ,2
aβ,3 aβ,4

)
is an element of GL2(S1), we have vR(aβ,2) = vR(aβ,3) = 0.

We claim that the inequalities 0 < wβ < 1 for any β ∈ Bf imply
vR(yσ−1◦β) > 0. Indeed, if vR(yσ−1◦β) = 0, then vR(λβ) = vR(xβ) = 0
and vR(yβ) ≥ 1. This is a contradiction if f = 1. Using (3.11) for
σ ◦ β yields vR(λσ◦β) ≤ wσ◦β and thus vR(yσ◦β) ≥ 1 − wσ◦β. This is a
contradiction if f = 2 and the claim follows.

Since xβeβ+yβe
′
β generates the direct summandPβ of theS1-module

Mβ, the claim implies vR(xβ) = 0. Replacing fβ by x−1
β fβ, we may

assume xβ = 1 for any β ∈ Bf . Then (yβ)β∈Bf
satisfies the equation

(3.12)

{
aβ,1 + aβ,2y

p
σ−1◦β = λβ,

ue(aβ,3 + aβ,4y
p
σ−1◦β) = λβyβ.

Next we claim that every solution (yβ)β∈Bf
of this equation satisfies

vR(λβ) = p/(p + 1) for any β ∈ Bf . For f = 1, we see that y = yβ
satisfies the equation

yp+1 − uea−1
β,2aβ,4y

p + a−1
β,2aβ,1y − u

ea−1
β,2aβ,3 = 0.

An inspection of its Newton polygon shows vR(y) = 1/(p + 1). Then
the second equation of (3.12) implies vR(λβ) = p/(p+ 1).

Let us consider the case f = 2. Take any β ∈ Bf . Put(
A B
C D

)
=

(
aσ◦β,1 aσ◦β,2
ueaσ◦β,3 ueaσ◦β,4

)(
apβ,1 apβ,2

upeapβ,3 upeapβ,4

)
.

Note that

vR(A) ≥ p, vR(B) =
p

p+ 1
, vR(C) = 1 +

p2

p+ 1
, vR(D) = 1.

We have (
A B
C D

)(
1

yp
2

σ−1◦β

)
= λσ◦βλ

p
β

(
1

yσ−1◦β

)
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and thus y = yσ−1◦β satisfies the equation

yp
2+1 −B−1Dyp

2

+B−1Ay −B−1C = 0,

where the coefficients are all integral. An inspection of its Newton
polygon shows vR(yσ−1◦β) = 1/(p + 1). Then the second equation of
(3.12) yields vR(λσ−1◦β) = p/(p + 1). Since β ∈ Bf is arbitrary, we
obtain

vR(yβ) =
1

p+ 1
, vR(λβ) =

p

p+ 1
for any β ∈ Bf .

Now the claim shows

degβ((p
−1H/H)/(G[p]/H)) = degβ(H) = 1− vR(λβ) = 1/(p+ 1),

degβ(G[p]/H) = degβ(p
−1H/H)− 1/(p+ 1) = p/(p+ 1)

for any β ∈ Bf . Then Lemma 3.9 (1) implies that

Hdgβ(p
−1H/H) = 1/(p+ 1)

and that G[p]/H is the canonical subgroup of p−1H/H. □
Remark 3.13. A naive generalization of Proposition 3.12 has a coun-
terexample for f = 3, if p ̸= 2. Suppose k = k̄ and p + 1 | e. Re-
placing the uniformizer π by a scalar multiple, we may assume that
c0 = p−1E(0) satisfies c0 ≡ 1 mod p. Let r be a positive integer. Fix
β ∈ B3 and consider the following elements of M2(S).

Âβ =

(
u

pe
p+1 1

c−1
0 E(u) c−1

0 E(u)

)
, Âσ◦β =

(
u

pe
p+1 −1

c−1
0 E(u) c−1

0 E(u)

)
,

Âσ2◦β =

(
u

pe
p+1 1

c−1
0 E(u) c−1

0 urE(u)

)
We define the Zp3-Breuil-Kisin module M̂ =

⊕
β∈B3

M̂β by

M̂β = Sêβ ⊕Sê′β, φβ(êσ−1◦β, ê
′
σ−1◦β) = (êβ, ê

′
β)Âβ.

Take α̂β ∈ S× for each β ∈ B3 satisfying

φ(α̂σ−1◦β) = c0E(u)
−1 det(Âβ)α̂β for any β ∈ B3.

Then the map

(êβ, ê
′
β) 7→ (ê∨β , (ê

′
β)

∨)α̂β

(
0 1
−1 0

)
gives a skew-symmetric isomorphism M̂→ M̂∨. Since M̂ corresponds
to a Barsotti-Tate group Γ over OK , we see that M̂/p2M̂ corresponds
to a Zp3-ADBT2 G = Γ[p2] over OK . Let H be any cyclic Zp3-subgroup
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of G[p] over OK . We write the images of êβ, ê
′
β in M̂/pM̂β as eβ, e

′
β and

a basis of M∗(G/H)β as xβeβ + yβe
′
β.

Suppose vR(yβ) > 0 for any β ∈ B3. Then we may assume xβ = 1,
and we see that y = yσ2◦β is a root of the equation

yp
3+1 −B−1Dyp

3

+B−1Ay −B−1C = 0,

where we put

A = u
e(p3+p2+p)

p+1 + ue(p
2+p), B = 2uep − u

e(p3+p2+p)
p+1 + ue(p

2+p),

C = u
e(p3+p2+2p+1)

p+1
+r + ue(p

2+p+1)+r,

D = u
e(p2+p+1)

p+1 − ue(p2+1) + ue(p+1)+r + ue(p
2+p+1)+r.

An inspection of its Newton polygon and derivation shows that this
equation has exactly p3 roots satisfying vR(y) = 1/(p+1) and one root
satisfying vR(y) = 1 + e−1r.

The latter case does not occur, since it contradicts the second equa-
tion of (3.12). In the former case, put y = ue/(p+1)η. Then η satis-
fies a monic polynomial of degree p3 + 1 whose reduction modulo u is
X(Xp3 − 2−1Xp3−1 + 2−1). Hensel’s lemma and the assumption on k
imply y ∈ S1. Thus G[p] has exactly p3 cyclic Zp3-subgroups over OK
such that, for any β ∈ B3, we have vR(yβ) > 0.

By the assumption k = k̄, there exist exactly p3−1 characters GK →
F×
p3 . Hence, among these p3 cyclic Zp3-subgroups, two define the same

character on the generic fiber. This means that GK acts on G[p](OK̄)
via this character. In particular, any Fp3-subspace of G[p](OK̄) is GK-
stable. Taking the scheme-theoretic closure, we see that G[p] has one
cyclic Zp3-subgroup H over OK satisfying vR(yσ−1◦β0) = 0 for some
β0 ∈ B3.

For this H, the equation (3.11) gives vR(λβ0) = vR(xβ0) = 0 and
vR(yβ0) ≥ 1. This in turn gives vR(λσ◦β0) ≤ p/(p+ 1) and vR(yσ◦β0) ≥
1/(p + 1). Since xσ◦β0eσ◦β0 + yσ◦β0e

′
σ◦β0 generates a direct summand,

we have vR(xσ◦β0) = 0 and this implies vR(λσ◦β0) = p/(p+1). Thus we
obtain

degσ◦β0(H) + p degβ0(H) = p+
1

p+ 1

and G[p]/H is not the canonical subgroup of p−1H/H.

3.6. Canonical subgroup of higher level. We derive from Theorem
3.4 the existence of the canonical subgroup of level n for a Zpf -ADBTn,
by following an argument of Fargues-Tian [Far, §7] as in [Hat2, §4]. A
similar result was also obtained by Goren-Kassaei [GK, Proposition
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5.4.5] except the compatibility with the Hodge-Tate kernel and lower
ramification subgroups. This compatibility shown here will be used to
enlarge the locus where the sheaf of overconvergent Hilbert modular
forms is defined from that of [AIP2].

Theorem 3.14. Let G be a Zpf -ADBTn over OK with β-Hodge height
wβ. Put w = max{wβ | β ∈ Bf}. Suppose that we have

wβ + pwσ−1◦β < p2−n

for any β ∈ Bf . Then there exists a finite flat closed Zpf -subgroup Cn
of G of rank pnf over OK satisfying

degβ(G/Cn) =
n−1∑
l=0

plwσ−l◦β.

We refer to Cn as the canonical subgroup of level n of G. It has the
following properties:

(1) Let G ′ be a Zpf -ADBTn over OK satisfying the same condition
on the β-Hodge heights as above and C ′n the canonical subgroup
of level n of G ′. Then any isomorphism of Zpf -groups j : G → G ′
over OK induces an isomorphism Cn ≃ C ′n.

(2) Cn is compatible with base extension of complete discrete valua-
tion rings with perfect residue fields.

(3) Cn is compatible with Cartier duality. Namely, (G/Cn)∨ is the
canonical subgroup of level n of G∨.

(4) The kernel of the n-th iterated Frobenius map of G ×S1−pn−1w

coincides with Cn ×S1−pn−1w.
(5) The Zpf/pnZpf -module Cn(OK̄) is free of rank one.
(6) The scheme-theoretic closure of Cn(OK̄)[pi] in Cn is the canon-

ical subgroup Ci of level i of G[pi] for any 0 ≤ i ≤ n− 1.
(7) If w < (p − 1)/pn, then Cn(OK̄) coincides with Ker(HTi) for

any rational number i satisfying

n− 1 +
w

p− 1
< i ≤ n− w(pn − 1)

p− 1
.

(8) If w < (p − 1)/pn, then Cn = Gi for any rational number i
satisfying

i′n =
1

pn(p− 1)
≤ i ≤ in =

1

pn−1(p− 1)
− w

p− 1
.

Proof. We proceed by induction on n. The case n = 1 is Theorem
3.4. Suppose that n ≥ 2 and the assertions hold for n − 1. Let G be
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a Zpf -ADBTn satisfying the assumption. Then we have the canoni-
cal subgroup C1 of the Zpf -ADBT1 G[p] and Lemma 3.10 implies that
p1−nC1/C1 is also a Zpf -ADBTn−1. By Corollary 3.11 (2), we have

Hdgβ(p
1−nC1/C1) = pwσ−1◦β

and by the induction hypothesis, p1−nC1/C1 has the canonical subgroup
of level n − 1, which we write as Cn/C1 with some Zpf -subgroup Cn of
G. Then we have

degβ(G/Cn) = degβ(G/p1−nC1) + degβ((p
1−nC1/C1)/(Cn/C1))

= degβ(G[p]/C1) +
n−2∑
l=0

pl(pwσ−l−1◦β) =
n−1∑
l=0

plwσ−l◦β.

The assertions (1) and (2) follow from the construction and the induc-
tion hypothesis. The assertions (3) and (4) can be shown exactly in
the same way as [Hat2, Theorem 1.1 (b) and (1)], using the assertion
(1).

Let us show the assertion (5). By an induction, we can show Cn−1 ⊆
Cn. By the induction hypothesis, it suffices to show Cn(OK̄)∩G[p](OK̄) =
C1(OK̄) for any n ≥ 2. From the assertion (6) for p1−nC1/C1, we see
that (Cn/C1)(OK̄)[p] is the generic fiber of the canonical subgroup of
p−1C1/C1. On the other hand, Corollary 3.11 (2) implies that G[p]/C1 is
not the canonical subgroup of p−1C1/C1. Then we have (Cn/C1)(OK̄)∩
(G[p]/C1)(OK̄) = 0 and thus Cn(OK̄)∩G[p](OK̄) ⊆ C1(OK̄), from which
the assertion (5) follows. The assertion (6) follows from Cn−1 ⊆ Cn and
the assertion (5).

Next we show the assertion (7). Let i be as in the assertion. Put
ϵ = n− i. Since we have

w/(p− 1) < 1− ϵ ≤ 1− w,
by using Theorem 3.4 (6) we can show ♯Ker(HTi) ≤ pnf as in the proof
of [Far, Proposition 13]. On the other hand, since degβ(C∨1 ) = wβ, the

OK̄-module ωC∨
1
⊗OK̄ is killed by m⩾w

K̄
. Take any element x ∈ Cn(OK̄)

and denote its image in (G/C1)(OK̄) by x̄. By the induction hypothesis,
we have HTj(x̄) = 0 for any j satisfying

n− 2 + pw/(p− 1) < j ≤ n− 1− w(pn − p)/(p− 1).

Thus we obtain

m⩾n−1−j
K̄

HT(x̄) = 0, m⩾n−1−j+w
K̄

HT(x) = 0

and HT1−w+j(x) = 0, which yields Cn(OK̄) ⊆ Ker(HTi). Then the
assertion (7) follows from ♯Cn(OK̄) = pnf .
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Finally, we show the assertion (8) following the proof of [Hat4, The-
orem 1.2]. Using Lemma 3.6 and Theorem 3.4 (4), the same argument
as in the proof of [Hat4, Lemma 5.4] shows Gi′n ⊆ Cn. For the reverse
inclusion, we need the following variant of [Hat4, Proposition 5.5].

Lemma 3.15. The image of the map Gin(OK̄)
×p→ G[pn−1]pin(OK̄) con-

tains G[pn−1]in−1(OK̄).

Proof. Note that the map in the lemma is well-defined by [Hat4, Lemma
5.3]. Put M = M∗(G[p]). Consider the basis {δβ, e′β} of the S1-module
M as in the proof of Theorem 3.4. Write as

φ(δσ−1◦β, e
′
σ−1◦β) = (δβ, e

′
β)

(
λβ µβ
0 νβ

)
.

We have vR(λβ) = wβ and vR(νβ) = 1−wβ. Then, in the same way as
in the proof of [Hat4, Proposition 5.5], we reduce ourselves to showing

that for any ξβ, ηβ ∈ m⩾in−1

R , there exist ζβ, ωβ ∈ m⩾in
R satisfying

(ξβ, ηβ) + (ζpσ−1◦β, ω
p
σ−1◦β) = (ζβ, ωβ)

(
λβ µβ
0 νβ

)
for any β ∈ Bf . We can show by recursion that the equation on ζβ’s
has a solution satisfying vR(ζβ) ≥ pin for any β ∈ Bf . Fixing such ζβ’s,
we obtain the system of equations on ωβ’s

ωpσ−1◦β − νβωβ − µβζβ + ηβ = 0.

Take any a ∈ R satisfying vR(a) = in and put ωβ = aαβ. Then (αβ)β∈Bf

is a solution of the system of equations

αpσ−1◦β −
νβ
ap−1

αβ −
µβζβ
ap

+
ηβ
ap

= 0,

where all the coefficients are contained in R. This system defines a
finite R-algebra which is free of rank pf . Since Frac(R) is algebraically
closed and R is normal, we can find a solution (αβ)β∈Bf

in R and the
lemma follows. □

By the induction hypothesis, we have G[pn−1]in−1 = Cn−1. By Lemma
3.6, we also have G[p]in = C1. Then Lemma 3.15 implies ♯Gin(OK̄) ≥
♯Cn(OK̄). Now the assertion (8) follows from the inclusions Gin ⊆ Gi′n ⊆
Cn. This concludes the proof of Theorem 3.14. □

Corollary 3.16. Let n be a positive integer. Let G be a Zpf -ADBTn+1

over OK with β-Hodge height wβ satisfying

wβ + pwσ−1◦β < p2−n
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for any β ∈ Bf . Let Cn−1 and C1 be the canonical subgroups of level
n− 1 and level one of G[pn−1] and G[p], respectively. Let H ̸= C1 be a
finite flat closed cyclic Zpf -subgroup of G[p] over OK. Then the Zpf -
ADBTn p−nH/H has the canonical subgroup p−1Cn−1/H. Moreover,
the natural map Cn → p−1Cn−1/H is an isomorphism over K.

Proof. By Corollary 3.11 (1), the Zpf -ADBTi p
−iH/H has the canoni-

cal subgroup of level i for any positive integer i ≤ n, which we denote
by C̄i. Moreover, we have C̄1 = G[p]/H. By the construction of the
canonical subgroup in Theorem 3.14, the quotient C̄n/C̄1 is equal to the
canonical subgroup of level n− 1 of the Zpf -ADBTn−1 p

1−nC̄1/C̄1. We
have the map

p1−nC̄1/C̄1 = p1−n(G[p]/H)/(G[p]/H) = (G[pn]/H)/(G[p]/H) ×p→ G[pn−1],

where the last arrow is an isomorphism. By Theorem 3.14 (1), we
obtain C̄n = p−1Cn−1/H. Moreover, Theorem 3.14 (6) implies Cn(OK̄)∩
H(OK̄) = 0 and the map Cn → p−1Cn−1/H is an injection over K.
Since the both sides have the same rank over OK , the last assertion
follows. □

Finally, we show the following generalization of [AIP, Proposition
3.2.1] to our setting.

Proposition 3.17. Let G be a Zpf -ADBTn over OK with β-Hodge
height wβ. Put w = max{wβ | β ∈ Bf}. Suppose w < (p − 1)/pn. Let
Cn be the canonical subgroup of G of level n, which exists by Theorem
3.14.

(1) For any i ∈ e−1Z≥0 satisfying i ≤ n − w(pn − 1)/(p − 1), the
natural map

ωG ⊗OK
OK,i → ωCn ⊗OK

OK,i
is an isomorphism.

(2) The cokernel of the linearization of the Hodge-Tate map

HT⊗ 1 : C∨n (OK̄)⊗OK̄ → ωCn ⊗OK
OK̄

is killed by m
⩾w/(p−1)

K̄
.

Proof. Put b = n− w(pn − 1)/(p− 1). For the first assertion, consider
the exact sequence

0 // ωG/Cn
// ωG // ωCn

// 0

and the decompositions

ωG/Cn =
⊕
β∈Bf

ωG/Cn,β, ωG =
⊕
β∈Bf

ωG,β.
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Note that ωG,β ≃ OK,n. Theorem 3.14 implies

degβ(G/Cn) =
n−1∑
l=0

plwσ−l◦β ≤
w(pn − 1)

p− 1
≤ n− i.

Thus the image of the natural map ωG/Cn,β → ωG,β is contained in

m⩾i
K ωG,β for any β ∈ Bf and the first assertion follows.
For the second assertion, consider the commutative diagram

G∨(OK̄)

pn−1

��

HTG∨
// ωG ⊗OK

OK̄ //

��

ωG ⊗OK
OK̄,1

��
G∨[p](OK̄)

HTG∨[p]// ωG[p] ⊗OK
OK̄ ωG[p] ⊗OK

OK̄,1,

where the horizontal composites are the first Hodge-Tate maps and
the left vertical arrow is surjective. Since the right vertical arrow is
an isomorphism, the map HTG∨,1 factors through G∨[p](OK̄) and we
obtain a natural isomorphism of OK̄-modules

Coker(HTG∨,1 ⊗ 1) ≃ Coker(HTG∨[p],1 ⊗ 1).

By Lemma 3.7, they are killed by m
⩾w/(p−1)

K̄
and thus

m
⩾w/(p−1)

K̄
(ωG ⊗OK

OK̄) ⊆ Im(HTG∨ ⊗ 1) + p(ωG ⊗OK
OK̄).

Since w < 1, Lemma 3.8 implies that the OK̄-module Coker(HTG∨⊗1)

is killed by m
⩾w/(p−1)

K̄
.

On the other hand, we have a commutative diagram

G∨(OK̄)

��

HTG∨
// ωG ⊗OK

OK̄ //

��

ωG ⊗OK
OK̄,b

��
C∨n (OK̄)

HTC∨n// ωCn ⊗OK
OK̄ // ωCn ⊗OK

OK̄,b,

where the left vertical arrow is surjective. By a base change argument
using Theorem 3.14 (2), the first assertion implies that the right vertical
arrow is an isomorphism. Thus we have a surjection of OK̄-modules

Coker(HTG∨ ⊗ 1) ↠ Coker(HTG∨,b ⊗ 1) ≃ Coker(HTC∨
n ,b ⊗ 1)

and Coker(HTC∨
n ,b ⊗ 1) is also killed by m

⩾w/(p−1)

K̄
. This is equivalent

to the inclusion

m
⩾w/(p−1)

K̄
(ωCn ⊗OK

OK̄) ⊆ Im(HTC∨
n
⊗ 1) +m⩾b

K̄
(ωCn ⊗OK

OK̄).
Since w < (p−1)/pn, we have b > w/(p−1) and the proposition follows
from Lemma 3.8. □
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4. Hilbert eigenvariety

4.1. Hilbert modular varieties. Let p be a rational prime. Let F
be a totally real number field of degree g which is unramified over p.
We denote its ring of integers by o = OF and its different by DF . For
any integer N , we put

UN = {ϵ ∈ O×
F | ϵ ≡ 1 mod N}.

We fix once and for all a representative [Cl+(F )](p) = {c1 = o, c2, . . . , ch+}
of the strict class group Cl+(F ) such that every ci is prime to p.

For any prime ideal p | p of OF , let fp be the residue degree of p. Fix
a finite extension K/Qp in Q̄p such that F ⊗K splits completely. Let k
be the residue field of K and we follow the notation in §3.1. We denote
by BF the set of embeddings F → K and by Bp the subset consisting
of embeddings which factor through the completion Fp. Then we can
identify Bp with Bfp . The set BF is decomposed as

BF =
⨿
p|p

Bp.

For any subsetX of F , we denote byX+ the subset of totally positive
elements of X. Put FR = F ⊗R and F ∗

R = HomQ(F,R). We denote by
F ∗,+
R the subset of F ∗

R consisting of linear forms which maps the subset
F×,+ to R>0. The group UN acts on F and F ∗,+

R through ϵ 7→ ϵ2.
Let c be any non-zero fractional ideal of F . For any fractional ideals

a, b of F satisfying ab−1 = c, we denote by Dec(a, b) the set of rational
polyhedral cone decompositions C = {σ}σ∈C of F ∗,+

R which is projec-
tive and smooth with respect to the lattice Hom(ab,Z) such that the
elements of C are permuted by the action of UN , the set C /UN is finite
and for any ϵ ∈ UN and σ ∈ C , ϵ(σ)∩ σ ̸= ∅ implies ϵ = 1, as in [Hid2,
§4.1.4]. Here we adopt the convention that σ is an open cone. Note
that any two elements of Dec(a, b) have a common refinement which
belongs to Dec(a, b). For any such pair (a, b), we fix once and for all
a rational polyhedral cone decomposition C (a, b) ∈ Dec(a, b) and put
D(c) = {C (a, b) | ab−1 = c}.

4.1.1. Hilbert-Blumenthal abelian varieties. Let N ≥ 4 be an integer
with p ∤ N and c a non-zero fractional ideal of F . Let S be a scheme over
OK . A Hilbert-Blumenthal abelian variety over S, which we abbreviate
as HBAV, is a quadruple (A, ι, λ, ψ) such that

• A is an abelian scheme over S of relative dimension g.
• ι : OF → EndS(A) is a ring homomorphism.
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• λ is a c-polarization. Namely, λ : A ⊗OF
c ≃ A∨ is an iso-

morphism of abelian schemes to the dual abelian scheme A∨

compatible with OF -action such that the map

HomOF
(A,A∨) ≃ HomOF

(A,A⊗OF
c), f 7→ λ−1 ◦ f

induces an isomorphism of OF -modules with notion of posi-
tivity (PA,P+

A ) ≃ (c, c+). Here PA denotes the OF -module of
symmetric OF -homomorphisms from A to A∨, P+

A is the subset
of OF -linear polarizations and any element γ ∈ c is identified
with the element (x 7→ x⊗ γ) of HomOF

(A,A⊗OF
c).

• ψ : D−1
F ⊗ µN → A is an OF -linear closed immersion of group

schemes, which we call a Γ00(N)-structure.

Note that for such data, the OF ⊗OS-module Lie(A) is locally free of
rank one [DP, Corollaire 2.9].

Let (A, ι, λ, ψ) be a HBAV over S with c-polarization λ and Γ00(N)-
structure ψ. Let a be an ideal of OF . Let H be a finite locally free
closed subgroup scheme of A over S which is stable under the OF -
action such that H is isomorphic, etale locally on S, to the constant
group scheme OF/a and that Im(ψ) ∩ H = 0. Then we can define on

A/H a natural structure of a HBAV (A/H, ῑ, λ̄, ψ̄) with ca-polarization
λ̄ [KL, §1.9].

For any HBAV (A, ι, λ, ψ) over S, the group scheme A[pn] is decom-
posed as

A[pn] =
⊕
p|p

A[pn]p =
⊕
p|p

A[pn]

according with the decomposition

OF ⊗ Zp =
∏
p|p

OFp .

If S = Spec(OL) with some extension L/K of complete valuation fields,
then each A[pn] is a truncated Barsotti-Tate group of level n, height 2fp
and dimension fp. Moreover, for any p | p, the OFp-module c⊗OF

OFp

and the OF/pnOF -module c/pnc are free of rank one. This implies that
any element of c which generates the OF -module c/pnc and the given
c-polarization on A define isomorphisms

in : A[pn]→ A∨[pn] ≃ A[pn]∨, in,p : A[p
n]→ A[pn]∨

which are skew-symmetric by [Oda, Corollary 1.3 (ii)]. Then in,p isOFp-
alternating if p ̸= 2 and ⟨x, in,p(ax)⟩2A[pn] = 1 for any x ∈ A[pn](OL̄)
and a ∈ OFp if p = 2, where L̄ is an algebraic closure of L. For p = 2,
by choosing a generator of the OF -module c/pn+1c, we may assume
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that the isomorphisms in,p and in+1,p are compatible with each other.
In this case, for any lift x̂ of x in A[pn+1](OL̄) and a ∈ OFp , we have

⟨x, in,p(ax)⟩A[pn] = ⟨x, pin+1,p(ax̂)⟩A[pn] = ⟨x, in+1,p(ax̂)⟩A[pn+1]

= ⟨x̂, in+1,p(ax̂)⟩pA[pn+1] = 1.

Thus in,p is OFp-alternating also for p = 2. Hence each A[pn] is an OFp-
ADBTn over OL. From this, we see that in is OF -alternating, namely
⟨x, in(ax)⟩A[pn] = 1 for any x ∈ A[pn](OL̄) and a ∈ OF . For any β ∈ Bp,
we put Hdgβ(A) = Hdgβ(A[p]).

On the other hand, for any finite flat group scheme H over OL with
an OF -action, we have the decompositions

H =
⊕
p|p

Hp, ωH =
⊕
β∈BF

ωH,β

as above such that Hp is a finite flat closed subgroup scheme of H over
OL and ωH,β = ωHp,β for any β ∈ Bp. Since the i-th Hodge-Tate map
HTi : H(OL̄) → ωH∨ ⊗OL

OL̄,i is OF -linear, it is also decomposed as
the direct sum of the maps

HTi =
⊕
p|p

HTHp,i, HTHp,i : Hp(OL̄)→ ωH∨
p
⊗OL

OL̄,i.

For any ideal a ⊆ OF , we say that H is a-cyclic if the OF -module
H(OL̄) is isomorphic to OF/a. Note that, for any HBAV A over OL
as above and any finite flat pn-cyclic OF -subgroup scheme H of A over
OL, we can define on A/H a structure of a HBAV (A/H, ῑ, λ̄, ψ̄) with
c-polarization λ̄ as in [Tia, §2.1].
Proposition 4.1. Let L/K be a finite extension in K̄. Let c be a
non-zero fractional ideal of F . Let A be a HBAV over OL with a c-
polarization. Put wβ = Hdgβ(A) and w = max{wβ | β ∈ BF}. Suppose
that

wβ + pwσ−1◦β < p2−n

holds for any β ∈ BF . For any p | p, let Cn,p be the canonical subgroup
of the OFp-ADBTn A[p

n] of level n, which exists by Theorem 3.14. The
finite flat closed subgroup scheme

Cn(A) =
⊕
p|p

Cn,p

of A[pn] over OL is stable under the OF -action. We call Cn(A) the
canonical subgroup of A of level n. It satisfies

degβ(A[p
n]/Cn(A)) =

n−1∑
l=0

plwσ−l◦β
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for any β ∈ BF and the OF/pnOF -module Cn(A)(OK̄) is free of rank
one. Then Cn = Cn(A) also satisfies the following.

(1) Let A′ be a HBAV over OL satisfying the same condition on the
β-Hodge heights as above. Then any isomorphism of HBAV’s
j : A→ A′ over OL induces an isomorphism Cn(A) ≃ Cn(A′).

(2) Cn is compatible with base extension of complete discrete valua-
tion rings with perfect residue fields.

(3) Cn is isotropic with respect to the OF -alternating isomorphism
in : A[pn] ≃ A[pn]∨ defined by the c-polarization of A and any
element x ∈ c generating the OF -module c/pnc.

(4) The kernel of the n-th iterated Frobenius map of A[pn]×SL,1−pn−1w

coincides with Cn ×SL,1−pn−1w.
(5) The scheme-theoretic closure of Cn(OK̄)[pi] in Cn is the canon-

ical subgroup Ci of level i of A[pi] for any 0 ≤ i ≤ n− 1.

Put b = n− w(pn − 1)/(p− 1). If w < (p− 1)/pn, then Cn = Cn(A)
also has the following properties:

(6) Cn(OK̄) coincides with Ker(HTi) for any rational number i sat-
isfying

n− 1 +
w

p− 1
< i ≤ b.

(7) Cn = A[pn]i for any rational number i satisfying

1

pn(p− 1)
≤ i ≤ 1

pn−1(p− 1)
− w

p− 1
.

(8) For any i ∈ vp(OL) satisfying i ≤ b, the natural map

ωA ⊗OL
OL,i → ωCn ⊗OL

OL,i
is an isomorphism.

(9) The cokernel of the map

HT⊗ 1 : C∨n (OK̄)⊗OK̄ → ωCn ⊗OL
OK̄

is killed by m
⩾w/(p−1)

K̄
.

(10) For any p | p and any finite flat closed p-cyclic OF -subgroup
scheme H ̸= C1,p of A[p] over OL, the HBAV A/H has the
canonical subgroup Cn(A/H) of level n, which is equal to

(
⊕

q|p,q ̸=p

Cn,q)⊕ (p−1Cn−1,p/H).

Moreover, the natural map A→ A/H induces a map Cn(A)→
Cn(A/H) which is an isomorphism over L.
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Proof. The assertion on degβ follows from that of Theorem 3.14, since
we have

degβ(A[p
n]/Cn(A)) = degβ(A[p

n]p/Cn,p)
for p | p satisfying β ∈ Bp. The assertion on the freeness follows from
Theorem 3.14 (5). The assertions (1), (2) and (5) also follow from
Theorem 3.14.

Let us show the assertion (3). Theorem 3.14 (3) implies that (A[pn]/Cn)∨
can be identified with the canonical subgroup of A[pn]∨. By Theorem
3.14 (1), the isomorphisms

A[pn]
x≃ A∨[pn] ≃ A[pn]∨

preserve the canonical subgroups, and thus their composite induces an
isomorphism Cn ≃ (A[pn]/Cn)∨. This shows the assertion (3). Put
wp = max{wβ | β ∈ Bp}. Since we have 1 − pn−1w ≤ 1 − pn−1wp, the
assertion (4) follows from Theorem 3.14 (4).

Suppose w < (p− 1)/pn. Then we have

n− 1 +
wp

p− 1
≤ n− 1 +

w

p− 1
< n− w(pn − 1)

p− 1
≤ n− wp(p

n − 1)

p− 1

for any p | p. Since the map HTb is the direct sum of the maps

HTA[pn],b : A[p
n](OK̄)→ ωA[pn]∨ ⊗OL

OK̄,b,
Theorem 3.14 (7) implies the assertion (6). Since the formation of
lower ramification subgroups commutes with product, the assertion
(7) follows from Theorem 3.14 (8). Similarly, the assertions (8) and (9)
follow from Proposition 3.17. Since we have the decomposition

(A/H)[pn] = (
⊕

q|p,q ̸=p

A[qn])⊕ p−nH/H,

Corollary 3.16 shows the assertion (10). This concludes the proof. □

4.1.2. Moduli spaces and toroidal compactifications. Let M(µN , c) be
the Hilbert modular variety over OK which parametrizes the isomor-
phism classes of HBAV’s (A, ι, λ, ψ) such that λ is a c-polarization and
ψ is a Γ00(N)-structure. The schemeM(µN , c) is smooth over OK [Gor,
Chapter 3, Theorem 6.9]. We denote by Aun the universal HBAV over
M(µN , c).

An unramified cusp for M(µN , c) is a triple (a, b, ϕN) of fractional
ideals a, b of F satisfying ab−1 = c and an isomorphism of OF -modules

ϕN : a−1/Na−1 ≃ OF/NOF .
For each cusp, we have a Tate object Tatea,b(q) over a certain base
scheme [Rap, §4], which is used to construct a toroidal compactification
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M̄(µN , c) of M(µN , c). We recall the definition for unramified cusps.
Put M = ab, MR = M ⊗ R and M∗

R = Hom(M,R). We identify
M ⊗ Q with F . Then any C ∈ Dec(a, b) gives a rational polyhedral
cone decomposition of

M∗,+
R = {f ∈M∗

R | f(M+) ⊆ R>0}.

For each σ ∈ C , put

σ∨ = {m ∈MR | l(m) ≥ 0 for any l ∈ σ}.

Then we have an affine torus embedding

S = Spec(OK [qm | m ∈M ])→ Sσ = Spec(OK [qm | m ∈M ∩ σ∨]).

The affine schemes {Sσ}σ∈C can be glued via Sσ ∩ Sτ = Sσ∩τ to define
a torus embedding S → SC . We denote by S∞

σ and S∞
C =

∪
σ∈C S

∞
σ

the complements of S in these embeddings with reduced structures.
The formal completions along these closed subschemes are denoted by
Ŝσ = Spf(R̂σ) and ŜC . By assumption, we can construct the quotient

ŜC /UN by re-gluing {Ŝσ}σ∈C via the action ϵ : Ŝσ ≃ Ŝϵσ for any ϵ ∈ UN .
The closed subscheme S∞

σ is defined by a principal ideal Îσ of the

ring R̂σ satisfying
√
Îσ = Îσ. The ring R̂σ is a Noetherian normal

excellent ring which is complete with respect to the Îσ-adic topology.
Put S̄σ = Spec(R̂σ), S̄

∞
σ = V (Îσ) and S̄

0
σ = S̄σ \ S̄∞

σ , where the latter

is an affine scheme and we denote its affine ring by R̂0
σ.

Note that the torus with character group a is (aDF )−1 ⊗ Gm. For
any η ∈ a, we denote by Xη the element of O((aDF )−1 ⊗ Gm) which
the character η defines. We have an OF -linear homomorphism

q : b→ (aDF )−1 ⊗Gm(S̄
0
σ)

defined by ξ 7→ (Xη 7→ qξη) with ξ ∈ b and η ∈ a. By Mumford’s
construction, we obtain the semi-abelian scheme Tatea,b(q) over S̄σ such
that its restriction to S̄0

σ is an abelian scheme [Rap, §4]. It admits a
natural OF -action. Over S̄0

σ, we have a natural exact sequence

0 // 1
N
(aDF )−1 ⊗ µN // Tatea,b(q)[N ]|S̄0

σ
// 1
N
b/b // 0,

which defines, for any unramified cusp (a, b, ϕN), a Γ00(N)-structure
on Tatea,b(q)|S̄0

σ
using ϕN . Moreover, the natural isomorphism

((aDF )−1 ⊗Gm)⊗OF
c→ (bDF )−1 ⊗Gm

induces a c-polarization

λa,b : Tatea,b(q)|S̄0
σ
⊗OF

c→ Tateb,a(q)|S̄0
σ
≃ (Tatea,b(q)|S̄0

σ
)∨.
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By these data we consider the Tate object Tatea,b(q)|S̄0
σ
as a HBAV

over S̄0
σ, which yields a morphism S̄0

σ → M(µN , c). Then the toroidal
compactification M̄D(c)(µN , c) of M(µN , c) over OK with respect to
D(c), which we also denote by M̄(µN , c) if no confusion will occur, is
constructed in such a way as to satisfy the following [Rap, Théorème
6.18]:

• M̄(µN , c) is projective and smooth over OK .
• M(µN , c) is an open subscheme of M̄(µN , c) which is fiberwise
dense and the complement D of M(µN , c) is a normal crossing
divisor. In particular, M(µN , c) is quasi-compact.
• The formal completion M̄(µN , c)|∧D of M̄(µN , c) along the bound-
ary divisor D is isomorphic to⨿

ŜC (a,b)/UN ,

where the disjoint union runs over the set of isomorphism classes
of cusps.
• The universal HBAV Aun over M(µN , c) extends to a semi-
abelian scheme Āun with OF -action over M̄(µN , c) such that,
for any σ ∈ C (a, b), the pull-back of Āun by the restriction to S̄0

σ

of the unique algebraization S̄σ → M̄(µN , c) of the map Ŝσ →
M̄(µN , c)|∧D for any cusp (a, b, ϕN) is isomorphic to Tatea,b(q)|S̄0

σ
.

Let M̄(µN , c) be the p-adic formal completion of M̄(µN , c). Let
M̄(µN , c) be its Raynaud generic fiber. Let M(µN , c) be the ana-
lytification of the scheme M(µN , c) ⊗OK

K, which is a Zariski open
subvariety of M̄(µN , c). The semi-abelian scheme Āun defines semi-
abelian objects Āun over M̄(µN , c) and Āun over M̄(µN , c) by taking
the p-adic completion and the Raynaud generic fiber. For the zero sec-
tion e of Āun, put ωĀun = e∗Ω1

Āun/M̄(µN ,c)
. For any g-tuple κ = (kβ)β∈BF

in Z, we define

ωĀun,β = ωĀun ⊗OF ,β OK , ωκĀun =
⊗
β∈BF

ω
⊗kβ
Āun,β

.

We also define ωĀun,β and ωκĀun similarly. For any β ∈ BF , let hβ be
the β-partial Hasse invariant, which is a section of the invertible sheaf
ωp
Āun,σ−1◦β ⊗ ω−1

Āun,β
on M̄(µN , c) × S1 [GK, §2.5] (see also [AG, §7]).

For any extension L/K of complete valuation fields, any HBAV A over
OL and any β ∈ BF , consider the element P of M̄(µN , c)(L) induced

by A and a lift h̃β of hβ as a section of ωp
Āun,σ−1◦β⊗ω

−1
Āun,β

over an open

neighborhood of P . Then we have the equality of truncated valuations

Hdgβ(A) = vp(h̃β(P )).
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If P ∈ M̄(µN , c)(L) corresponds to a semi-abelian scheme A over OL
which is not an abelian scheme, then we put Hdgβ(A) = vp(h̃β(P )) = 0.

Let v = (vβ)β∈BF
be a g-tuple in [0, 1]∩Q. We denote by M̄(µN , c)(v)

and M(µN , c)(v) be the admissible open subsets of M̄(µN , c) and

M(µN , c) defined by vp(h̃β(P )) ≤ vβ for any β ∈ BF , respectively.
Note that M̄(µN , c)(v) is quasi-compact. We define its integral model
M̄(µN , c)(v) as follows: write vβ = aβ/bβ with non-negative integers
aβ and bβ ̸= 0. Take a formal open covering M̄(µN , c) =

∪
Ui such

that every hβ lifts to a section h̃β on each Ui. Consider the formal
scheme whose restriction to each Ui is the admissible blow-up of Ui
along the ideal (paβ , h̃

bβ
β ), and its locus where this ideal is generated

by h̃
bβ
β . Repeat this for any β ∈ BF and define M̄(µN , c)(v) as the

normalization in M̄(µN , c)(v) of the resulting formal scheme. We de-
note the special fibers of M̄(µN , c) and M̄(µN , c)(v) by M̄(µN , c)k and
M̄(µN , c)(v)k, respectively. We also denote by M(µN , c)(v) the com-
plement in M̄(µN , c)(v) of the boundary divisor of the special fiber.

Let v be an element of [0, 1] ∩ Q. When vβ = v for any β ∈
BF , we write M̄(µN , c)(v) as M̄(µN , c)(v) . Moreover, we denote by
M̄(µN , c)(vtot) the quasi-compact admissible open subset defined sim-
ilarly to M̄(µN , c)(v) with the usual Hasse invariant

h =
∏
β∈BF

hβ

instead of hβ’s. We also define similar spaces for these two variants,
such as M̄(µN , c)(v) and M̄(µN , c)(vtot). Note that M̄(µN , c)(0) is just
the formal open subscheme of M̄(µN , c) over which all the β-partial
Hasse invariants are invertible.

Let R be a topological OK-algebra which is idyllic with respect to the
p-adic topology [Abb, Définition 1.10.1]. By [Abb, Corollaire 2.13.9],

any morphism f̂ : Spf(R) → M̄(µN , c) has a unique algebraization f :
Spec(R)→ M̄(µN , c), and we have a semi-abelian scheme GR = f ∗Āun

over Spec(R). Taking the reduction modulo p, we see that f̂ factors
through M̄(µN , c)(0) if and only if GR is ordinary.

Let NAdm be the category of admissible p-adic formal OK-algebras
R such that R is normal. Note that we have R[1/p]◦ = R by [BGR,
Remark after Proposition 6.3.4/1]. By [Rap, Lemme 3.1], we can
see as in [AIP, Proposition 5.2.1.1] that any morphism Sp(R[1/p]) →
M(µN , c)(v)

rig corresponds uniquely to an isomorphism class of a HBAV
A over Spec(R) such that Hdgβ(Ax) ≤ vβ for x ∈ Sp(R[1/p]).

We give a proof of the following lemma for lack of a reference.
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Lemma 4.2. Let L/K be an extension of complete valuation fields.
Let X be a connected smooth rigid analytic variety over L and F an
invertible sheaf on X . Suppose that f ∈ F(X ) vanishes on a non-empty
admissible open subset U of X . Then f = 0.

Proof. Take an admissible affinoid covering X =
∪
i∈I Xi such that Xi

is connected and F is trivial on Xi for any i ∈ I. We have Xi0 ∩U ̸= ∅
for some i0. Then [FvP, Exercise 4.6.3] implies f |Xi0

= 0.
Put I0 = {i ∈ I | f |Xi

= 0}, which is non-empty. [FvP, Exercise
4.6.3] also implies that Xi ∩ Xj = ∅ for any i ∈ I0 and j ∈ I1 := I \ I0.
Then for the subsets

X0 =
∪
i∈I0

Xi, X1 =
∪
i∈I1

Xi

and s ∈ {0, 1}, the intersection Xs ∩ Xi equals Xi if i ∈ Is and ∅ if
i /∈ Is. Hence X = X0

⨿
X1 is an admissible covering of X . Since X is

connected, we obtain X = X0 and f = 0. □
Lemma 4.3. The rigid analytic variety M̄(µN , c)(v)Cp is connected for
any v ∈ [0, 1] ∩Q.

Proof. Since M̄(µN , c)(v) is separated, it is enough to show that for any
sufficiently large finite extensionK ′/K, the base extension M̄(µN , c)(v)K′

is connected [Con1, Theorem 3.2.1]. Replacing K by K ′, we may as-
sume K ′ = K.

By Ribet’s theorem (see [Gor, Chapter 3, Theorem 6.19]), the ordi-
nary locus M̄(µN , c)(0)k is geometrically connected. Since the rigid an-
alytic variety M̄(µN , c)(0) is the tube for the immersion M̄(µN , c)(0)k →
M̄(µN , c), [Ber, Proposition 1.3.3] implies that M̄(µN , c)(0) is con-
nected.

Consider the case of v > 0. Suppose that M̄(µN , c)(v) is not con-
nected. Then we can take its connected component U which does not
intersect M̄(µN , c)(0). Since U is quasi-compact, there exists a finite
admissible affinoid covering U =

∪m
i=1 Ui of U such that any β-partial

Hasse invariant can be lifted to a section over Ui. Using the maxi-
mal modulus principle on each Ui, we see that there exists a positive
rational number δ satisfying

max{Hdgβ(x) | β ∈ BF} ≥ δ

for any x ∈ U . Then, for any rational number ε satisfying 0 < ε < δ,
we have M̄(µN , c)(ε) ∩ U = ∅.

On the other hand, let us consider the specialization map

sp : M̄(µN , c)→ M̄(µN , c)k
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with respect to M̄(µN , c). Take any P ∈ U and consider its specializa-
tion P̄ = sp(P ). Since P /∈ M̄(µN , c)(0), it corresponds to a HBAV.
Then [GK, (2.5.1)] and [deJ, Lemma 7.2.5] give an identification

(4.1) sp−1(P̄ ) =
∏
β∈BF

Aβ[0, 1),

where Aβ[ρ, ρ′) is the annulus with parameter tβ defined by ρ ≤ |tβ| <
ρ′. By [GK, §4.2], we may assume that the parameter tβ satisfies

(4.2) Hdgβ(A) =

{
vp(tβ(Q)) (β ∈ τ(P̄ ))
0 (β /∈ τ(P̄ ))

for any Q ∈ sp−1(P̄ ) and for any β ∈ BF , where A is the HBAV
corresponding to Q and τ(P̄ ) is defined by [GK, (2.3.3)]. In particular,
we have Hdgβ(A) ≤ vp(tβ(Q)) for any β ∈ BF . For any positive rational
number ε, put

sp−1(P̄ )(ε)′ =
∏

β∈τ(P̄ )

Aβ[p−ε, 1)×
∏

β/∈τ(P̄ )

Aβ[0, 1).

Since sp−1(P̄ )(v)′ is a connected admissible open subset of M̄(µN , c)(v)
containing P , it is contained in U . However, for any ε satisfying ε <
min{δ, v}, we have

∅ ̸= sp−1(P̄ )(ε)′ ⊆ M̄(µN , c)(ε) ∩ U ,
which is a contradiction. □

4.1.3. Canonical subgroups over moduli spaces. Let n be a positive in-
teger. Let v = (vβ)β∈BF

be a g-tuple satisfying

vβ ∈ [0, (p− 1)/pn) ∩Q
for any β ∈ BF . Note that the 1/(pn(p − 1))-st lower ramification
subgroups can be patched into a rigid analytic family [Hat4, Lemma
5.6]. Let R be an object of NAdm and put U = Sp(R[1/p]). Let
U → M(µN , c)(v)

rig be any morphism of rigid analytic varieties over
K. This defines a HBAV Āun|R over Spec(R). For any rig-point x ∈
Spec(R), we have the canonical subgroup Cn((Āun|R)x). Theorem 4.1
(7) implies that they can be patched into an admissible open subgroup
of Āun[pn]|U . By [AIP, Proposition 4.1.3], it uniquely extends to a finite
flat subgroup scheme Cn of Āun|R over Spec(R).

On the other hand, on a formal open neighborhood U of a point of the
boundary satisfying U ⊆ M̄(µN , c)(0), the unit component Āun[pn]0|U
is quasi-finite and flat over U with constant degree on each fiber by
[Rap, p.297 (ii)]. Thus it is finite and flat. Then, by gluing along
M(µN , c)(0), we obtain a finite flat formal subgroup scheme Cn of Āun
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over M̄(µN , c)(v) and its generic fiber Cn, which we refer to as the
canonical subgroup of level n.

Let R be a topological OK-algebra which is quasi-idyllic with respect
to the p-adic topology [Abb, 1.10.1.1]. Since any finitely generated R-
module is automatically p-adically complete [Abb, Proposition 1.10.2],
any finitely presented flat formal group scheme over Spf(R) can be
identified with a finitely presented flat group scheme over Spec(R).
Thus we have a theory of Cartier duality for any finitely presented
flat formal group scheme over any quasi-idyllic p-adic formal scheme.
Then, from the construction, we see that the restriction of the Cartier
dual C∨n |M̄(µN ,c)(0) to the ordinary locus is finite and etale.

We have the following variant of [AIP, Proposition 4.2.1 and Propo-
sition 4.2.2].

Lemma 4.4. Let v = (vβ)β∈BF
be a g-tuple of non-negative rational

numbers satisfying

v := max{vβ | β ∈ BF} < (p− 1)/pn.

Let R be an object of NAdm. For any morphism of admissible formal
schemes f̂ : Spf(R) → M̄(µN , c)(v) over OK, consider the pull-back

G = Āun|R by the unique algebraization Spec(R)→ M̄(µN , c) of f̂ and
Hn = Cn|Spf(R), which is a subgroup scheme of the formal completion
of G.

(1) For any rational number i ∈ e−1Z≥0 satisfying i ≤ n − v(pn −
1)/(p − 1), the natural map ωG ⊗OK

OK,i → ωHn ⊗OK
OK,i is

an isomorphism.
(2) Assume that we have an isomorphism of OF -modules H∨

n(R) ≃
OF/pnOF . Then the cokernel of the linearization of the Hodge-
Tate map

HTH∨
n
⊗ 1 : H∨

n(R)⊗R→ ωHn

is killed by m
⩾v/(p−1)
K .

Proof. Since the ordinary case is trivial, by a gluing argument we may
assume that f̂ factors through M(µN , c)(v). By replacing Spf(R) with
its formal affine open subscheme, we may assume that R is an integral
domain and ωG is a free OF⊗R-module of rank one. The first assertion
follows by reducing it to Proposition 4.1 (8) in the same way as [AIP,
Proposition 4.2.1]. For the second assertion, take surjections Rg →
H∨
n(R)⊗R ≃ (R/pnR)g and Rg ≃ ωG → ωHn . Then the map HTH∨

n
⊗1

can be identified with the reduction of the map defined by some matrix

γ ∈ Mg(R). It suffices to show m
⩾v/(p−1)
K Rg ⊆ γ(Rg). Let p be a
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prime ideal of R of height one and R̂p the completion of the local ring

Rp. Proposition 4.1 (9) implies m
⩾v/(p−1)
K R̂g

p ⊆ γ(R̂g
p). This shows

m
⩾v/(p−1)
K Rg

p ⊆ γ(Rg
p) and det(γ) ̸= 0. Since R is normal, γ(Rg) is the

intersection of γ(Rg
p) for every such p and the assertion follows. □

4.2. Connected neighborhoods of critical points. Let Yc,p be the
moduli scheme parametrizing the isomorphism classes of pairs (A,H)
over schemes S/Spec(OK), whereA is a HBAV over S with a c-polarization
and a Γ00(N)-structure, andH is a finite locally free closedOF -subgroup
scheme of A[p] of rank pg over S such that H is isotropic in the sense
of [GK, §2.1]. Then Yc,p is projective over M(µN , c) [Sta, p.415]. For
S = Spec(OL) with some extension L/K of complete valuation fields,
H is isotropic in this sense if and only if H is p-cyclic.

Let Yc,p be the p-adic formal completion of Yc,p and Yc,p its Raynaud
generic fiber. Note that they are separated. By [Rap, Lemme 3.1], we
have Yc,p(L) = Yc,p(OL) = Yc,p(OL) for any extension L/K of complete
discrete valuation fields. In this subsection, we construct a connected
admissible affinoid open neighborhood of a point Q = [(A,H)] of Yc,p

satisfying Hdgβ(A) = p/(p+1) for any β ∈ BF inside the base extension

Yc,p,Cp = Yc,p⊗̂KCp, assuming fp ≤ 2 for any p | p.

Lemma 4.5. There exists a point of M̄(µN , c) corresponding to a
HBAV A over the integer ring OL of a finite extension L/K satisfying
Hdgβ(A) = p/(p+ 1) for any β ∈ BF .

Proof. Consider the stratum WBF
of the special fiber M(µN , c)k as

in [GK, §2.5]. Since WBF
is non-empty, there exists a point P ∈

M̄(µN , c) such that P̄ = sp(P ) ∈ WBF
for the specialization map

sp : M̄(µN , c) → M̄(µN , c)k as before. Since τ(P̄ ) = BF , the identifi-
cation (4.1) and (4.2) yield the lemma. □

Proposition 4.6. Suppose fp ≤ 2 for any p | p. Let L/K be a finite
extension in Q̄p and l the residue field of L. Let K ′ be the composite
field of K and Frac(W (l)) in Q̄p. Let [(A,H)] be an element of Yc,p(OL)
satisfying Hdgβ(A) = p/(p + 1) for any β ∈ BF and Q the element of
Yc,p(L) it defines. Let

sp : Yc,p → (Yc,p)k = Yc,p ×OK
Spec(k)
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be the specialization map with respect to Yc,p and put Q̄ = sp(Q). We
define

VQ = {Q′ = [(A′,H′)] ∈ sp−1(Q̄) | 1

p+ 1
≤ degβ(A

′[p]/H′) ≤ p

p+ 1
,

Hdgβ(A
′) ≤ p

p+ 1
for any β ∈ BF},

VQ( 1
p+1

) = {Q′ = [(A′,H′)] ∈ VQ | Hdgβ(A′) ≤ 1

p+ 1
for any β ∈ BF}.

Then they are admissible affinoid open subsets of Yc,p defined over K ′

such that VQ⊗̂K′Cp is connected.

Proof. By the assumption fp ≤ 2 and Proposition 3.12, we have the
equality degβ(A[p]/H) = p/(p + 1) for any β ∈ BF . [Tia, Proposition
4.2] shows that this value is equal to the one denoted by νβ(Q) in
[GK, §4.2]. In particular, the definition of νβ(Q) in [GK, §4.2] implies
I(Q̄) = BF with the notation of [GK, (2.3.2)].

We claim that the complete local ring ÔYc,p,Q̄ of Yc,p at Q̄ is isomor-
phic to the ring

(4.3) B′ = OK′ [[Xβ, Yβ | β ∈ BF ]]/(XβYβ − p | β ∈ BF )
and there exists gβ ∈ (B′)× such that for any finite extension E/K ′

and any OK′-algebra homomorphism x : B′ → OE, the corresponding
OE-valued point [(A′,H′)] of Yc,p satisfies

degβ(A
′[p]/H′) = vp(Xβ(x)), Hdgβ(A

′) = vp((Xβ + gβY
p
σ−1◦β)(x)).

Indeed, let Yc be a moduli scheme over W similar to Yc,p considered in
[GK, §2.1]. Let R be the affine algebra of an affine open neighborhood
of Q̄ in Yc and mQ̄ the maximal ideal of R corresponding to Q̄. The

ring ÔYc,p,Q̄ is equal to the completion of the local ring of R ⊗W OK
at the kernel nQ̄ of the map R ⊗W OK → l associated to mQ̄. Since
K/Frac(W ) is finite totally ramified and p ∈ mQ̄, the ring RmQ̄

⊗W OK
is local with maximal ideal nQ̄(RmQ̄

⊗W OK) and thus it is equal to the

localization (R ⊗W OK)nQ̄
. We also see that the mQ̄-adic topology on

the local ring RmQ̄
⊗W OK is the same as the topology defined by its

maximal ideal.
By Stamm’s theorem [Sta] (see also [GK, Theorem 2.4.1’]), the mQ̄-

adic completion R̂mQ̄
of the localization RmQ̄

is isomorphic to the ring

B =W (l)[[Xβ, Yβ | β ∈ BF ]]/(XβYβ − p | β ∈ BF ).
Moreover, since Hdgβ(A) ̸= 0 for any β ∈ BF , (4.2) implies τ(Q̄) =
BF . Thus, for any finite extension E/Frac(W (l)) and anyW (l)-algebra
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homomorphism x : B → OE, the corresponding HBAV A′ satisfies
v(tβ(x)) = Hdgβ(A

′). By [GK, Lemma 2.8.1] and the definition of

νβ(Q) in [GK, §4.2], the isomorphism R̂mQ̄
≃ B gives an identification

of degβ and Hdgβ for the ring B as claimed before.

Since the ring B/mi
Q̄
B is finite over W , we have

(RmQ̄
/mi

Q̄RmQ̄
)⊗W OK ≃ (B/mi

Q̄B)⊗W OK ≃ B′/mi
Q̄B

′.

Since the mQ̄-adic topology on the ring B′ is the same as the topology
defined by its maximal ideal, we obtain the claim.

By [deJ, Lemma 7.2.5], we have

sp−1(Q̄) = (Spf(B′))rig.

Thus VQ is the K ′-affinoid variety whose affinoid ring is the quotient
of the Tate algebra

K ′⟨Xβ, Yβ, Uβ, Vβ,Wβ | β ∈ BF ⟩
by the ideal generated by

Xp+1
β − pUβ, Xp+1

β Vβ − pp, XβYβ − p, Wβ(Xβ + gβY
p
σ−1◦β)

p+1− pp

for any β ∈ BF . From this, we also obtain a similar description of
VQ( 1

p+1
) as a K ′-affinoid variety.

Next we prove that the base extension VQ⊗̂K′Cp is connected. Put
r = 1/(p+1) and s = p/(p+1). Fix a (p+1)-st root ϖ = p1/(p+1) of p
in Q̄p. Then the affinoid ring BQ,Cp of VQ⊗̂K′Cp is also isomorphic to
the quotient of the Tate algebra

Cp⟨Xβ, Yβ, Uβ, Vβ,Wβ | β ∈ BF ⟩
by the ideal generated by

Xβ −ϖUβ, XβVβ −ϖp, XβYβ −ϖp+1, Wβ(Xβ + gβY
p
σ−1◦β)−ϖ

p

for any β ∈ BF . Note that in the ring BQ,Cp we also have Yβ−ϖVβ = 0.
Hence BQ,Cp is isomorphic to the quotient of the ring

Cp⟨Uβ, Vβ,Wβ | β ∈ BF ⟩
by the ideal generated by

UβVβ −ϖp−1, Fβ := Wβ(Uβ +ϖp−1g′βV
p
σ−1◦β)−ϖ

p−1

for any β ∈ BF with some g′β ∈ A×
Q,Cp

, where

AQ,Cp = OCp⟨Uβ, Vβ | β ∈ BF ⟩/(UβVβ −ϖp−1 | β ∈ BF ).
From these equations, we see that

Gβ := Vβ −Wβ(1 + g′βVβV
p
σ−1◦β) = 0
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in this quotient. Since

Fβ ≡ −UβGβ mod UβVβ −ϖp−1,

we obtain

BQ,Cp ≃ Cp⟨Uβ, Vβ,Wβ | β ∈ BF ⟩/(UβVβ −ϖp−1, Gβ | β ∈ BF ).
Note that the ring

BQ,Cp = OCp⟨Uβ, Vβ,Wβ | β ∈ BF ⟩/(UβVβ −ϖp−1, Gβ | β ∈ BF )
is a flat OCp-algebra. Indeed, consider the polynomial ring AQ,Cp [Wβ].
Since the coefficients of Gβ as a polynomial of Wβ generate the unit
ideal AQ,Cp , by a limit argument reducing to the Noetherian case and
using [Mat, (20.F), Corollary 2] we see that the AQ,Cp-algebra

AQ,Cp [Wβ | β ∈ BF ]/(Gβ | β ∈ BF )
is flat. By [Abb, Proposition 1.10.2 (ii)], the p-adic completion of
this algebra is BQ,Cp . Since the OCp-algebra AQ,Cp is flat, the p-adic
completion BQ,Cp is also flat over OCp .

Put Ḡβ = Gβ mod mCp and

R̄ = F̄p[Uβ, Vβ,Wβ | β ∈ BF ], J̄ = (UβVβ, Ḡβ | β ∈ BF ).
Next we claim that the reduction B̄Q,Cp = R̄/J̄ of BQ,Cp is reduced
and Spec(B̄Q,Cp) is connected. For the reducedness, it suffices to show
that the localization at every maximal ideal is reduced. Let M be any
maximal ideal of R̄ containing J̄ . Then we have

1 + g′βVβV
p
σ−1◦β /∈M

since, supposing the contrary, Ḡβ ∈ M implies Vβ ∈ M and 1 ∈ M,
which is a contradiction. Thus, in the ring R̄M we have

Wβ − Vβ(1 + g′βVβV
p
σ−1◦β)

−1 ∈ J̄R̄M

for any β ∈ BF . Hence the localization (B̄Q,Cp)M is isomorphic to the
localization of the ring

F̄p[Uβ, Vβ | β ∈ BF ]/(UβVβ | β ∈ BF )
at the pull-back of M, which is reduced.

Let us show the connectedness. Let BF = BU
⨿

BV be a decom-
position into the disjoint union of two subsets. Consider the closed
subscheme FBU ,BV

of Spec(B̄Q,Cp) defined by Uβ = 0 for β ∈ BU and
Vβ = 0 for β ∈ BV . Since every FBU ,BV

contains the point defined by
Uβ = Vβ = Wβ = 0 for any β ∈ BF , it is enough to show that FBU ,BV

is
connected for any such decomposition of BF . Put

ĀBU ,BV
= F̄p[Uβ, Vβ | β ∈ BF ]/(Uβ (β ∈ BU), Vβ (β ∈ BV )).
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Note that the ĀBU ,BV
-algebra

ĀBU ,BV
[Wβ | β ∈ BF ]/(Ḡβ | β ∈ BF )

is flat. From this we see that the affine algebra of FBU ,BV
can be iden-

tified with the subring

ĀBU ,BV
[

Vβ
1 + g′βVβVσ−1◦β

| β ∈ BF ]

of Frac(ĀBU ,BV
), which is an integral domain. Hence we obtain the

connectedness of B̄Q,Cp . By [deJ, Lemma 7.1.9], sp−1(Q̄) is reduced and

[Con1, Lemma 3.3.1 (1)] shows that VQ⊗̂K′Cp is also reduced. Then
[BLR, Proposition 1.1] and [BGR, Remark after Proposition 6.3.4/1]
imply that BQ,Cp is integrally closed in BQ,Cp and thus we have

π0(VQ⊗̂K′Cp) ≃ π0(Spec(BQ,Cp)) ≃ π0(Spec(B̄Q,Cp)).

This shows that VQ⊗̂K′Cp is connected. □

Lemma 4.7. Suppose fp ≤ 2 for any p | p. Let L/K be a finite
extension. Let [(A,H)] be an element of Yc,p(OL) satisfying

degβ(A[p]/H) ≤ p/(p+ 1), Hdgβ(A) ≤ p/(p+ 1)

for any β ∈ BF . Then, for any p | p, we have either A[p]p has the
canonical subgroup of level one which is equal to Hp, or Hdgβ(A) =
p/(p+ 1) for any β ∈ Bp.

Proof. Suppose Hdgβ0(A) < p/(p+1) for some β0 ∈ Bp. Since we have
Hdgβ(A) ≤ p/(p + 1) for any β ∈ BF , the assumption on fp implies
that the inequality

Hdgβ(A) + pHdgσ−1◦β(A) < p

holds for any β ∈ Bp. By Theorem 3.4, the OFp-ADBT1 A[p]p has the
canonical subgroup Cp.

Suppose Hp ̸= Cp. For any β ∈ Bp, Corollary 3.11 (1) implies that

Hdgβ(p
−1Hp/Hp) = p−1Hdgσ◦β(A[p]p) = p−1Hdgσ◦β(A[p]) ≤ 1/(p+ 1)

and that A[p]p/Hp is the canonical subgroup of p−1Hp/Hp. Thus we
have

degβ(A[p]/H) = degβ(A[p]p/Hp) = 1− Hdgβ(p
−1Hp/Hp) ≥ p/(p+ 1),

which yields degβ(A[p]/H) = p/(p+1) and Hdgβ(A[p]) = p/(p+1) for
any β ∈ Bp. This contradicts the choice of β0. □



PROPERNESS OF THE HILBERT EIGENVARIETY 59

Corollary 4.8. Suppose fp ≤ 2 for any p | p. Let L/K be a finite ex-
tension. Let [(A′,H′)] be an element of Yc,p(OL) such that [(A′

L,H′
L)] ∈

VQ(L). Then, for any finite flat closed p-cyclic OF -subgroup scheme D
of A′[p] over OL satisfying DL ∩H′

L = 0, we have

Hdgβ(A
′/D) ≤ 1/(p+ 1)

for any β ∈ BF and A′[p]/D is the canonical subgroup of A′/D of level
one.

Proof. Write as D =
⊕

p|pDp. The assumption implies Dp ̸= H′
p for

any p | p. If H′
p is the canonical subgroup of A′[p]p, then Corollary 3.11

(1) implies that

Hdgβ(A
′/D) = Hdgβ(p

−1Dp/Dp) = p−1Hdgσ◦β(A
′[p]) ≤ 1/(p+ 1)

for any β ∈ Bp and thatA′[p]p/Dp is the canonical subgroup of p−1Dp/Dp =
(A′/D)[p]p. Otherwise, Lemma 4.7 yields Hdgβ(A

′) = p/(p+1) for any
β ∈ Bp. By Proposition 3.12, we see that

degβ(A
′[p]p/Dp) = p/(p+ 1), Hdgβ((A

′/D)[p]p) = 1/(p+ 1)

for any β ∈ Bp and that (A′/D)[p]p has the canonical subgroupA′[p]p/Dp.
Hence the HBAV A′/D satisfies

Hdgβ(A
′/D) ≤ 1/(p+ 1)

for any β ∈ BF and it has the canonical subgroup

A′[p]/D =
⊕
p|p

A′[p]p/Dp

of level one. This concludes the proof of the corollary. □

Lemma 4.9. Suppose fp ≤ 2 for any p | p. Then we have

VQ( 1
p+1

) ̸= ∅.

Moreover, for any finite extension L/K and any element [(A′,H′)] of
Yc,p(OL) satisfying [(A′

L,H′
L)] ∈ VQ( 1

p+1
)(L), the HBAV A′ has the

canonical subgroup H′.

Proof. Recall that we have sp−1(Q̄) = (Spf(B′))rig with the ring B′ of
(4.3) in the proof of Proposition 4.6. From the description of degβ in
terms of the parameter Xβ of the ring B′, we see that there exists a
point [(A′,H′)] ∈ Yc,p(OL) with some finite extension L/K such that
[(A′

L,H′
L)] ∈ sp−1(Q̄) and

degβ(A
′[p]/H′) = 1/(p+ 1)
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for any β ∈ BF . Then Lemma 3.9 (1) implies that Hdgβ(A
′) = 1/(p+1)

for any β ∈ BF and thus [(A′
L,H′

L)] ∈ VQ( 1
p+1

)(L). The last assertion

follows from Theorem 3.4. □
Since Yc,p is separated, Proposition 4.6 implies that the base exten-

sion VQ,Cp = VQ⊗̂KCp is an admissible affinoid open subset of Yc,p,Cp

whose connected components are all isomorphic to VQ⊗̂K′Cp. Each
connected component contains an affinoid subdomain of VQ( 1

p+1
)⊗̂KCp

which is isomorphic to VQ( 1
p+1

)⊗̂K′Cp. By Lemma 4.9, we have

VQ( 1
p+1

)⊗̂K′Cp ̸= ∅.

The point Q ∈ Yc,p(L) defines a point of Yc,p,Cp(Cp) by the natural
inclusion L → Cp, which we also denote by Q. Let V0

Q,Cp
be the con-

nected component of VQ,Cp containing Q and V0
Q,Cp

( 1
p+1

) be a copy of

VQ( 1
p+1

)⊗̂K′Cp which is contained in V0
Q,Cp

. These are both non-empty

admissible affinoid open subsets of Yc,p,Cp .

4.3. Overconvergent Hilbert modular forms and the eigenva-
riety. In this subsection, we recall the construction of sheaves of over-
convergent Hilbert modular forms and the associated eigenvariety, due
to Andreatta-Iovita-Pilloni [AIP2].

4.3.1. Overconvergent modular forms over Hilbert modular varieties.
Put T = ResOF /Z(Gm). Let T̂ be its formal completion along the unit
section. For any w ∈ e−1Z≥1, let T0

w be the formal subgroup scheme of

T̂ over Spf(OK) representing the functor

B 7→ Ker(T(B)→ T(B/πewB)).

on the category of admissible formal OK-algebras B. Then T0
w is a

quasi-compact admissible formal group scheme over OK .
Let W be the Berthelot generic fiber of Spf(OK [[T(Zp)]]) and we

denote the universal character on this space by

κun : T(Zp)→ O◦(W)× = OK [[T(Zp)]]×.
Here O◦ is the sheaf of rigid analytic functions with absolute value
bounded by one and the last equality follows from [deJ, Theorem 7.4.1].
For any morphism X → W of rigid analytic varieties overK, we denote
by κX the restriction

κX : T(Zp)
κun→ O◦(W)× → O◦(X )×

of κun to X . Consider the case where X is a reduced K-affinoid variety
U = Sp(A). Then the subring A◦ of power-bounded elements is p-
adically complete. For any positive integer n, put qn = 2 if p = 2 and
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n = 1, and qn = 1 otherwise. When we consider the case of p = 2 and
n = 1, we assume that 2 splits completely in F . The character κU is
said to be n-analytic if the restriction to T0

n(Zp) factors as

T0
n(Zp) 1 + pn(OF ⊗ Zp)

κU //

log

��

(A◦)×

qnp
n(OF ⊗ Zp)

ψ
// q2np

nA◦

exp

OO

with some Zp-linear map ψ. In this case, we also say that the mor-
phism U → W is n-analytic. Any κU is n-analytic for some n by the
maximal modulus principle. Note that any n-analytic character defines
an analytic character T0

n(Zp) → A×, even for the case of p = 2 and
n = 1.

Proposition 4.1 and Lemma 4.4 enable us to generalize the construc-
tion in [AIP2, §3.3]. Let n be a positive integer and v = (vβ)β∈BF

a
g-tuple in [0, (p − 1)/pn) ∩ Q. Put v = max{vβ | β ∈ BF}. Let Cn be
the canonical subgroup of Āun of level n over M̄(µN , c)(v), as before.
Put

M̄(Γ1(p
n), µN , c)(v) = IsomM̄(µN ,c)(v)(Cn,D

−1
F ⊗ µpn).

We denote by M̄(Γ1(p
n), µN , c)(v) the normalization of M̄(µN , c)(v)

in M̄(Γ1(p
n), µN , c)(v). Note that, since C∨n is finite and etale over

M̄(µN , c)(0), we have

(4.4) M̄(Γ1(p
n), µN , c)(0) = IsomM̄(µN ,c)(0)(Cn,D

−1
F ⊗ µpn),

which is a T(Z/pnZ)-torsor over M̄(µN , c)(0).
Let F be the locally free OF ⊗OM̄(Γ1(pn),µN ,c)(v)-module of rank one

constructed as in [AIP2, Proposition 3.3]. Let w be an element of e−1Z
satisfying n− 1 ≤ w < n− pnv/(p− 1), which exists for a sufficiently
large K. Let

γw : IW+
w → M̄(Γ1(p

n), µN , c)(v)

be the p-adic formal T0
w-torsor over M̄(Γ1(p

n), µN , c)(v) classifying, for
any R ∈ NAdm and any morphism of p-adic formal schemes γ :
Spf(R) → M̄(Γ1(p

n), µN , c)(v), the isomorphisms α : γ∗F → OF ⊗ R
such that the composite

OF/pnOF (R)
γ
≃ C∨n (R)

HTw→ γ∗F/πewγ∗F α≃ OF ⊗R/πewR

sends 1 to 1 [AIP2, §3.4]. We also write IW+
w as IW+

w,c(v). We denote

the Raynaud generic fiber of IW+
w by IW+

w and also by IW+
w,c(v).

From (4.4), we see that the moduli interpretation of IW+
w,c(0) as above

is also valid for the category of quasi-idyllic p-adic OK-algebras R.
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For the structure morphism

hn : M̄(Γ1(p
n), µN , c)(v)→ M̄(µN , c)(v),

we put πw = hn ◦ γw. We denote by γrigw , hrign and πrig
w the induced mor-

phisms on the Raynaud generic fibers. Let Tw be the formal subgroup
scheme of T̂ over Spf(OK) whose set of B-valued points are the inverse
image of T(Z/pnZ) by the map T(B)→ T(B/πewB) for any admissi-
ble formal OK-algebra B. The natural action of T0

w on IW+
w induces

an action of Tw on IW+
w over M̄(µN , c)(v) and also on the Raynaud

generic fiber IW+
w over M̄(µN , c)(v). Then, for any reduced K-affinoid

variety U and n-analytic morphism U → W , we define

ΩκU = (πrig
w )∗(OIW+

w×U)[−κU ].

By [AIP2, Proposition 3.12], it is an invertible sheaf which is inde-
pendent of the choices of n and w. Let D be the boundary divisor of
M̄(µN , c). We also put

M(µN , c, κ
U)(v) = H0(M̄(µN , c)(v)× U ,ΩκU ),

S(µN , c, κ
U)(v) = H0(M̄(µN , c)(v)× U ,ΩκU (−D)).

Note the equality M(µN , c)(v)
rig = M̄(µN , c)(v) \ sp−1(Dk), where

Dk is the boundary divisor of the special fiber M̄(µN , c)(v)k. For any
R ∈ NAdm, let us consider tuples (A, ι, λ, ψ, u, α) over R consisting
of a HBAV (A, ι, λ, ψ) over Spec(R) such that Hdgβ(Ax) ≤ vβ for any
x ∈ Sp(R[1/p]), an isomorphism of OF -group schemes

u : Cn|R[1/p] ≃ D−1
F ⊗ µpn

for the canonical subgroup Cn of A and an isomorphism

α : γ∗F ≃ OF ⊗R

satisfying the compatibility with u as above. Then any element f ∈
H0(M(µN , c)(v)

rig,ΩκU ) can be identified with a rule functorially asso-
ciating, with any such tuple over R endowed with a map Sp(R[1/p])→
U , an element f(A, ι, λ, ψ, u, α) of R[1/p] satisfying

f(A, ι, λ, ψ, t−1u, t−1α) = κU(t)f(A, ι, λ, ψ, u, α)

for any t ∈ T(Zp). Similarly, any element f ∈ H0(M̄(µN , c)(0)
rig,ΩκU )

has a similar description as a rule over any quasi-idyllic p-adic OK-
algebra R endowed with a morphism Spf(R)→ M̄(µN , c)(0).

For a later use, we also recall the definition of an integral structure
of the sheaf ΩκU for an n-analytic map κU : U = Sp(A) → W with
some reduced K-affinoid algebra A. Note that A◦ is topologically of
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finite type [BGR, Corollary 6.4.1/6] and thus U = Spf(A◦) is an admis-
sible formal scheme over Spf(OK). The map κU extends to a formal
character

κU : Tw × U→ Ĝm × U.

We put

ΩκU = (πw)∗(OIW+
w×U)[−κU ].

It is a coherent OM̄(µN ,c)(v)×U-module which is independent of the choice

of w such that its Raynaud generic fiber is ΩκU [AIP2, Proposition 3.12].
Since the map hn is an etale T(Z/pnZ)-torsor over the ordinary locus

M̄(µN , c)(0), the restriction of ΩκU to M̄(µN , c)(0)×U is an invertible
sheaf.

Let κ : T(Zp)→ K× be a weight character which is integral, namely
it is written as

T(Zp) = (OF ⊗ Zp)× ∋ t⊗ 1 7→
∏
β∈BF

β(t)kβ ∈ K×

with some g-tuple of integers (kβ)β∈BF
. In this case, the sheaf Ωκ is

isomorphic to the classical automorphic sheaf [AIP2, Corollary 3.9].
Indeed, consider I = IsomM̄(µN ,c)(OF ⊗ OM̄(µN ,c), ωĀun). Since the
Raynaud generic fiber of the sheaf F is ωĀun , we have a natural map
IW+

w → I, which induces an isomorphism ωκĀun → Ωκ. We also say
that an integral weight κ is even if every kβ is even.

Moreover, we say that a weight character κ : T(Zp) → K× is n-
integral (resp. n-even) if its restriction to T0

n(Zp) is equal to the re-
striction of a character of some integral (resp. even) weight (kβ)β∈BF

.
Then, from the construction of the sheaf Ωκ, we see that the pull-back

(hrign )∗Ωκ to M̄(Γ1(p
n), µN , c)(v) is isomorphic to (hrign )∗(

⊗
β∈BF

ω
⊗kβ
Āun,β

).

Note that for the case where p = 2 splits completely in F , a 1-integral
weight is 1-analytic if and only if it is 1-even.

4.3.2. Overconvergent arithmetic Hilbert modular forms. We define the
weight space WG for overconvergent Hilbert modular forms as the
Berthelot generic fiber of Spf(OK [[T(Zp)×Z×

p ]]). Any morphism X →
WG defines a pair (νX , wX ) of continuous characters

νX : T(Zp)→ O◦(X )×, wX : Z×
p → O◦(X )×

with respect to the supremum semi-norm on X . The map

T(Zp)→ T(Zp)× Z×
p , t 7→ (t2,NF/Q(t))

induces a morphism k : WG → W . For any morphism X → WG, put
κX = k(νX , wX ). When X is a reduced K-affinoid variety, we say that
(νX , wX ) is n-analytic if νX and wX are both n-analytic. Note that
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if (νX , wX ) is n-analytic, then κX is also n-analytic. We say that a
character (ν, w) : T(Zp) × Z×

p → K× is integral if it comes from an
algebraic character T×Gm → Gm. Then it is written as

T(Zp)× Z×
p → K×, (t⊗ 1, s) 7→

∏
β∈BF

β(t)kβsk0

with some g-tuple of integers (kβ)β∈BF
and an integer k0. We say that

it is even if every kβ and k0 are even. We also say that (ν, w) is n-
integral (resp. n-even) if its restriction to T0

n(Zp)× (1 + pnZp) is equal
to the restriction of some integral (resp. even) character. If (ν, w) is
n-integral (resp. n-even), then k(ν, w) is also n-integral (resp. n-even).

Let U be a reduced K-affinoid variety and U → WG an n-analytic
morphism. Note that for any c-polarization λ : A⊗OF

c→ A∨ and any
x ∈ F×,+, the multiplication by x gives an x−1c-polarization

xλ : A⊗OF
x−1c

×x≃ A⊗OF
c
λ≃ A∨.

Then the group ∆ = O×,+
F /U2

N acts on the space M(µN , c, κ
U)(v) by

([ϵ].f)(A, ι, λ, ψ, u, α) = νU(ϵ)f(A, ι, ϵ−1λ, ψ, u, α)

for any f ∈M(µN , c, κ
U)(v) and ϵ ∈ O×,+

F . We define

MG(µN , c, (ν
U , wU))(v) =M(µN , c, κ

U)(v)∆,

SG(µN , c, (ν
U , wU))(v) = S(µN , c, κ

U)(v)∆.

Let F×,+,(p) be the subgroup of F×,+ consisting of p-adic units. For
any x ∈ F×,+,(p), we define a map

Lx :M
G(µN , c, (ν

U , wU))(v)→MG(µN , x
−1c, (νU , wU))(v)

by the formula

(Lx(f))(A, ι, λ, ψ, u, α) = νU(x)f(A, ι, x−1λ, ψ, u, α).

Let Frac(F )(p) be the group of fractional ideals of F which are prime
to p. Then the spaces

MG(µN , (ν
U , wU))(v), SG(µN , (ν

U , wU))(v)
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of arithmetic overconvergent Hilbert modular forms and cusp forms are
defined as the quotients ⊕

c∈Frac(F )(p)

MG(µN , c, (ν
U , wU))(v)

 /(Lx(f)− f | x ∈ F×,+,(p)),

 ⊕
c∈Frac(F )(p)

SG(µN , c, (ν
U , wU))(v)

 /(Lx(f)− f | x ∈ F×,+,(p)).

By the same construction, we also have the spaces

MG(µN , (ν
U , wU))(vtot), SG(µN , (ν

U , wU))(vtot).

4.3.3. Hecke operators and the Hilbert eigenvariety. Next we recall the
definition of Hecke operators on the space of overconvergent Hilbert
modular forms, following [AIP2, §3.7]. Let n, v, v and w be as above.
For any HBAV (A, ι, λ, ψ) over a base scheme S/Spec(OK), the closed
immersion ψ : D−1

F ⊗ µN → A gives a subgroup scheme Im(ψ) of A
which is etale locally isomorphic to D−1

F /ND−1
F . Let l be any non-zero

ideal of OF . We define

Y ′
c,l(v) ⊆M(µN , c)(v)×M(µN , lc)(v)

as the subvariety classifying pairs ((A, ι, λ, ψ), (A′, ι′, λ′, ψ′)) and an
isogeny πl : A→ A′ compatible with the other data such that Ker(πl) is
etale locally isomorphic to OF/lOF , Ker(πl)∩ Im(ψ) = 0 and Ker(πl)∩
C1 = 0, where C1 is the canonical subgroup of A of level one. Consider
the projections

p1 : Y ′
c,l(v)→M(µN , c)(v), p2 : Y ′

c,l(v)→M(µN , lc)(v).

Note that the map p1 is finite and etale. For the case where l is a
prime ideal dividing p, we suppose that p−1vσ◦β ≤ vβ for any β ∈ Bl.
Set v′ = (v′β)β∈BF

by v′β = vβ for β /∈ Bl and v
′
β = p−1vσ◦β for β ∈ Bl.

Then Corollary 3.11 (1) implies that the map p2 factors through the
admissible open subsetM(µN , lc)(v

′) ⊆M(µN , lc)(v).
Let U be a reduced K-affinoid variety and U → W an n-analytic

map. Then Proposition 4.1 (10) and the proof of [AIP2, Corollary
3.25] (see also [AIP, Lemma 6.1.1]) show that the map π∗

l : ωA′ → ωA
induces an isomorphism

πl : p
∗
2IW+

w,lc(v) ≃ p∗1IW+
w,c(v),

which in turn defines an isomorphism

π∗
l : p∗1(Ω

κU ) ≃ p∗2(Ω
κU ).
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This gives the Hecke operator

H0(M(µN , lc)(v)× U ,ΩκU )
p∗2→ H0(Y ′

c,l(v)× U , p∗2ΩκU )

(π∗
l )

−1

→ H0(Y ′
c,l(v)× U , p∗1ΩκU )

NF/Q(l)
−1Trp1→ H0(M(µN , c)(v)× U ,ΩκU ),

which can be seen as a map M(µN , lc, κ
U)(v) → M(µN , c, κ

U)(v) by
[Lüt, Theorem 1.6]. We denote this map by Tl if (l, p) = 1 and T ′

l

otherwise.
On the other hand, for any ideal l with (l, pN) = 1, we have a map

sl :M(µN , c)(v)→M(µN , l
2c)(v), (A, ι, λ, ψ) 7→ (A⊗OF

l−1, ι′, l2λ, ψ′).

Here ι′ and ψ′ are induced by ι and ψ via the natural isogeny A →
A/A[l] ≃ A⊗OF

l−1, and l2λ is the l2c-polarization on A⊗OF
l−1 defined

by

(A⊗OF
l−1)⊗OF

l2c = (A⊗OF
c)⊗OF

l
λ⊗1≃ A∨ ⊗OF

l ≃ (A⊗OF
l−1)∨.

Then we can show that there exists a natural isomorphism π∗
l : ΩκU ≃

s∗l Ω
κU as in [AIP, Lemma 6.1.1] and we define the operator

Sl :M(µN , l
2c, κU)(v)→M(µN , c, κ

U)(v)

by Sl = NF/Q(l)
−2(π∗

l )
−1 ◦ s∗l . This operator satisfies Sml = 1 for some

positive integer m.
To define arithmetic Hecke operators for l with (l, p) ̸= 1, let vp be

the normalized additive valuation for any p | p. We fix once and for all
elements xp ∈ F×,+ such that vp(xp) = 1 and vp′(xp) = 0 for any p′ ̸= p
satisfying p′ | p. We define a map

x∗p :M(µN , x
−1
p c, κU)(v)→M(µN , c, κ

U)(v)

by f 7→ ((A, ι, λ, ψ) 7→ f(A, ι, xpλ, ψ)). Then we denote the composite∏
p|p

(x∗p)
vp(l) ◦ T ′

l :M(µN ,
∏
p|p

x
−vp(l)
p lc, κU)(v)→M(µN , c, κ

U)(v)

by Tl. We also write it as Ul if l divides a power of p. Then the operators
Tl for any l and Sl for (l, pN) = 1 define actions onMG(µN , (ν

U , wU))(v)
and SG(µN , (ν

U , wU))(v) which commute with each other. Note that
Tll′ = TlTl′ if (l, l

′) = 1 and that Proposition 4.1 (10) implies

(4.5) TmTms−1 =

{
Tms +NF/Q(m)SmTms−2 (m ∤ Np)
Tms (m | Np)

for any maximal ideal m.
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Let v an element of Q ∩ (0, p−1
p
). Note that the above definitions

of Hecke operators are also valid for SG(µN , (ν
U , wU))(vtot). Then the

operator Up is a compact operator acting on SG(µN , (ν
U , wU))(vtot)

which factors as

SG(µN , (ν
U , wU))(vtot) ⊆ SG(µN , (ν

U , wU))(p−1vtot)→ SG(µN , (ν
U , wU))(vtot)

and, for v < (p− 1)/p2, also as

SG(µN , (ν
U , wU))(vtot)→ SG(µN , (ν

U , wU))(pvtot) ⊆ SG(µN , (ν
U , wU))(vtot).

Let T be the polynomial ring over K with variables Tl for any l and
Sl for (l, pN) = 1. Then the ring T acts on SG(µN , (ν

U , wU))(v) and
SG(µN , (ν

U , wU))(vtot) via the Hecke operators defined above.
Now we can construct the eigenvariety from these data, as in [AIP2,

§5]. For any positive integer n, we fix a positive rational number vn <
(p − 1)/pn satisfying vn ≥ vn+1 for any n. For any admissible affinoid
open subset U ⊆ WG, we put

n(U) = min{n ∈ Z>0 | (νU , wU) is n-analytic}.
We define a Banach O(U)-module MU with T-action as

MU = SG(µN , (ν
U , wU))(vn(U),tot),

on which Up acts as a compact operator. The proof of [AIP2, Theorem
4.4] remains valid also for p = 2 and implies that the O(U)-module
MU satisfies the condition (Pr). For admissible affinoid open subsets
U1 ⊆ U2 of WG, we have n(U1) ≤ n(U2) and [AIP2, Proposition 3.13]
yields a map

αU1,U2 :MU1 → SG(µN , (ν
U1 , wU1))(vn(U2),tot) ≃MU2⊗̂O(U2)O(U1),

where the first arrow is the restriction map. Note that, for any positive
rational numbers v, v′ satisfying v′ ≤ v < pv′ < (p−1)/p, the restriction
map

SG(µN , (ν
U , wU))(vtot)→ SG(µN , (ν

U , wU))(v′tot)

is a primitive link. Thus the map αU1,U2 is a link satisfying the cocycle
condition. Hence, by applying the eigenvariety machine [Buz, Con-
struction 5.7], we obtain the Hilbert eigenvariety E → WG as in [AIP2,
Theorem 5.1].

4.4. The case over Cp. Since we are ultimately interested in over-
convergent Hilbert modular forms over Cp, we need to give a slight
generalization of the construction in [AIP2] over Cp. As before, for
any quasi-separated rigid analytic variety X over K and any coherent
OX -module F , we denote the base extensions of X and F to Cp by
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XCp and FCp , respectively. Similarly, for any quasi-separated admis-
sible formal scheme X over Spf(OK) and any coherent OX-module F,
we denote their pull-backs to Spf(OCp) by XOCp

and FOCp
, respectively.

Then, on the Raynaud generic fiber, we have

(Xrig)Cp = (XOCp
)rig, (Frig)Cp = (FOCp

)rig.

Let U = Sp(A) be a reduced Cp-affinoid variety. From [BLR, The-
orem 1.2] and [Abb, Proposition 1.10.2 (iii)], we see that A◦ is an
admissible formal OCp-algebra. Put U = Spf(A◦). For any morphism
U → WCp or U → WG

Cp
, we have an associated character κU or (νU , wU)

and a notion of n-analyticity defined in the same way as above. Con-
sider the base extensions

πw,OCp
: IW+

w,OCp

γw,OCp→ M̄(Γ1(p
n), µN , c)(v)OCp

hn,OCp→ M̄(µN , c)(v)OCp

of the maps γw, hn and πw. Then, for any n-analytic morphism U →
WCp , we can define the sheaves

ΩκU = (πrig
w,Cp

)∗(OIW+
w,Cp×U)[−κ

U ], ΩκU = (πw,OCp
)∗(OIW+

w,OCp
×U)[−κ

U ]

such that ΩκU = (ΩκU )rig is an invertible OM̄(µN ,c)(v)Cp×U -module, as

before. [Abb, Proposition 1.9.14 and Proposition 1.10.2 (iii)] implies

thatΩκU is coherent and that its restriction to M̄(µN , c)(0)OCp
is invert-

ible: The latter follows from a similar argument to the proof of [Mum,
§7, Proposition 2] combined with the fact that hn,OCp

is a T(Z/pnZ)-
torsor over M̄(µN , c)(0)OCp

. Using ΩκU , we define M(µN , c, κ
U)(v) and

its variants in the same way as the case over K.
For any reduced K-affinoid variety V and any n-analytic morphism

V → W , consider the base extension VCp → WCp and the associated

character κVCp . Then we can show that there exist natural isomor-
phisms

(4.6) (ΩκV )Cp ≃ Ωκ
VCp
, ΩκV (−D)Cp ≃ Ωκ

VCp
(−D)

in the same way as the proof of [AIP2, Proposition 3.13]. Similarly,
for any morphism f : U ′ → U of reduced Cp-affinoid varieties, we have
natural isomorphisms

(4.7) f ∗ΩκU ≃ ΩκU
′

, f ∗(ΩκU (−D)) ≃ ΩκU
′

(−D).

Let M̄∗(µN , c) be the minimal compactification of M(µN , c). We
have a natural proper map

M̄(µN , c)→ M̄∗(µN , c).
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Note that a sufficiently large power of the usual Hasse invariant can be
considered as a global section of an ample invertible sheaf on M̄∗(µN , c).
Let M̄∗(µN , c)(vtot) be the normal admissible formal scheme defined
similarly to M̄(µN , c)(vtot) using M̄∗(µN , c) instead of M̄(µN , c). Let
M̄∗(µN , c)(vtot) be its Raynaud generic fiber. By the above ampleness
property, we see that M̄∗(µN , c)(vtot) is a K-affinoid variety. We also
have proper morphisms

ρ :M̄(Γ1(p
n), µN , c)(vtot)→ M̄∗(µN , c)(vtot),

ρrig :M̄(Γ1(p
n), µN , c)(vtot)→ M̄∗(µN , c)(vtot).

By the base extension, these induce proper morphisms

ρOCp
:M̄(Γ1(p

n), µN , c)(vtot)OCp
→ M̄∗(µN , c)(vtot)OCp

,

ρrigCp
:M̄(Γ1(p

n), µN , c)(vtot)Cp → M̄∗(µN , c)(vtot)Cp .

Lemma 4.10. Let V be a reduced K-affinoid variety and V → WG an
n-analytic morphism. Then the natural base change map

(ρ× 1)∗(Ω
κV (−D))OCp

→ (ρOCp
× 1)∗(Ω

κV (−D)OCp
)

is an isomorphism. Moreover, we have

Rq(ρOCp
× 1)∗(Ω

κV (−D)OCp
) = 0

for any q > 0.

Proof. It is enough to show the claim formal locally. Put V = Sp(A)
and V = Spf(A◦). Let Y be a formal affine open subscheme of
M̄∗(µN , c)(vtot) and put X = ρ−1(Y). Since ρ is proper of finite pre-

sentation and ΩκV (−D) is coherent, [Abb, (2.11.8.1)] implies that the
restriction

Rq(ρ× 1)∗(Ω
κV (−D))|Y×V

is the coherent sheaf associated to the O(Y×V)-module

Hq(X×V,ΩκV (−D)).

By [AIP2, Corollary 3.19], we have Hq(X×V,ΩκV (−D)) = 0 for any
q > 0.

Since X is quasi-compact, we can take a finite covering X =
∪r
i=1Xi

by formal affine open subschemes Xi. Consider the Čech complex for
the coherent sheaf ΩκV (−D)

0→ H0(X×V,ΩκV (−D))→ C0(ΩκV (−D))→ C1(ΩκV (−D))→ · · ·
with respect to the covering X × V =

∪r
i=1 Xi × V, which is exact

by the above vanishing. From the definition, we see that the sheaf
ΩκV (−D) is flat over OK and each OK-module Cq(ΩκV (−D)) is also
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flat. By taking modulo pn, tensoring OCp and taking the inverse limit,

we see that the sequence is exact even after taking −⊗̂OK
OCp . This

means that the Čech complex for the coherent sheaf ΩκV (−D)OCp
with

respect to the formal open covering XOCp
×VOCp

=
∪r
i=1Xi,OCp

×VOCp

is exact except the zeroth degree. Taking the zeroth cohomology gives
an isomorphism

H0(X×V,ΩκV (−D))⊗̂OK
OCp → H0(XOCp

×VOCp
,ΩκV (−D)OCp

)

and the q-th cohomology for q > 0 gives

Hq(XOCp
×VOCp

,ΩκV (−D)OCp
) = 0.

This concludes the proof. □

Lemma 4.11. Let V be a reduced K-affinoid variety and V → WG an
n-analytic morphism. Then the natural map

SG(µN , (ν
V , wV))(vtot)⊗̂KCp → SG(µN , (ν

VCp , wVCp ))(vtot)

is an isomorphism.

Proof. Put V = Sp(A). By taking the Raynaud generic fibers and
[Abb, Proposition 4.7.23 and Proposition 4.7.36], we see from Lemma
4.10 that the base change map

(ρrig × 1)∗(Ω
κV (−D))Cp → (ρCp × 1)∗(Ω

κV (−D)Cp)

is an isomorphism. By (4.6), the latter sheaf is isomorphic to the sheaf

(ρCp × 1)∗(Ω
κ
VCp

(−D)). Since M̄∗(µN , c)(vtot)Cp × VCp is a Cp-affinoid
variety, taking global sections yields an isomorphism

(4.8)
H0(M̄(Γ1(p

n), µN , c)(vtot)× V ,ΩκV (−D))⊗̂KCp →

H0(M̄(Γ1(p
n), µN , c)(vtot)Cp × VCp ,Ω

κ
VCp

(−D)).

Taking the T(Z/pnZ)-equivariant part and the ∆-fixed part, we obtain
the lemma. □

Lemma 4.12. Let V = Sp(A) be a reduced K-affinoid variety. Let
V → WG be an n-analytic morphism and x ∈ V(Cp). Let x∗ : A→ Cp

be the ring homomorphism defined by x. Suppose that the maximal
ideal mx of ACp = A⊗̂KCp corresponding to x is generated by a regular
sequence. Put (ν, w) = (νV(x), wV(x)). Then the specialization map

SG(µN , (ν
V , wV))(vtot)⊗̂A,x∗Cp → SG(µN , (ν, w))(vtot)

is an isomorphism.
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Proof. This is essentially proved in [AIP2, Proposition 3.22]. Put κV =
k(νV , wV) and κ = k(ν, w). By the assumption on mx, we have the
Koszul resolution

0→ ACp → Anr
Cp
→ · · · → An1

Cp
→ ACp → ACp/mx → 0

with some non-negative integers n1, . . . , nr, which induces a finite reso-
lution of the sheaf (1×x)∗(Ωκ(−D)) by finite direct sums of ΩκV (−D)Cp .

By Lemma 4.10, the push-forward of this resolution by the map ρrigCp
×1

is exact. Since M̄∗(µN , c)(vtot)Cp × VCp is a Cp-affinoid variety, the se-
quence obtained by taking global sections is also exact. This and (4.8)
yield isomorphisms

H0(M̄(Γ1(p
n), µN , c)(vtot)× V ,ΩκV (−D))⊗̂A,x∗Cp

≃ H0(M̄(Γ1(p
n), µN , c)(vtot)Cp × VCp ,Ω

κ
VCp

(−D))⊗̂ACp ,x
∗Cp

≃ H0(M̄(Γ1(p
n), µN , c)(vtot)Cp ,Ω

κ(−D)).

Taking the T(Z/pnZ)-equivariant part and the ∆-fixed part shows the
lemma. □

We can extend naturally the Hecke operators over Cp: Let U be a
reduced Cp-affinoid variety and U → WG

Cp
an n-analytic morphism.

Consider the base extension of the isomorphism πl

πl,Cp : p
∗
2IW+

w,lc(v)Cp ≃ p∗1IW+
w,c(v)Cp ,

which defines an isomorphism

π∗
l,Cp

: p∗1(Ω
κU ) ≃ p∗2(Ω

κU ).

We define the Hecke operator Tl over Cp for (l, p) = 1 by

H0(M(µN , lc)(v)Cp × U ,ΩκU )
p∗2→ H0(Y ′

c,l(v)Cp × U , p∗2ΩκU )

(π∗
l,Cp )

−1

→ H0(Y ′
c,l(v)Cp × U , p∗1ΩκU )

NF/Q(l)
−1Trp1→ H0(M(µN , c)(v)Cp × U ,ΩκU ).

Similarly, we have Hecke operators Tl for (l, p) ̸= 1 and Sl over Cp. We
can show that they are compatible with the Hecke operators over K
and that the specialization map in Lemma 4.12 is T-linear.

5. q-expansion principle

In this section, we study the q-expansion map for arithmetic over-
convergent Hilbert modular forms. For any reduced Cp-affinoid variety
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U , any n-analytic map U → WG
Cp

and any v ∈ Q ∩ [0, p−1
pn

), we have

isomorphisms

MG(µN , (ν
U , wU))(v) ≃

⊕
c∈[Cl+(F )](p)

MG(µN , c, (ν
U , wU))(v),

SG(µN , (ν
U , wU))(v) ≃

⊕
c∈[Cl+(F )](p)

SG(µN , c, (ν
U , wU))(v)

by which we identify both sides. For any element f ∈MG(µN , (ν
U , wU))(v),

we write (fc)c∈[Cl+(F )](p) for the image of f by the above isomorphism.
We say that f is an eigenform if it is an eigenvector for any element of
T.

5.1. q-expansion of overconvergent modular forms. For any c ∈
[Cl+(F )](p), let us consider an unramified cusp (a, b, ϕ) of M(µN , c) as
in §4.1.2. Using any polyhedral cone decomposition C ∈ Dec(a, b) of

F ∗,+
R , we have the Îσ-adically complete ring R̂σ and the semi-abelian

scheme Tatea,b(q) over S̄σ = Spec(R̂σ) for any σ ∈ C .

Let S̆σ = Spf(R̆σ) be the (p, Îσ)-adic formal completion of Ŝσ. The
smoothness assumption on C implies that there exists a basis ξ1, . . . , ξg
of the Z-module ab satisfying

(ab) ∩ σ∨ = Z≥0ξ1 + · · ·+ Z≥0ξr + Zξr+1 + · · ·+ Zξg
with some r. For any ring B, we write as

B[X≤r, X
±
>r] := B[X1, . . . , Xr, X

±
r+1, . . . , X

±
g ].

For any extension L/K of complete valuation fields, we denote the
p-adic completion of OL[X≤r, X

±
>r] by OL⟨X≤r, X

±
>r⟩ and put

L⟨X≤r, X
±
>r⟩ = OL⟨X≤r, X

±
>r⟩[1/p].

Then the OK-algebra R̂σ is isomorphic to the completion of the ring
OK [X≤r, X

±
>r] with respect to the principal ideal (X1 · · ·Xr) via the

map Xi 7→ qξi , and the ring R̆σ is isomorphic to the p-adic completion
of R̂σ. Hence the ring R̆σ is normal and the formal scheme S̆σ is an
object of the category FSOK

of [deJ, Definition 7.0.1]. In fact, the ring

R̆σ is isomorphic to the ring

(5.1) OK⟨X≤r, X
±
>r⟩[[Z]]/(Z −X1 · · ·Xr).

Moreover, since the natural map

OK,m[X≤r, X
±
>r]/(X1 · · ·Xr)

n →
OK,m[X±

r+1, . . . , X
±
g ][[X1, . . . , Xr]]/(X1 · · ·Xr)

n
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is injective for any positive integer m, by taking the limit we may
identify the rings R̂σ and R̆σ with OK-subalgebras of the OK-algebra

OK⟨q±ξr+1 , . . . , q±ξg⟩[[qξ1 , . . . , qξr ]].

We denote by S̆rig
σ the Berthelot generic fiber of S̆σ. Similarly, we

denote by S̆C and S̆rig
C the formal completion of ŜC along the boundary

of the special fiber and its Berthelot generic fiber. From the definition,
we have formal open and admissible coverings

S̆C =
∪
σ∈C

S̆σ, S̆rig
C =

∪
σ∈C

S̆rig
σ .

Since the quotient of ŜC by the action of UN is obtained by a re-gluing,
so is the quotient S̆C /UN and this coincides with the formal completion

of ŜC /UN along the boundary of the special fiber.
Consider the case C = C (a, b). Since the map S̄σ → M̄(µN , c)

defined using Tatea,b(q) induces an isomorphism⨿
ŜC (a,b)/UN → M̄(µN , c)|∧D

to the formal completion of M̄(µN , c)|∧D of M̄(µN , c) along the boundary
divisor D, taking the formal completion we obtain an isomorphism⨿

S̆C (a,b)/UN → M̄(µN , c)|∧Dk

to the formal completion M̄(µN , c)|∧Dk
of M̄(µN , c) along the boundary

Dk of the special fiber. Let sp : M̄(µN , c) → M̄(µN , c)k be the spe-
cialization map with respect to M̄(µN , c). Then [deJ, Lemma 7.2.5]
implies (M̄(µN , c)|∧Dk

)rig = sp−1(Dk).

Let S̆rig
σ,Cp

and S̆rig
C ,Cp

be the base extensions to Sp(Cp) of S̆
rig
σ and S̆rig

C ,

respectively. Note that S̆rig
σ,Cp

can be identified with the rigid analytic
variety over Cp whose set of Cp-points is

(5.2)

{
(x1, . . . , xg) ∈ Cg

p

∣∣∣∣ xi ∈ OCp (i ≤ r), xi ∈ O×
Cp

(i > r),

x1 · · · xr ∈ mCp

}
for r as above. Then, with the notation of [Con2, Theorem 3.1.5], we
have

(S̆σ)
rig
/Cp

= S̆rig
σ,Cp

, (S̆C )
rig
/Cp

= S̆rig
C ,Cp

.

Since the functor (−)rig/Cp
sends formal open immersions to open immer-

sions and formal open coverings to admissible coverings, each S̆rig
σ,Cp

is
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an admissible open subset of S̆rig
C ,Cp

such that S̆rig
C ,Cp

=
∪
σ∈C S̆

rig
σ,Cp

is an
admissible covering. Moreover, we have

(S̆C /UN)
rig
/Cp

= S̆rig
C ,Cp

/UN .

Note that the formation of the tube sp−1(Dk) is compatible with the
base extension to Cp [Ber, Proposition 1.1.13]. Thus, for C = C (a, b),
we obtain maps

(5.3)
⨿
σ∈C

S̆rig
σ,Cp
→ S̆rig

C ,Cp
/UN → M̄(µN , c)Cp ,

where the first map is a surjective local isomorphism and the second
map is an open immersion factoring through M̄(µN , c)(0)Cp .

We denote by R̆σ,OCp
, S̆σ,OCp

and S̆C ,OCp
the base extensions to Spf(OCp)

of R̆σ, S̆σ and S̆C , respectively. From the identification (5.1), we can
show

R̆σ,OCp
= OCp⟨X≤r, X

±
>r⟩[[Z]]/(Z −X1 · · ·Xr).

Indeed, first note that the ring R̆σ,OCp
is isomorphic to

(5.4) lim←−
n≥0

lim←−
m≥0

OCp,n[X≤r, X
±
>r, Z]/(Z −X1 · · ·Xr, Z

m).

Since the ring

OCp,n[X≤r, X
±
>r, Z]/(Z −X1 · · ·Xr)

is Z-torsion free, its Z-adic completion is

OCp,n[X≤r, X
±
>r][[Z]]/(Z −X1 · · ·Xr).

Similarly, since an elementary argument shows that the ring

OCp [X≤r, X
±
>r][[Z]]/(Z −X1 · · ·Xr)

is p-torsion free, taking the p-adic completion yields the claim (The
reason of this ad hoc proof is that in general we do not know if the
completion is compatible with quotients for non-quasi-idyllic rings).

Lemma 5.1. For any extension L/K of complete valuation fields with
residue field kL, the rings

OL⟨X≤r, X
±
>r⟩[[Z]]/(Z−X1 · · ·Xr), kL[X≤r, X

±
>r][[Z]]/(Z−X1 · · ·Xr)

are integral domains. In particular, the ring R̆σ,OCp
is an integral do-

main.



PROPERNESS OF THE HILBERT EIGENVARIETY 75

Proof. For the former ring, we can show that it is a subring of the ring

R̆L := L⟨X≤r, X
±
>r⟩[[Z]]/(Z −X1 · · ·Xr).

It suffices to show that R̆L is an integral domain. Since the ring
L⟨X≤r, X

±
>r⟩ is Noetherian and normal, the ring R̆L is also normal.

Since R̆L is Z-adically complete, Z-torsion free and Spec(R̆L/(Z)) is

connected, we see that Spec(R̆L) is also connected and the lemma fol-
lows. We can show the assertion on the latter ring similarly. □

From the description (5.2) of S̆rig
σ,Cp

, we see that there exists an in-
clusion

O(S̆σ,OCp
) = R̆σ,OCp

⊆ O◦(S̆rig
σ,Cp

).

By gluing, this yields an inclusion

(5.5) O(S̆C ,OCp
) ⊆ O◦(S̆rig

C ,Cp
).

By the description (5.4) of the ring R̆σ,OCp
, we have a natural inclu-

sion

(5.6) R̆σ,OCp
⊆

∏
ξ∈ab

OCpq
ξ,

which is compatible with the restriction map R̆σ,OCp
→ R̆σ′,OCp

for any

σ and σ′ such that σ′ is a face of the closure σ̄. Then we have an
isomorphism

O(S̆C ,OCp
) ≃

∩
σ∈C

R̆σ,OCp
.

Note that, if the dimension of the R-vector space SpanR(σ) generated
by the elements of σ is g, then we have

(ab) ∩ σ∨ = Z≥0ξ1 ⊕ · · · ⊕ Z≥0ξg

with some ξ1, . . . , ξg ∈ ab. Thus any element of R̆σ,OCp
is a formal

power series of qξ1 , . . . , qξg and the ring OCp [[q
ξ | ξ ∈ (ab)∩ σ∨]] can be

identified with the subset

{(aξqξ)ξ∈ab ∈
∏
ξ∈ab

OCpq
ξ | aξ = 0 for any ξ /∈ (ab) ∩ σ∨}.

From the equality

(ab)+ ∪ {0} =
∩
{(ab) ∩ σ∨ | σ ∈ C , dimR(SpanR(σ)) = g},

we have an inclusion

OCp [[q
ξ | ξ ∈ (ab)+ ∪ {0}]] ⊇ O(S̆C ,OCp

).
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On the other hand, if we identify as

FR ≃
∏

β∈HomQ-alg.(F,R)

R, x⊗ 1 7→ (β(x))β,

then every boundary τ of σ∨ is outside the closure of the positive cone
F×,+
R of FR. Hence, for any positive real number ρ, the number of

elements ξ of (ab)+ such that the distance from ξ to τ is less than ρ is
finite. This implies that any element of OCp [[q

ξ | ξ ∈ (ab)+ ∪ {0}]] is
contained in the completion of the ring

OCp [q
ξ1 , . . . , qξr , q±ξr+1 , . . . , q±ξg ]

with respect to the qξ1 · · · qξr -adic topology. We can see that this com-
pletion is contained in R̆σ,OCp

. Therefore, we obtain an identification

OCp [[q
ξ | ξ ∈ (ab)+ ∪ {0}]] ≃ O(S̆C ,OCp

)

which is compatible with the inclusion (5.6).
Let c be an element of [Cl+(F )](p) and a, b fractional ideals satisfying

ab−1 = c. Suppose a ⊆ o and (a, Np) = 1. Then the natural inclusion
o ⊆ a−1 induces isomorphisms

ϕa,b : a
−1/Na−1 ≃ o/No, ϕ′

a,b : a
−1/pna−1 ≃ o/pno.

Consider the unramified cusp (a, b, ϕa,b) ofM(µN , c). Take C ∈ Dec(a, b)
and σ ∈ C as above. By the construction of the Tate object, the map
ϕ′
a,b yields a natural immersion D−1

F ⊗ µpn → Tatea,b(q) over S̄σ, which
induces an isomorphism

ωTatea,b(q) ⊗OK
OK,n ≃ ωD−1

F ⊗µpn .

Note that the map TrF/Q ⊗ 1 : D−1
F ⊗ Gm → Gm gives an element

(TrF/Q ⊗ 1)∗ dT
T

of the OF ⊗ O(S̄σ)-module ωD−1
F ⊗Gm

≃ ωTatea,b(q). By

the pull-back, we obtain a Tate object over Spec(R̆σ) with a canonical

invariant differential which are compatible with those over Spec(R̆τ )
for any τ ∈ C satisfying τ ⊆ σ̄.

We denote the p-adic completion of S̄σ by S̃σ. We have S̃σ = Spf(R̆σ),

where we consider the p-adic topology on R̆σ. Its base extension to OCp

is denoted by S̃σ,OCp
= Spf(R̃σ,OCp

). Here the affine algebra R̃σ,OCp
is

the p-adic completion of the ring R̆σ ⊗OK
OCp .

The identity map R̆σ → R̆σ is continuous if we consider the p-adic
topology on the source and the (p, Îσ)-adic topology on the target.
Then, for the case of C = C (a, b), its composite with the p-adic com-
pletion of the map S̄σ → M̄(µN , c) gives a morphism of formal schemes

S̆σ → S̃σ → M̄(µN , c)(0), and also a morphism S̆C → M̄(µN , c)(0) by
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gluing. Since R̆σ is Noetherian, the moduli interpretation of IW+
w,c(0)

as in §4.3.1 is also valid for R̆σ. We have a commutative diagram

Z/pnZ(R̆σ) //

��

OF/pnOF (R̆σ)

��

(µpn)
∨(R̆σ) //

HT
��

(D−1
F ⊗ µpn)∨(R̆σ)

HT
��

ωµpn ⊗ R̆σ
// ωD−1

F ⊗µpn ⊗ R̆σ,

where the top horizontal arrow is the natural inclusion and the other
horizontal arrows are induced by the map TrF/Q ⊗ 1. Thus the above
moduli interpretation and the base extension give a morphism of formal
schemes over Spf(OCp)

τa,b : S̆σ,OCp
→ S̃σ,OCp

→ IW+
w,c(0)OCp

.

By gluing, this defines a morphism S̆C ,OCp
→ IW+

w,c(0)OCp
, which we

also denote by τa,b.

Lemma 5.2. The natural map R̃σ,OCp
→ R̆σ,OCp

is injective. In par-

ticular, the ring R̃σ,OCp
is an integral domain.

Proof. We have an isomorphism

(5.7) R̃σ,OCp
≃ lim←−

n

lim−→
L/K

OL,n[X≤r, X
±
>r][[Z]]/(Z −X1 · · ·Xr),

where the direct limit is taken with respect to the directed set of finite
extensions L/K in Q̄p. Since the map

OL,n[X≤r, X
±
>r]/(X1 · · ·Xr)

m → OCp,n[X≤r, X
±
>r]/(X1 · · ·Xr)

m

is injective for any such L/K, the injectivity of the lemma follows from
(5.4). Lemma 5.1 yields the last assertion. □

For any finite extension L/K, we write the p-adic completion

R̆σ⊗̂OK
OL = OL⟨X≤r, X

±
>r⟩[[Z]]/(Z −X1 · · ·Xr)

also as R̃OL
. Let πL be a uniformizer of L. By Lemma 5.1, the ring

R̃OL
/(πL) is an integral domain. Since R̃OL

is normal, the localization

(R̃OL
)(πL) is a discrete valuation ring with uniformizer πL such that

Z is invertible. Put R̃∞ = lim−→L/K
R̃OL

and m∞ = lim−→L/K
(πL), where

the direct limits are taken as above. Then the localization (R̃∞)m∞ =
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lim−→L/K
(R̃OL

)(πL) is a valuation ring. Let OKσ be its p-adic completion.

By (5.7), the ring R̃σ,OCp
coincides with the p-adic completion of R̃∞.

Since the p-adic topology on R̃∞ is induced by that on (R̃∞)m∞ , we
obtain an injection R̃σ,OCp

→ OKσ . This defines a morphism of p-adic

formal schemes Spf(OKσ)→ S̃σ,OCp
for any σ ∈ C (a, b). In particular,

we have the pull-back of Tatea,b(q) over Spec(OKσ) which is a HBAV.
Since OKσ is quasi-idyllic, we have the moduli interpretation of any
morphism Spf(OKσ) → IW+

w,c(0)OCp
over M̄(µN , c)(0)OCp

as in §4.3.1.
The additional structures of the Tate object over Spec(R̆σ) defines a
canonical test object

(Tatea,b(q), ιa,b, λa,b, ψa,b, ua,b, αa,b)

over Spec(OKσ). This corresponds via the moduli interpretation to a
map

τa,b,OKσ
: Spf(OKσ)→ IW+

w,c(0)OCp

satisfying the following property: The composite S̆σ,OCp
→ S̆C ,OCp

τa,b→
IW+

w,c(0)OCp
factors through S̃σ,OCp

and its restriction to Spf(OKσ)
equals τa,b,OKσ

, as in the diagram

(5.8)

S̆σ,OCp
//

��

S̆C ,OCp

τa,b

��
Spf(OKσ) // S̃σ,OCp

// IW+
w,c(0)OCp

.

Let κ ∈ W(Cp) be any n-analytic weight. Since the formal scheme
M̄(µN , c)(v)OCp

is quasi-compact and the sheaf Ωκ is coherent, we have

M(µN , c, κ)(v) = H0(M̄(µN , c)(v)OCp
,Ωκ)[1/p] ⊆ O(IW+

w,c(v)OCp
)[1/p].

For any element fc of M(µN , c, κ)(v), we define the q-expansion fc(q)
of fc by

fc(q) = τ ∗o,c−1(fc) ∈ O(S̆C ,OCp
)[1/p] = OCp [[q

ξ | ξ ∈ (c−1)+ ∪ {0}]][1/p].

Thus, for any f = (fc)c∈[Cl+(F )](p) , we can write as

fc(q) = ao,c−1(f, 0) +
∑

ξ∈(c−1)+

ao,c−1(f, ξ)qξ

with some ao,c−1(f, ξ) ∈ Cp. For any refinement C ′ ∈ Dec(o, c−1) of C ,

the natural map S̆C ′,OCp
→ S̆C ,OCp

induces the identity map on the ring

OCp [[q
ξ | ξ ∈ (c−1)+∪{0}]][1/p]. Thus we can compute the q-expansion
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by taking any refinement of the fixed cone decomposition C (o, c−1) in
Dec(o, c−1). We say that an eigenform f is normalized if ao,o(f, 1) = 1.

5.2. Weak multiplicity one theorem. Let (ν, w) ∈ WG(Cp) be an
n-analytic weight. Let f = (fc)c∈[Cl+(F )](p) be a non-zero eigenform

in SG(µN , (ν, w))(v). For any non-zero ideal n ⊆ o, let Λ(n) be the
eigenvalue of Tn acting on f . We set Φ(n) to be the eigenvalue of Sn for
(n, Np) = 1 and Φ(n) = 0 otherwise. We put µn = (D−1

F ⊗Gm)[n]. Any
element ζ of µn(L) ⊆ (D−1

F ⊗Gm)(L) with some extension L/K defines
a ring homomorphism ζ : O(D−1

F ⊗ Gm) → L. We put ζη = ζ(Xη) for
any η ∈ o, which gives a homomorphism o/n→ L×. We fix an element
c ∈ [Cl+(F )](p).

5.2.1. q-expansion and Hecke operators. For any C ∈ Dec(a, b) and
any maximal ideal m of o, we can find C ′ ∈ Dec(a,m−1b) which is a
refinement of C . For any σ ∈ C and τ ∈ C ′ satisfying σ ⊇ τ , we
have natural maps R̂σ → R̂τ , R̂

0
σ → R̂0

τ and R̆σ → R̆τ . Consider the
case a = o. Let ζ be an element of µm(K). Fix an isomorphism of
o-modules

ρ : m−1b/b ≃ o/m.

Then we have a natural ring homomorphism

qζρ : R̂τ → R̂τ , qξ 7→ qξζρ(ξ).

We denote by Tateo,m−1b(qζ
ρ) the pull-back of Tateo,m−1b(q) by this map.

On the other hand, we have Dec(a, b) = Dec(a, ηb) for any cusp

(a, b, ϕ) and η ∈ F×,+. Thus any σ ∈ C gives similar rings to R̂σ, R̂
0
σ

and R̆σ for the cusp (a, ηb, ϕ), which are denoted by R̂η,σ, R̂
0
η,σ and

R̆η,σ, respectively. We have a natural ring homomorphism

qη : R̂σ → R̂η,σ, qξ 7→ qξη.

We denote by Tatea,b(q
η) the pull-back of Tatea,b(q) by this map.

We will omit entries of test objects (A, ι, λ, ψ, u, α) for overconvergent
Hilbert modular forms if they are clear from the context.

Lemma 5.3. We have an isomorphism of test objects over R̂0
η,σ

(Tateo,ηc−1(q), λo,ηc−1) ≃ (Tateo,c−1(qη), ηλo,c−1).

Proof. We denote by |qη the pull-back along the map qη. Consider the
composite

c−1 → D−1
F ⊗Gm(R̂

0
σ)→ D−1

F ⊗Gm|qη(R̂0
η,σ)
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of the map α 7→ (Xξ 7→ qαξ (ξ ∈ o)) and the map qη, which we
also denote by qη. We also have a similar map qη : ηc−1 → ηD−1

F ⊗
Gm|qη(R̂0

η,σ). Then the following diagram over R̂0
η,σ is commutative.

ηc−1

×η−1

��

''OO
OOO

OOO
OOO

O ηc−1

wwnnn
nnn

nnn
nnn

D−1
F ⊗Gm(R̂

0
η,σ) D−1

F ⊗Gm(R̂
0
η,σ)

≀ ×η
��

D−1
F ⊗Gm|qη(R̂0

η,σ)
∼
×η

// ηD−1
F ⊗Gm|qη(R̂0

η,σ)

c−1

qη

77ooooooooooooo

×η
// ηc−1

qη

ggPPPPPPPPPPPPP

This yields an isomorphism Tateo,ηc−1(q) → Tateo,c−1(qη) as in the
lemma. □

Lemma 5.4. Let m be a maximal ideal of o satisfying m ∤ pN . Let c
be an element of [Cl+(F )](p). Take any elements x, y ∈ F×,+,(p) such
that c′ = xmc and c′′ = xy−1m−1c are elements of [Cl+(F )](p). Fix an
isomorphism of o-modules ρ : (xmc)−1/(xc)−1 ≃ o/m. Then we have

(Tmf)c(q) =
ν(x)

NF/Q(m)

NF/Q(m)2Φ(m)

ν(y)
fc′′(q

xy−1

) +
∑

ζ∈µm(Q̄p)

fc′(q
xζρ)

 .

Proof. For any C ∈ Dec(o, c−1) and C ′ ∈ Dec(m, c−1), we choose C ′′ ∈
Dec(o, (mc)−1) such that C ′′ is a common refinement of C and C ′. For
any σ ∈ C and σ′ ∈ C ′, take τ ∈ C ′′ satisfying τ ⊆ σ, σ′. By the
diagram (5.8) and the inclusions

R̆τ,OCp
⊇ R̃τ,OCp

⊆ OKτ ,

it is enough to show the equality of the lemma after pulling back to
Spf(OKτ ).

Choose an element ξm ∈ (xmc)−1 which gives a generator of the
principal o/m-module (xmc)−1/(xc)−1. We define an element Q ∈
D−1
F ⊗Gm(R̂

0
x−1,τ ) by Xη 7→ qξmη for any η ∈ o. Then, over Spec(OKτ ),

the m-cyclic OF -subgroup schemes of the Tate object Tateo,(xc)−1(q) are
exactly those induced by the closed subgroup schemes

µm, HQ,ζ := (o/m)Qζ (ζ ∈ µm(Q̄p))
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of D−1
F ⊗Gm. Then the pull-back of (Tmf)c(q) is equal to

(LxTmfc′)(Tateo,c−1(q), λo,c−1) = ν(x)(Tmfc′)(Tateo,c−1(q), x−1λo,c−1)

= ν(x)(Tmfc′)(Tateo,(xc)−1(qx), λo,(xc)−1)

which equals

ν(x)

NF/Q(m)

fc′(Tateo,(xc)−1(qx)/µm) +
∑

ζ∈µm(Q̄p)

fc′(Tateo,(xc)−1(qx)/HQ,ζ |qx)

 .

For the first term, we have the exact sequence

0 // µm
// D−1

F ⊗Gm
// m−1D−1

F ⊗Gm
// 0.

For any ξ ∈ (xc)−1, the natural map D−1
F ⊗Gm → m−1D−1

F ⊗Gm sends

the R̂0
x−1,τ -valued point (Xη 7→ qξη (η ∈ o)) to (Xη 7→ qξη (η ∈ m)) and

this gives an isomorphism

Tateo,(xc)−1(q)/µm ≃ Tatem,(xc)−1(q)

compatible with natural additional structures. This implies that the
evaluation fc′(Tateo,(xc)−1(qx)/µm) equals

fc′(Tatem,(xc)−1(qx),λm,(xc)−1)

= fc′(m
−1 ⊗OF

Tateo,m(xc)−1(qx),m2λo,m(xc)−1)

=
NF/Q(m)2

ν(y)
(LySmfc′)(Tateo,(c′′)−1(qxy

−1

), λo,(c′′)−1)

=
NF/Q(m)2Φ(m)

ν(y)
fc′′(Tateo,(c′′)−1(qxy

−1

)).

For the second term, the subgroup

{(Xη 7→ qξηζρ(ξη) (η ∈ o)) | ξ ∈ (c′)−1} ⊆ D−1
F ⊗Gm(R̂

0
x−1,τ )

is generated by HQ,ζ and the image of the subgroup

{(Xη 7→ qξη (η ∈ o)) | ξ ∈ (xc)−1} ⊆ D−1
F ⊗Gm(R̂

0
x−1,σ)

via the natural map R̂0
x−1,σ → R̂0

x−1,τ . This yields an isomorphism

Tateo,(xc)−1(q)/HQ,ζ ≃ Tateo,(c′)−1(qζρ)

compatible with natural additional structures. Hence the lemma fol-
lows. □

A similar proof also gives the following variant for m | Np.
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Lemma 5.5. (1) For any maximal ideal m | N , take any element
x ∈ F×,+,(p) satisfying c′ = xmc ∈ [Cl+(F )](p). Fix an iso-
morphism of o-modules ρ : (xmc)−1/(xc)−1 ≃ o/m. Then we
have

(Tmf)c(q) =
ν(x)

NF/Q(m)

∑
ζ∈µm(Q̄p)

fc′(q
xζρ).

(2) For any maximal ideal p | p, take any element x ∈ F×,+,(p)

satisfying c′ = xx−1
p pc ∈ [Cl+(F )](p). Fix an isomorphism of

o-modules ρ : (xx−1
p pc)−1/(xx−1

p c)−1 ≃ o/p. Then we have

(Upf)c(q) =
ν(x)

NF/Q(p)

∑
ζ∈µp(Q̄p)

fc′(q
xx−1

p ζρ).

5.2.2. q-expansion and Hecke eigenvalues. For any ξ ∈ F×, we put

χp(ξ) =
∏

p|p x
vp(ξ)
p . For any non-zero ideal n ⊆ o, take η ∈ F×,+

satisfying c = η−1n ∈ [Cl+(F )](p) and put

C(n, f) = ν(η−1χp(η))ao,c−1(f, η).

By Lemma 5.3, this is independent of the choice of η. Then we have
the following variant of [Shi, (2.23)] in our setting.

Lemma 5.6. For any non-zero ideal l, n of o, we have

C(n, Tlf) =
∑

l+n⊆a⊆o

NF/Q(a)Φ(a)C(a
−2ln, f).

Proof. We can easily reduce it to the case l = ms for some maximal
ideal m. Consider the case of m ∤ Np and s = 1. We follow the notation
of Lemma 5.4. Since x−1η ∈ (xc)−1, we have∑

ζ∈µm(Q̄p)

ζρ(x
−1η) = NF/Q(m).

Moreover, x−1yη ∈ (c′′)−1 if and only if m | n. Thus Lemma 5.4 implies

C(n, Tmf) =

{
NF/Q(m)Φ(m)C(m−1n, f) + C(mn, f) (m | n)
C(mn, f) (m ∤ n)

and the lemma follows for this case. The case of m | Np and s = 1
can be shown similarly from Lemma 5.5. For s ≥ 2, using the relation
(4.5), we can show the lemma by an induction in the same way as the
classical case. □
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Proposition 5.7. For any c ∈ [Cl+(F )](p) and any η ∈ (c−1)+, put
n = ηc ⊆ o. Then we have

ao,c−1(f, η) = ν(ηχp(η)
−1)Λ(n)ao,o(f, 1).

Proof. We have ao,c−1(f, η) = ν(ηχp(η)
−1)C(n, f) and C(o, f) = ao,o(f, 1).

By Lemma 5.6, we obtain

Λ(n)ao,o(f, 1) = Λ(n)C(o, f) = C(o, Tnf)

= C(n, f) = ν(η−1χp(η))ao,c−1(f, η),

from which the proposition follows. □

5.3. q-expansion and integrality. Let κ ∈ W(Cp) be any n-analytic
weight. Put

M(µN , c, κ)(0) := H0(M̄(µN , c)(0)OCp
,Ωκ) ⊆M(µN , c, κ)(0).

This is an OCp-lattice of the Banach Cp-module M(µN , c, κ)(0). Con-
sider the cusp (o, c−1, id), the fixed cone decomposition C = C (o, c−1) ∈
Dec(o, c−1) and σ ∈ C . By the definition of the q-expansion, every co-
efficient of the q-expansion of f ∈M(µN , c, κ)(0) is an element of OCp .
We also have the following converse, which can be considered as a q-
expansion principle for our setting.

Proposition 5.8. Let fc be any element of M(µN , c, κ)(0). If ev-
ery coefficient of the q-expansion fc(q) is in OCp, then we have f ∈
M(µN , c, κ)(0).

Proof. First we show the following lemma.

Lemma 5.9. Let X be a quasi-compact separated admissible formal
scheme over OCp. Let F be an invertible sheaf on X. Let XF̄p

be the
special fiber of X and FF̄p

the pull-back of F to XF̄p
.

(1) Suppose that Xrig is reduced and X is integrally closed in Xrig.
Then, for any non-zero element f ∈ H0(X,F)[1/p], the OCp-
submodule of Cp

I = {x ∈ Cp | xf ∈ H0(X,F)}

is principal.
(2) Let g be an element of H0(X,F). Suppose that the image of g

by the map

H0(X,F)→ H0(XF̄p
,FF̄p

)

is zero. Then there exists x ∈ mCp satisfying g ∈ xH0(X,F).
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Proof. For the first assertion, take a finite covering X =
∪r
i=1 Ui by

formal affine open subschemes Ui = Spf(Ai) such that F|Ui
is trivial.

Since X is separated, the intersection Ui,j = Ui ∩ Uj is also affine. Put
Ai = Ai[1/p], Mi = Γ(Ui,F) and Mi,j = Γ(Ui,j,F). Then we have a
commutative digram

0 // Γ(X,F) //

��

∏r
i=1Mi

////

��

∏r
i,j=1Mi,j

��
0 // Γ(X,F)[1/p] //

∏r
i=1Mi[1/p]

////
∏r

i,j=1Mi,j[1/p],

where the rows are exact and the vertical arrows are injective. Put
Ii = {x ∈ Cp | xf |Ui

∈ Mi}. Note that Ii = Cp if f |Ui
= 0. Since

the above diagram implies I =
∩r
i=1 Ii, it is enough to show that Ii is

principal if f |Ui
̸= 0.

By choosing a trivialization, we identify Mi with Ai and f |Ui
∈

Mi[1/p] with a non-zero element gi ∈ Ai. Note that Ai is a reduced
Cp-affinoid algebra. Since Ai is an admissible formal OCp-algebra which
is integrally closed in Ai, [BGR, Remark after Proposition 6.3.4/1]
implies A◦

i = Ai. Thus, for any x ∈ Cp, we have

xgi ∈ Ai ⇔ |x||gi|sup ≤ 1,

where |gi|sup is the supremum norm of gi on Sp(Ai). By the maximum
modulus principle, there exists a non-zero element δ ∈ Cp satisfying
|δ| = |gi|sup. Hence we obtain

Ii = {x ∈ Cp | |x| ≤ |δ|−1} = δ−1OCp

and the first assertion follows.
For the second assertion, consider the covering X =

∪r
i=1 Ui as above.

Since the reduction of g|Ui
is also zero, we can write g|Ui

= xihi with
some xi ∈ mCp and hi ∈ Mi. Replacing xi by a generator x of the
ideal (x1, . . . , xr), we may assume g|Ui

= xhi for any i. Since Mi and
Mi,j are torsion free OCp-modules, the elements hi can be glued to
define h ∈ H0(X,F). Then we obtain g = xh and the second assertion
follows. □

Put M̄ord = M̄(µN , c)(0), M̄(Γ1(p
n))ord = M̄(Γ1(p

n), µN , c)(0) and
IWord = IW+

w,c(0). Recall that Ωκ is invertible on M̄ord. We denote
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the reduction of M̄ord
OCp

by M̄ord
F̄p

. Consider the commutative diagram

S̆σ,OCp

JJJ
JJJ

JJJ
J

JJJ
JJJ

JJJ
J

//

τo,c−1

**
π−1
w (S̆σ,OCp

) //

��

π−1
w (S̆C ,OCp

) //

��

IWord
OCp

πw

��
S̆σ,OCp

// S̆C ,OCp
// M̄ord

OCp
.

Recall that fc ∈ O(IWord
OCp

)[1/p]. The assumption on fc(q) implies

τ ∗o,c−1(fc) ∈ O(S̆σ,OCp
).

Consider the special fiber

π̄w : IWord
F̄p

γ̄n→ M̄(Γ1(p
n))ordF̄p

h̄n→ M̄ord
F̄p

of the map πw and the closed immersion i : M̄ord
F̄p
→ M̄ord

OCp
. From

the construction of the sheaf Ωκ|M̄ord
OCp

as the fixed part of a T(Z/pnZ)-
equivariant OCp-flat sheaf on a T(Z/pnZ)-torsor, we see that the sub-
sheaf Ωκ|M̄ord

OCp
⊆ (πw)∗OIW+

w,c(0)OCp
is formal locally a direct summand.

Since πw is affine, for any morphism of formal schemes f : S → M̄ord
OCp

,

the composite of natural maps

f ∗(Ωκ|M̄ord
OCp

)→ f ∗(πw)∗OIWord
OCp
→ (πw|f−1(S))∗Of−1(S)

is injective. This yields a commutative diagram

(5.9)

Ωκ(M̄ord
OCp

) //

��

O(IWord
OCp

)

��

i∗Ωκ(M̄ord
F̄p

) //

��

O(IWord
F̄p

)

��

i∗Ωκ|ŜC ,F̄p
(ŜC ,F̄p

) // O(π̄−1
w (ŜC ,F̄p

))

with injective horizontal arrows, where the base extension ŜC ,F̄p
=

ŜC ⊗̂kF̄p is equal to the special fiber of S̆C ,OCp
.

On the Tate object Tateo,c−1(q) over Spec(R̆σ), we defined the canon-

ical trivialization of the canonical subgroup and that of the T0
w(S̆σ)-set

IWord(S̆σ), which are denoted by uo,c−1 and αo,c−1 . Since R̆σ is Noe-

therian, the moduli interpretation of IWord is available over R̆σ and
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these trivializations give isomorphisms

S̆σ ×M̄ord M̄(Γ1(p
n))ord ≃

⨿
a∈T(Z/pnZ)

S̆σ, π−1
w (S̆σ) ≃

⨿
a∈T(Z/pnZ)

S̆σ × T0
w,

where the latter is an isomorphism of formal T0
w-torsors. By the base

extension, we also have similar isomorphisms over OCp . Since the latter
isomorphism is defined using the trivializations uo,c−1 and αo,c−1 , the
unit section on the component a = 1 coincides with the above map
S̆σ,OCp

→ π−1
w (S̆σ,OCp

).

The T0
w-representation O(S̆σ,OCp

×T0
w) is decomposed into the direct

sum of the free R̆σ,OCp
-modules R̆σ,OCp

sχ for any formal character χ of

T0
w, where sχ is a section generating its χ-part. Thus we have

fc|π−1
w (S̆σ,OCp

) ∈
∏

a∈T(Z/pnZ)

(R̆σ,OCp
[1/p]sκ).

Write this element as (Fasκ)a∈T(Z/pnZ) with Fa ∈ R̆σ,OCp
[1/p]. Since

κ(1) = 1 and τ ∗o,c−1(fc) ∈ R̆σ,OCp
, we obtain F1 ∈ R̆σ,OCp

. Since fc is

κ-equivariant for the T(Z/pnZ)-action, we have Fa = κ(â)F1 with a lift
â ∈ T(Zp) of a. Since the image of the character κ is contained in O×

Cp
,

we see that Fa ∈ R̆σ,OCp
for any a ∈ T(Z/pnZ). This means

(5.10) fc|π−1
w (S̆σ,OCp

) ∈ O(π
−1
w (S̆σ,OCp

)).

To prove the proposition, we may assume fc ̸= 0. Consider the ideal
J = {x ∈ OCp | xfc ∈ M(µN , c, κ)(0)}, which is principal by Lemma
5.9 (1). Put J = (x) and suppose x ∈ mCp . Then the q-expansion
xfc(q) is also integral, and zero modulo mCp . Thus the commutative
diagram (5.9) and (5.10) imply that the pull-back of xfc ∈ Ωκ(M̄ord

OCp
)

to i∗Ωκ|ŜC ,F̄p
(ŜC ,F̄p

) vanishes.

Note that the reduction of S̆C ,OCp
→ M̄ord

OCp
induces the map on the

special fiber

ŜC ,F̄p
= (S̆C ,OCp

)F̄p
→ M̄(µN , c)F̄p

.

Let M̄(µN , c)F̄p
|∧DF̄p

be the formal completion of M̄(µN , c)F̄p
along its

boundary DF̄p
. Recall that this map induces maps

ŜC ,F̄p
→ ŜC ,F̄p

/UN → M̄(µN , c)F̄p
|∧DF̄p

,

where the first arrow is a surjective local isomorphism and the second
arrow is an open immersion. Hence xfc vanishes on a formal open
subscheme of the formal completion M̄(µN , c)F̄p

|∧DF̄p
. We know that
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the smooth scheme M̄ord
F̄p

is irreducible. Since the sheaf Ωκ is invert-

ible on the ordinary locus, Krull’s intersection theorem implies that xfc
vanishes on a non-empty open subscheme of M̄ord

F̄p
, and thus it also van-

ishes on M̄ord
F̄p

. Then Lemma 5.9 (2) implies that xfc ∈ yM(µN , c, κ)(0)

for some y ∈ mCp . Since the OCp-module M(µN , c, κ)(0) is torsion
free, this contradicts the choice of x. Thus we obtain x ∈ O×

Cp
and

fc ∈M(µN , c, κ)(0), which concludes the proof of the proposition. □
Corollary 5.10. Let f = (fc)c∈[Cl+(F )](p) be a non-zero eigenform in the

space SG(µN , (ν, w))(v) of weight (ν, w) ∈ WG(Cp). For any non-zero
ideal n of o, the Hecke eigenvalue Λ(n) is p-integral.

Proof. By (4.5), it is enough to show the case where n is a maximal
ideal m. Put κ = k(ν, w). Note that by Lemma 4.2 and Lemma 4.3,
the restriction map SG(µN , (ν, w))(v)→ SG(µN , (ν, w))(0) is injective.
We consider Λ(m) as an eigenvalue of the operator Tm acting on

M :=
⊕

c∈[Cl+(F )](p)

M(µN , c, κ)(0).

This is a Banach Cp-module with respect to the p-adic norm |−| defined
by the OCp-lattice

M :=
⊕

c∈[Cl+(F )](p)

M(µN , c, κ)(0).

Namely, we put

|f | = inf{|x|−1 | x ∈ C×
p , xf ∈M}.

By Lemma 5.9 (1), we can find an element x ∈ Cp of largest absolute
value satisfying xfc ∈M(µN , c, κ)(0) for any c ∈ [Cl+(F )](p). The norm
|f | is equal to |x|−1. Moreover, any coefficient of the q-expansion xfc(q)
is contained in OCp . By Lemma 5.6, so is xTmf . Hence Proposition 5.8
shows xTmf ∈M. This implies

|Λ(m)| = |Tmf |
|f |

≤ |x|
−1

|x|−1
= 1

and the corollary follows. □
Corollary 5.11. Let f = (fc)c∈[Cl+(F )](p) be a normalized eigenform in

SG(µN , (ν, w))(v) of weight (ν, w) ∈ WG(Cp). Then we have

ao,c−1(f, η) ∈ OCp

for any c ∈ [Cl+(F )](p) and any η ∈ (c−1)+.

Proof. This follows from Proposition 5.7 and Corollary 5.10. □
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Corollary 5.12. Let (ν, w) be an element of WG(Cp).

(1) For any c ∈ [Cl+(F )](p), there exists an admissible affinoid open
subset Vc ⊆ M̄(µN , c)(v)Cp such that (πrig

w )−1(Vc) meets every
connected component of IW+

w,c(v)Cp and, for any normalized

eigenform f = (fc)c∈[Cl+(F )](p) in SG(µN , (ν, w))(v), the restric-
tion fc|(πrig

w )−1(Vc)
has absolute value bounded by one.

(2) Let f = (fc)c∈[Cl+(F )](p) be any normalized eigenform in the space

SG(µN , (ν, w))(v). If fc(q) = 0 for any c ∈ [Cl+(F )](p), then
f = 0.

(3) Let f = (fc)c∈[Cl+(F )](p) and f ′ = (f ′
c)c∈[Cl+(F )](p) be normalized

eigenforms in SG(µN , (ν, w))(v). Suppose that the eigenvalues
of the Hecke operator Tn acting on f and f ′ are the same for
any non-zero ideal n ⊆ o. Then f = f ′.

Proof. Let us prove the first assertion. For any σ ∈ C = C (o, c−1),
Corollary 5.11 and (5.5) show that τ ∗o,c−1(fc) is a rigid analytic func-

tion on S̆rig
σ,Cp

with absolute value bounded by one. As in the proof of

Proposition 5.8, we can show that fc|(πrig
w )−1(S̆rig

C ,Cp )
is a rigid analytic

function with absolute value bounded by one. Since the natural map
S̆rig

C ,Cp
→ S̆rig

C ,Cp
/UN is a surjective local isomorphism, the restriction

fc|(πrig
w )−1(S̆rig

C ,Cp/UN ) is also with absolute value bounded by one. Thus,

for any non-empty admissible affinoid open subset Vc ⊆ S̆rig
C ,Cp

/UN , the

absolute value of fc|(πrig
w )−1(Vc)

is bounded by one. Since S̆rig
C ,Cp

/UN is

an admissible open subset of M̄(µN , c)(v)Cp , we see that Vc is also its
admissible open subset.

On the other hand, since the rigid analytic variety M̄(µN , c)(v)Cp is
connected by Lemma 4.3 and the map

hrign : M̄(Γ1(p
n), µN , c)(v)Cp → M̄(µN , c)(v)Cp

is finitely presented and etale, it is surjective on each connected com-
ponent of the rigid analytic variety M̄(Γ1(p

n), µN , c)(v)Cp and thus
(hrign )−1(Vc) meets every connected component of it.

We claim that the map

γrigw : IW+
w,c(v)Cp → M̄(Γ1(p

n), µN , c)(v)Cp

induces a bijection

π0(IW+
w,c(v)Cp)→ π0(M̄(Γ1(p

n), µN , c)(v)Cp)

between the sets of connected components. Indeed, by [Con1, Corollary
3.2.3], it is enough to show the claim with Cp replaced by a finite
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extension L/K. By a finite base extension, we may assume L = K.
Since the formal schemes IW+

w,c(v) and M̄(Γ1(p
n), µN , c)(v) are both

normal, it is enough to show a similar assertion for the formal model γw.
Since it is a formal T0

w-torsor, it is surjective and the map between the
sets of connected components is also surjective. LetY be any connected
component of M̄(Γ1(p

n), µN , c)(v) and {Xj}j∈J the set of connected
components of IW+

w,c(v) which γw maps to Y. Suppose ♯J ≥ 2. Since
γw is finitely presented and flat, it is open and the connectedness of Y
implies that γw(Xj) ∩ γw(Xj′) ̸= ∅ for some j ̸= j′. However, for any
element y of this intersection, the fiber γ−1

w (y) is connected since it is
isomorphic to the special fiber of T0

w, which is a contradiction. Since
γrigw is surjective, the claim shows that every connected component of
IW+

w,c(v)Cp meets the admissible open subset (πrig
w )−1(Vc) and the first

assertion follows.
Now suppose that fc(q) = 0 for any c ∈ [Cl+(F )](p). Then we have

fc|(πrig
w )−1(Vc)

= 0. Since the rigid analytic variety IW+
w,c(v)Cp is smooth

over Cp, the first assertion and Lemma 4.2 show the second assertion.
The third assertion follows from Proposition 5.7 and the second one.

□

5.4. Normalized overconvergent modular forms in families. Let
U = Sp(A) be a reduced Cp-affinoid variety and put U = Spf(A◦).
Let U → WG

Cp
be an n-analytic morphism and consider the associ-

ated weight characters (νU , wU) as before. Let f = (fc)c∈[Cl+(F )](p) be

an eigenform in the space SG(µN , (ν
U , wU))(v). Recall that each fc is

an element of O(IW+
w,c(v)OCp

× U)[1/p]. For the cusp (o, c−1, id) of

M(µN , c) and any σ ∈ C = C (o, c−1), we have the map

τo,c−1 × 1 : S̆σ,OCp
× U→ IW+

w,c(v)OCp
× U

over M̄(µN , c)(v)OCp
× U.

As in §5.1, we see that the ring R̆σ,OCp
⊗̂OCp

A◦ is isomorphic to the
completion of the ring

A◦[qξ1 , . . . , qξr ][q±ξr+1 , . . . , q±ξg ]

with respect to the (p, qξ1 · · · qξr)-adic topology for some ξ1, . . . , ξg ∈
c−1 ∩ σ∨ and thus it can be considered as a subring of the ring

A◦⟨q±ξr+1 , . . . , q±ξg⟩[[qξ1 , . . . , qξr ]].

Hence we obtain the map of the q1-coefficient

prUq1 : O(S̆σ,OCp
× U)[1/p]→ A.
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For any eigenform f ∈ SG(µN , (νU , wU))(v) as above, we put aUo,o(f, 1) =

prUq1((τo,o × 1)∗(fo)) ∈ A.
For any x ∈ U(Cp), put (ν, w) = (νU(x), wU(x)). The specialization

f(x) = (fc(x))c∈[Cl+(F )](p) is an element of the space SG(µN , (ν, w))(v)

over Cp, and we have the usual q1-coefficient ao,o(f(x), 1) of the q-
expansion of f(x). By the commutative diagram

S̆σ,OCp
× U

τo,o×1
// IW+

w,o(v)OCp
× U

S̆σ,OCp

1×x

OO

τo,o
// IW+

w,o(v)OCp
,

1×x

OO

we obtain

(5.11) aUo,o(f, 1)(x) = ao,o(f(x), 1).

Lemma 5.13. Suppose that f(x) ̸= 0 for any x ∈ U(Cp). Then we
have

aUo,o(f, 1) ∈ A×.

In particular, the specialization f ′(x) of f ′ = aUo,o(f, 1)
−1f is a normal-

ized eigenform with the same eigenvalues as f(x) for any x ∈ U(Cp).

Proof. We claim that ao,o(f(x), 1) ̸= 0 for any x ∈ U(Cp). Indeed,
suppose that ao,o(f(x), 1) = 0 for some x ∈ U(Cp). Since f(x) is an
eigenform, Proposition 5.7 implies that the q-expansion f(x)c(q) of f(x)
is zero for any c ∈ [Cl+(F )](p). By Corollary 5.12 (2) we have f(x) = 0,
which is a contradiction.

Now (5.11) implies that aUo,o(f, 1)(x) ̸= 0 for any x ∈ U(Cp). Hence

we obtain aUo,o(f, 1) ∈ A×. □

5.5. Gluing results. Here we prove two results on gluing overconver-
gent Hilbert modular forms, based on the theory of the q-expansion
developed above. Let X = Sp(R) be any admissible affinoid open sub-
set ofWG. Put n = n(X ) and v = vn as in §4.3.3. Consider the Hilbert
eigenvariety E|X → X , which is constructed from the input data

(R, SG(µN , (ν
X , wX ))(vtot),T, Up).

5.5.1. Gluing local eigenforms.

Lemma 5.14. Let U = Sp(A) be a Cp-affinoid variety and U → XCp a
morphism of rigid analytic varieties over Cp. Let f be an eigenvector
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of the space SG(µN , (ν
X , wX ))(vtot)⊗̂RA for the action of T such that

for any x ∈ U(Cp), the specialization

f(x) ∈ SG(µN , (νX , wX ))(vtot)⊗̂R,x∗Cp

is non-zero. Then the image of f by the natural map

SG(µN , (ν
X , wX ))(vtot)⊗̂RA→ SG(µN , (ν

U , wU))(vtot)

is an eigenform with the same property.

Proof. Put (ν, w) = (νU(x), wU(x)). Then we have the commutative
diagram

SG(µN , (ν
X , wX ))(vtot)⊗̂RA //

��

SG(µN , (ν
U , wU))(vtot)

��

SG(µN , (ν
X , wX ))(vtot)⊗̂R,x∗Cp

//

++WWWW
WWWWW

WWWWW
WWWWW

WW
SG(µN , (ν

U , wU))(vtot)⊗̂A,x∗Cp

��
SG(µN , (ν, w))(vtot).

Here the lowest two arrows are the specialization maps. Since WG is
smooth, the maximal ideal of R⊗̂KCp corresponding to x is generated
by a regular sequence. By Lemma 4.12, the left oblique arrow is an
isomorphism. This implies the lemma. □
Proposition 5.15. Let Z be a smooth rigid analytic variety over Cp

which is principally refined. Let φ : Z → (E|X )Cp be a morphism of
rigid analytic varieties over Cp. Then there exist an element

f ∈
⊕

c∈[Cl+(F )](p)

O(IW+
w,c(vtot)Cp ×Z)

and an admissible affinoid covering Z =
∪
i∈I Ui such that the restric-

tion f |Ui
for each i ∈ I is an eigenform of SG(µN , (ν

Ui , wUi))(vtot) with
eigensystem φ∗ : T → O(Z) → O(Ui) and f(z) is normalized for any
z ∈ Z.

Proof. By Proposition 2.5 (2), there exist an admissible affinoid cover-
ing Z =

∪
i∈I Ui, Ui = Sp(Ai) with a principal ideal domain Ai and an

eigenvector fi in the space

SG(µN , (ν
X , wX ))(vtot)⊗̂RAi

such that for any z ∈ Ui, we have fi(z) ̸= 0 and

(h⊗ 1)fi = (1⊗ φ∗(h))fi
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for any h ∈ T. By Lemma 5.14, the image f ′
i of fi in the space

SG(µN , (ν
Ui , wUi))(vtot) is an eigenform with eigensystem φ∗ : T → Ai

such that f ′
i(z) ̸= 0 for any z ∈ Ui. Since Ui is reduced, by Lemma 5.13

we may assume that f ′
i(z) is a normalized eigenform for any z ∈ Ui.

For any z ∈ Ui∩Uj and any h ∈ T, the h-eigenvalues of f ′
i(z) and f

′
j(z)

are both φ∗(h)(z). Since they are normalized eigenforms, Corollary
5.12 (3) implies f ′

i(z) = f ′
j(z).

Since the rigid analytic variety IW+
w,c(vtot)Cp × Z is reduced, this

equality means that f ′
i and f

′
j coincide with each other as rigid analytic

functions on ⨿
c∈[Cl+(F )](p)

IW+
w,c(vtot)Cp × (Ui ∩ Uj).

Thus we can glue f ′
i ’s to produce an element

f ∈
⊕

c∈[Cl+(F )](p)

O(IW+
w,c(vtot)Cp ×Z).

This concludes the proof. □

5.5.2. Gluing around cusps. Consider the unit disc DCp over Sp(Cp)
centered at the origin O. Put D×

Cp
= DCp \ {O}.

Lemma 5.16. Let Z be a quasi-compact smooth rigid analytic variety
over Cp. Then the ring O(Z × D×

Cp
) can be identified with the ring of

power series
∑

n∈Z anT
n with an ∈ O(Z) such that

(5.12) lim
n→+∞

sup
z∈Z
|an(z)| = 0, lim

n→+∞
sup
z∈Z
|a−n(z)|ρn = 0

for any rational number ρ satisfying 0 < ρ ≤ 1.

Proof. For any non-negative rational number ρ ≤ 1, let A[ρ, 1]Cp be
the closed annulus with parameter T over Cp defined by ρ ≤ |T | ≤ 1.
Then we have an admissible covering

D×
Cp

=
∪
ρ→0+

A[ρ, 1]Cp

of D×
Cp
. Note that, for any connected reduced Cp-affinoid variety U ,

[BLR, Proposition 1.1] implies that the rigid analytic varieties U ×
A[ρ, 1]Cp and U × D×

Cp
are connected. This shows that, for any con-

nected reduced rigid analytic variety X over Cp, the fiber products
X ×A[ρ, 1]Cp and X ×D×

Cp
are also connected. By Lemma 4.2, we have

injections

O(Z ×D×
Cp
)→ O(Z ×A[ρ, 1]Cp)→ O(Z ×A[ρ′, 1]Cp)
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for any ρ < ρ′ and thus

O(Z ×D×
Cp
) =

∩
ρ→0+

O(Z ×A[ρ, 1]Cp).

Take ϖ ∈ OCp satisfying |ϖ| = ρ. We define O(Z)⟨T, ϖ
T
⟩ as the ring

of formal power series
∑

n∈Z anT
n with an ∈ O(Z) satisfying (5.12) for

ρ. It suffices to show

O(Z ×A[ρ, 1]Cp) = O(Z)⟨T,
ϖ

T
⟩.

Take a finite admissible affinoid covering Z =
∪
i∈I Ui with Ui = Sp(Ai).

We have an inclusion

O(Ui ×A[ρ, 1]Cp) = Ai⟨T,
ϖ

T
⟩ ⊆

∏
n∈Z

AiT
n

which is compatible with the restriction to any affinoid subdomain of
Ui. Take f ∈ O(Z ×A[ρ, 1]Cp) and put

f |Ui×A[ρ,1]Cp
=

∑
n∈Z

ai,nT
n

with ai,n ∈ Ai. Then ai,n’s can be glued to obtain an element an ∈
O(Z). Put Φ(f) =

∑
n∈Z anT

n. Since I is a finite set, we can check
that an’s also satisfy (5.12) and thus Φ(f) ∈ O(Z)⟨T, ϖ

T
⟩. On the other

hand, for any element g =
∑

n∈Z anT
n of O(Z)⟨T, ϖ

T
⟩, put Ψ(g)i =∑

n∈Z an|Ui
T n. Then Ψ(g)i ∈ Ai⟨T, ϖT ⟩, which can be glued to obtain

Ψ(g) ∈ O(Z ×A[ρ, 1]Cp). Then Φ and Ψ are inverse to each other and
the lemma follows. □

Next we show the following variant of [BuC, Lemma 7.1].

Lemma 5.17. Let Z be a quasi-compact smooth rigid analytic variety
over Cp. Let V be an admissible open subset of Z which meets every
connected component of Z. Let f be an element of O(Z×D×

Cp
). Suppose

that f |V×D×
Cp

extends to an element of O(V ×DCp). Then f extends to

an element of O(Z ×DCp).

Proof. By taking an admissible affinoid open subset of the intersection
of V and each connected component of Z and replacing V with their
union, we may assume that V is quasi-compact. By Lemma 4.2, the
assumption on V yields injections

O(Z)→ O(V), O(Z ×D×
Cp
)→ O(V × D×

Cp
)← O(V × DCp).

From Lemma 5.16, we see that the intersection of O(Z × D×
Cp
) and

O(V×DCp) insideO(V×D×
Cp
) is the set of formal power series

∑
n≥0 anT

n
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with an ∈ O(Z) satisfying

lim
n→+∞

sup
z∈Z
|an(z)| = 0,

which is equal to O(Z ×DCp). □

Lemma 5.18.

O◦(D×
Cp
) ⊆ O(DCp).

Proof. Let f =
∑

n∈Z anT
n be an element of O◦(D×

Cp
). Consider the

Newton polygon of f . Then the assumption implies that any point
(n, vp(an)) lies above the line y = −rx for any non-negative rational
number r, which forces an = 0 for any n < 0. □

Proposition 5.19. Let φ : D×
Cp
→ (E|X )Cp be a morphism of rigid

analytic varieties over Cp such that the composite D×
Cp
→ (E|X )Cp →

XCp extends to DCp → XCp. Let (νDCp , wDCp ) be the weight associated
to the map DCp → XCp. Suppose that, for some non-negative rational
number v′ < (p− 1)/pn, we are given an element

f = (fc)c∈[Cl+(F )](p) ∈
⊕

c∈[Cl+(F )](p)

O(IW+
w,c(v

′)Cp ×D×
Cp
)

and an admissible affinoid covering D×
Cp

=
∪
i∈I Ui such that the restric-

tion f |Ui
for each i ∈ I is an eigenform of SG(µN , (ν

Ui , wUi))(v′) with
eigensystem φ∗ : T→ O(D×

Cp
)→ O(Ui) and f(z) is normalized for any

z ∈ D×
Cp
. Then there exists an eigenform f ′ ∈ SG(µN , (νDCp , wDCp ))(v′)

such that f ′(z) is normalized for any z ∈ DCp and it is an eigenform
with eigensystem φ∗(z) : T→ O(D×

Cp
)→ Cp for any z ∈ D×

Cp
.

Proof. Consider the map πrig
w : IW+

w,c(v
′)Cp → M̄(µN , c)(v

′)Cp as be-

fore. Let Vc be an admissible affinoid open subset of M̄(µN , c)(v
′)Cp as

in Corollary 5.12 (1). Put Ic = (πrig
w )−1(Vc). Then Ic is an admissible

open subset which meets every connected component of IW+
w,c(v

′)Cp

such that fc(z)|Ic has absolute value bounded by one for any z ∈ D×
Cp
.

Hence fc|Ic×D×
Cp

also has absolute value bounded by one.

Note that Ic is quasi-compact, since πw is quasi-compact. By Lemma
5.16, we can write as

fc|Ic×D×
Cp

=
∑
n∈Z

anT
n

with some an ∈ O(Ic). Lemma 5.18 implies an(x) = 0 for any x ∈ Ic
and any n < 0. Since Ic is reduced, we obtain an = 0 for any n < 0
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and thus

fc|Ic×D×
Cp
∈ O(Ic ×DCp).

Therefore, by Lemma 5.17 we see that fc extends to an element f̃c of
O(IW+

w,c(v
′)Cp ×DCp).

Write as DCp = Sp(Cp⟨T ⟩). Note that the ring O(IW+
w,c(v

′)Cp×DCp)
is T -torsion free. We claim that, if fc ̸= 0, then there exists a non-
negative integer mc satisfying

f̃c ∈ TmcO(IW+
w,c(v

′)Cp ×DCp) \ Tmc+1O(IW+
w,c(v

′)Cp ×DCp).

Indeed, since IW+
w,c(v

′)Cp is smooth, we can take an admissible affinoid
covering

IW+
w,c(v

′)Cp =
∪
j∈J

Vj, Vj = Sp(Aj)

such that every Aj is a Noetherian domain. Suppose that

f̃c ∈
∩
m≥0

TmO(IW+
w,c(v

′)Cp ×DCp).

Since Aj⟨T ⟩ is also a Noetherian domain, Krull’s intersection theorem

implies f̃c|Vj×DCp
= 0 for any j ∈ J and thus f̃c = 0, which is a

contradiction.
Put m = min{mc | c ∈ [Cl+(F )](p), fc ̸= 0}. Let f̃ ′

c be the unique

element of O(IW+
w,c(v

′)Cp×DCp) satisfying f̃c = Tmf̃ ′
c. Since the maps

O(IW+
w,c(v

′)Cp ×DCp)→ O(IW+
w,c(v

′)Cp ×D×
Cp
)

→
∏
i∈I

O(IW+
w,c(v

′)Cp × Ui)

are injective by Lemma 4.2, the element f̃ ′
c is also κ

DCp -equivariant and

∆-stable. Hence the collection f̃ ′ = (f̃ ′
c)c∈[Cl+(F )](p) is an element of

SG(µN , (ν
DCp , wDCp ))(v′) such that f̃ ′(z) ̸= 0 for any z ∈ DCp .

Let Λ(n) be the image of Tn (resp. Sn) by the map φ∗ : T→ O(D×
Cp
).

By Corollary 5.10, the specialization Λ(n)(z) is p-integral for any z ∈
D×

Cp
. Thus Lemma 5.18 shows Λ(n) ∈ O(DCp). By the above injectiv-

ity, we see that f̃ ′ is an eigenform on which Tn (resp. Sn) acts by Λ(n).
Now Lemma 5.13 concludes the proof of the proposition. □

6. Properness at integral weights

Let E → WG be the Hilbert eigenvariety as in §4.3.3. In this section,
we prove the following main theorem of this paper.
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Theorem 6.1. Suppose that F is unramified over p and for any prime
ideal p | p of F , the residue degree fp satisfies fp ≤ 2 (resp. p splits
completely in F ) for p ≥ 3 (resp. p = 2). Consider a commutative
diagram

D×
Cp

φ //

��

ECp

��
DCp ψ

//

==

WG
Cp

of rigid analytic varieties over Cp, where the left vertical arrow is the
natural inclusion. Suppose that ψ(O) is 1-integral (resp. 1-even) in the
sense of §4.3.2. Then there exists a morphism DCp → ECp of rigid ana-
lytic varieties over Cp such that the above diagram with this morphism
added is also commutative.

Proof. Let e1, . . . , eg be a basis of the Zp-module 2p(OF ⊗Zp) and put
Ei = exp(ei) ∈ 1 + 2p(OF ⊗ Zp). Similarly, let eg+1 be a basis of the
Zp-module 2pZp and put Eg+1 = exp(eg+1) ∈ 1 + 2pZp. Let (νun, wun)
be the universal character onWG. Note thatWG

Cp
is the disjoint union

of finitely many copies of the open unit polydisc defined by

|X1| < 1, . . . , |Xg+1| < 1

with parametersX1, . . . , Xg+1: the connected components are parametrized
by the finite order characters

ε : T(Z/2pZ)× (Z/2pZ)× → O×
Cp

and on each connected component, the point defined by Xi 7→ xi cor-
responds to the character (ν, w) satisfying ν(Ei) = 1+ xi for any i ≤ g
and w(Eg+1) = 1 + xg+1.

Put q = p if p ≥ 3 and q = 8 if p = 2. Since ψ(O) is 1-integral, it
comes from a K-valued point of WG, which we also denote by ψ(O).
This corresponds to a finite order character εO and a map Xi 7→ xi
with some xi ∈ qOK . For p = 2, the assumption that ψ(O) is 1-even
implies that εO is trivial on the torsion subgroup of 1+2(OF⊗Z2). Put
E ′
i = (−1)p−1Ei. The group 1 + p(OF ⊗ Zp) is topologically generated

by Ei’s and E
′
i’s. We have

(νun, wun)(Ei) = (νun, wun)(E ′
i) = 1 +Xi

on the εO-component ofWG. Let U = Sp(R) be the admissible affinoid
open subset of the εO-component of WG defined by |Xi − xi| ≤ |q| for
any i. Then 1 +Xi = 1 + xi + (Xi − xi) ∈ 1 + qR◦ and the universal
character (νun, wun) is 1-analytic on U .
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We denote by Dρ,Cp the closed disc of radius ρ centered at the origin
over Cp. Consider the element ψ∗(Xi)(T ) of the ring O(DCp) = Cp⟨T ⟩.
Since ψ∗(Xi)(0) = xi, there exists a positive rational number ρ < 1
such that

|t| ≤ ρ⇒ |ψ∗(Xi)(t)− xi| ≤ |q|
for any i. This means ψ(Dρ,Cp) ⊆ UCp . If we can construct a morphism
Dρ,Cp → ECp which makes the diagram in the theorem commutative,
then by gluing we obtain the desired map DCp → ECp . Thus, by shrink-
ing the disc, we may assume that ψ factors through UCp .

Put n = 1 and v = v1. We may assume v < 1/(p + 1) so that we
have

M̄(µN , c)(vtot) ⊆ M̄(µN , c)(
1
p+1

).

By Remark 2.4, the rigid analytic variety D×
Cp

is principally refined.

Applying Proposition 5.15 to the map φ : D×
Cp
→ (E|U)Cp , we obtain

an element

f ∈
⊕

c∈[Cl+(F )](p)

O(IW+
w,c(vtot)Cp ×D×

Cp
)

and an admissible affinoid covering D×
Cp

=
∪
i∈I Ui such that the re-

striction f |Ui
for each i ∈ I is an eigenform of SG(µN , (ν

Ui , wUi))(vtot)
with eigensystem φ∗ : T → O(D×

Cp
) → O(Ui) and f(z) is normalized

for any z ∈ D×
Cp
.

Since φ∗ comes from the eigenvariety E , the Up-eigenvalue φ∗(Up) ∈
O(Ui) of f |Ui

satisfies φ∗(Up)(z) ̸= 0 for any z ∈ Ui(Cp), and thus we
have φ∗(Up) ∈ O(Ui)×. Since Up improves the overconvergence from v
to pv, taking φ∗(Up)

−1Up(f |Ui
) repeatedly, we can find an eigenform

gi ∈ SG(µN , (νUi , wUi))( 1
p+1

)

with eigensystem φ∗ : T→ O(D×
Cp
)→ O(Ui) which extends f |Ui

. Note

that for any z ∈ Ui(Cp) we have a commutative diagram

SG(µN , (ν
Ui , wUi))( 1

p+1
) //

��

SG(µN , (ν
Ui , wUi))(vtot)

��
SG(µN , (ν

Ui(z), wUi(z)))( 1
p+1

) // SG(µN , (ν
Ui(z), wUi(z)))(vtot),

where the horizontal arrows are the restriction maps and the vertical
arrows are the specialization maps. This implies that the specialization
gi(z) is also non-zero for any z ∈ Ui(Cp). Since the q-expansion is deter-
mined by the restriction to the ordinary locus, gi(z) is also normalized
for any z ∈ Ui(Cp). Since the Hecke eigenvalues of gi(z) are also given
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by the eigensystem φ∗(z) : T → O(Ui)
z∗→ Cp, a gluing argument as in

the proof of Proposition 5.15 shows that gi’s can be glued. In other
words, we may assume

f ∈
⊕

c∈[Cl+(F )](p)

O(IW+
w,c(

1
p+1

)Cp ×D×
Cp
).

By Proposition 5.19, we may replace f by an eigenform of the space
SG(µN , (ν

DCp , wDCp ))( 1
p+1

) such that every specialization on DCp is nor-

malized, which we also denote by f = (fc)c∈[Cl+(F )](p) . By Lemma 4.12,
we have an isomorphism

SG(µN , (ν
U , wU))(vtot)⊗̂R,z∗k(z) ≃ SG(µN , (ν

DCp (z), wDCp (z)))(vtot)

for any z ∈ DCp . Thus the map T→ O(DCp) defined by the eigenvalues
of f is a family of eigensystems in SG(µN , (ν

U , wU))(vtot) over DCp such
that its restriction to D×

Cp
is φ∗ : T → O(D×

Cp
). In particular, it is of

finite slopes over D×
Cp
. If f(O) is of finite slope, then Proposition 2.7

yields a morphism DCp → E|UCp
with the desired property.

Let us prove that f(O) is of finite slope. Put ψ(O) = (ν(O), w(O))
and κ = k(ν(O), w(O)), which are 1-integral by assumption. Let κ1 =
(kβ)β∈BF

be the integral weight corresponding to the restriction κ|T0
1(Zp).

Put Xc := M(µN , c)
rig. We also write as Xc(v

′) = M(µN , c)(v
′)rig for

any v′ < 1. For the morphism h1 : M̄(Γ1(p), µN , c) → M̄(µN , c), we

put h = hrig1 and X 1
c (v

′) = h−1(Xc(v
′)) for any v′ < (p− 1)/p.

Consider the rigid analytic variety Yc,p as in §4.2 and the natural
projection π : Yc,p → Xc. Put Yc,p(v

′) = π−1(Xc(v
′)). For the universal

p-cyclic subgroup scheme Hun over Yc,p, we put

Y1
c,p = IsomYc,p(DF ⊗ µp, Hun).

We denote by r the natural projection Y1
c,p → Yc,p. Put π

1 = π ◦ r and
Y1

c,p(v
′) = (π1)−1(Xc(v

′)). We write the base extensions to Cp of these

maps also as h, π, r and π1, respectively. We consider U1 := X 1
c (

1
p+1

)

as a Zariski open subset of Y1
c,p(

1
p+1

). Then we have an isomorphism

h∗Ωκ ≃ (π1)∗Ωκ|U1
Cp
. Note that the sheaf h∗Ωκ in this case of 1-integral

weight is isomorphic to the sheaf h∗Ωκ1 ≃ h∗ωκ1Āun,Cp
as in §4.3.1. The

sheaf (π1)∗Ωκ1 is defined over the whole rigid analytic variety Y1
c,p,Cp

and satisfies (π1)∗Ωκ1 |U1
Cp
≃ h∗Ωκ. Thus each fc(O) defines the element

gc := h∗fc(O) = (π1)∗fc(O)|U1
Cp
∈ H0(U1

Cp
, (π1)∗Ωκ1(−D)),
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on which any element a of the Galois group T(Z/pZ) of h : U1 →
Xc(

1
p+1

) acts via the multiplication by κ(â) with any lift â ∈ T(Zp) of
a.

Moreover, we define Z1
c,p as the scheme over K classifying triples

(A, u,D) consisting of a HBAV A over a base scheme over K, an
OF -closed immersion u : D−1

F ⊗ µp → A and a finite flat closed OF -
subgroup scheme D which is etale locally isomorphic to OF/pOF sat-

isfying Im(u) ∩ D = 0. We denote by Z1
c,p the analytification of

Z1
c,p restricted to Xc. We have two projections Z1

c,p → Y1
c,p given by

(A, u,D) 7→ (A, u) and (A, u,D) 7→ (A/D, ū) with the image ū of u
in A/D, which are denoted by q1 and q2, respectively. Put Z1

c,p(v
′) =

q−1
1 (Y1

c,p(v
′)).

We denote the restriction of the rigid analytic variety Y ′
c,p(

1
p+1

) de-

fined in §4.3.3 to Xc(
1
p+1

) also by Y ′
c,p(

1
p+1

). We have a finite etale

morphism

Π : q−1
1 (U1)→ Y ′

c,p(
1
p+1

), (A, u,H) 7→ (A,H).

The base extensions of these maps to Cp are also denoted by q1, q2 and
Π, respectively. By Corollary 3.11 (1), we have q−1

1 (U1) ⊆ q−1
2 (U1) and

thus q−1
1 (U1

Cp
) ⊆ q−1

2 (U1
Cp
). This yields commutative diagrams

U1
Cp

h

��

q−1
1 (U1

Cp
)

q2oo

Π

��
Xc,p(

1
p+1

)Cp Y ′
c,p(

1
p+1

)Cp ,p2
oo

q−1
1 (U1

Cp
)

Π

��

q1 // U1
Cp

h

��
Y ′

c,p(
1
p+1

)Cp p1
// Xc,p(

1
p+1

)Cp ,

where the latter is cartesian.
Take any point Q = [(A,H)] ∈ Yc,p(OL) with some finite extension

L/K such that Hdgβ(A) = p/(p + 1) for any β ∈ BF , which exists
by Lemma 4.5. Consider the admissible open subsets VQ, V0

Q,Cp
and

V0
Q,Cp

( 1
p+1

) defined in §4.2. By Corollary 4.8, we have

q−1
1 (r−1(VQ)) ⊆ q−1

2 (U1).

Taking the base extension, we also have

q−1
1 (r−1(V0

Q,Cp
)) ⊆ q−1

1 (r−1(VQ,Cp)) ⊆ q−1
2 (U1

Cp
).

Similarly, Lemma 4.9 shows r−1(V0
Q,Cp

( 1
p+1

)) ⊆ U1
Cp
. Since the weight

κ1 is integral, we have a natural isomorphism π∗
p : q∗2(π

1)∗Ωκ1 →
q∗1(π

1)∗Ωκ1 over Z1
c,p. From these and the above commutative diagrams,
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we see that the operator Up extends to an operator

UQ : H0(U1
Cp
, (π1)∗Ωκ1)→ H0(r−1(V0

Q,Cp
), (π1)∗Ωκ1)

which makes the following diagram commutative.

H0(U1
Cp
, (π1)∗Ωκ1)

UQ // H0(r−1(V0
Q,Cp

), (π1)∗Ωκ1)

res

��
H0(r−1(V0

Q,Cp
( 1
p+1

)), (π1)∗Ωκ)

H0(Xc(
1
p+1

)Cp ,Ω
κ)

Up

//

h∗

OO

H0(Xc(
1
p+1

)Cp ,Ω
κ)

h∗

OO

Now suppose that f(O) is of infinite slope. Then

(UQgc)|r−1(V0
Q,Cp (

1
p+1

))
= (h∗Upfc(O))|r−1(V0

Q,Cp (
1
p+1

))
= 0.

Since V0
Q,Cp

is connected and r is finitely presented and etale, the map

r defines a surjection from each connected component of r−1(V0
Q,Cp

)

to V0
Q,Cp

. Since the admissible open subset V0
Q,Cp

( 1
p+1

) is non-empty,

we see that r−1(V0
Q,Cp

( 1
p+1

)) intersects every connected component of

r−1(V0
Q,Cp

). Thus Lemma 4.2 implies UQgc = 0. In particular, if the

point [(A,L)] ∈ Yc,p(OQ̄p
) satisfies Hdgβ(A) = p/(p+1) for any β ∈ BF ,

then for any OF -isomorphism m : D−1
F ⊗ µp ≃ LK , we have

(6.1)
∑

DK∩LK=0

gc(A/D, m̄) = 0,

where the sum is taken over the set of finite flat closed p-cyclic OF -
subgroup schemes D of A[p] satisfying DK ∩ LK = 0.

Lemma 6.2. For any p-cyclic OF -subgroup scheme H of A[p] and any
OF -isomorphism u : D−1

F ⊗ µp → (A[p]/H)K, we have gc(A/H, u) = 0.

Proof. For any p-cyclic OF -subgroup schemeM of A[p], write asM =⊕
p|pMp. Similarly, any OF -closed immersion m : D−1

F ⊗ µp → AK
defines a closed immersion mp : D−1

F /pD−1
F ⊗ µp → A[p]K for any p | p.

By fixing a generator of the principal OF -module D−1
F /pD−1

F and a
primitive p-th root of unity in Q̄p, we identify an OF -closed immersion
m : D−1

F ⊗ µp → AK with an element of A[p](Q̄p). Let P be the set
of maximal ideals of OF dividing p. For any subset S ⊆ P, we put
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Sc = P \ S and

MS =
⊕
p∈S

Mp, MS =
⊕
p∈Sc

Mp.

We define mS and mS similarly. We write Im(m) also as ⟨m⟩.
For any p | p, we fix non-zero elements ep,1 ∈ Hp(Q̄p) and ep,2 ∈

A[p](Q̄p) such that {ep,1, ep,2} forms a basis of the o/p-module A[p](Q̄p).
Put Ip = {ep,1, apep,1 + ep,2 | ap ∈ o/p} and eS,i = (ep,i)p∈S for i = 1, 2.
We claim that, for any element mS of

∏
p∈Sc Ip, we have

(6.2)
∑

DS
K∩⟨mS⟩=0

gc(A/(HS ×DS), eS,2 ×mS) = 0,

where the sum is taken over the set of finite flat closed (
∏

p∈Sc p)-cyclic

OF -subgroup schemes DS of A satisfying DSK ∩ ⟨mS⟩ = 0.
To show the claim, we proceed by induction on ♯S. The case of S = ∅

is (6.1). Suppose that the claim holds for some S ̸= P. Take p ∈ Sc
and put S ′ = S ∪ {p}. Fix mS′ ∈

∏
q∈(S′)c Iq. Taking the sum of (6.2)

over the set {mS = mp ×mS′ | mp ∈ Ip}, we obtain∑
mp∈Ip

∑
Dp,K∩⟨mp⟩=0

∑
DS′

K ∩⟨mS′ ⟩=0

gc(A/(HS×Dp×DS
′
), eS,2 ×mp ×mS′) = 0.

We compute terms in this sum for each Dp.

• If Dp(Q̄p) = (o/p)ep,1 = Hp(Q̄p) and Dp,K ∩ ⟨mp⟩ = 0, then
mp = apep,1 + ep,2 with some ap ∈ o/p. In this case, m̄p is equal
to the image ēp,2 of ep,2.
• If Dp(Q̄p) = (o/p)(apep,1 + ep,2) and Dp,K ∩ ⟨mp⟩ = 0, then we
have either mp = ep,1 or mp = bpep,1 + ep,2 with some bp ̸= ap ∈
o/p. In each case, m̄p is equal to the element ēp,1 or (bp−ap)ēp,1.
We put

sp =
∑

a∈(o/p)×
κ([a])

with the Teichmüller lift [a] ∈ O×
Fp

of a.

Thus the sum of the terms in which Dp’s of the second case appear is
equal to

(1 + sp)
∑

DS′
K ∩⟨mS′ ⟩=0

∑
ap∈o/p

gc(A/(HS × (o/p)(apep,1+ep,2)×DS
′
),

eS,2 × ep,1 ×mS′).
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This equals

(1 + sp)
∑

DS
K∩⟨ep,1×mS′ ⟩=0

gc(A/(HS ×DS), eS,2 × ep,1 ×mS′),

which is zero by the induction hypothesis (6.2). What remains is the
sum of the terms of Dp’s of the first case, which equals

pfp
∑

DS′
K ∩⟨mS′ ⟩=0

gc(A/(HS′ ×DS′
), eS′,2 ×mS′) = 0

and the claim follows. Setting S = P, we obtain gc(A/H, ēP,2) = 0.
For any u as in the lemma, the map up corresponds to apēp,2 for some
ap ∈ (o/p)×. Thus we have

gc(A/H, u) =

∏
p|p

∏
ap∈(o/p)×

κ([ap])

 gc(A/H, ēP,2) = 0

and the lemma follows. □
Consider the admissible open subset of Yc,p defined by

{[(A,H)] | Hdgβ(A) = p/(p+ 1) for any β ∈ BF}
and let V be a non-empty admissible affinoid open subset of it. Note
that the map

W : Yc,p → Yc,p, (A,H) 7→ (A/H, A[p]/H)
is an isomorphism. By Proposition 3.12, we have r−1(W (V)) ⊆ U1.
Consider the base extensions WCp : Yc,p,Cp → Yc,p,Cp and VCp , where
the latter is an admissible affinoid open subset of Yc,p,Cp . By Lemma
6.2, π∗fc(O) vanishes on the subsetW (V)(Q̄p) of the admissible affinoid
open subset WCp(VCp) = W (V)Cp .

Lemma 6.3. Let A be a reduced K-affinoid algebra. Put X = Sp(A),
ACp = A⊗̂KCp and XCp = Sp(ACp). We consider the set X(Q̄p) as a
subset of XCp(Cp) by the natural inclusion Q̄p → Cp. Suppose that an
element f ∈ ACp satisfies f(x) = 0 for any x ∈ X(Q̄p). Then f = 0.

Proof. For any positive rational number ε, we put

Uε = {x ∈ XCp | |f(x)| ≤ ε}.
We can find an element fε ∈ A⊗K Q̄p such that

|(f − fε)(x)| ≤ ε for any x ∈ XCp .

Then we have Uε = {x ∈ XCp | |fε(x)| ≤ ε}. Take a finite extension
L/K satisfying fε ∈ AL := A⊗KL. PutXL = Sp(AL). The assumption
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impliesX(Q̄p) ⊆ Uε, namely |fε(x)| ≤ ε for any x ∈ X(Q̄p). This shows
XL = {x ∈ XL | |fε(x)| ≤ ε}. Since the formation of rational subsets
is compatible with base extensions, we have XCp = Uε for any ε > 0,
which implies f(x) = 0 for any x ∈ XCp . Since XCp is reduced, we
obtain f = 0 and the lemma follows. □

Since the invertible sheaf π∗Ωκ is the base extension to Cp of a sim-
ilar invertible sheaf over K, it is trivialized by the base extension
of an admissible affinoid covering over K. By Lemma 6.3, we have
π∗fc(O)|W (V)Cp = 0. Thus fc(O) vanishes on the admissible open sub-

set π(W (V)Cp) of M̄(µN , c)(
1
p+1

)Cp . By Lemma 4.3, M̄(µN , c)(
1
p+1

)Cp

is connected. By Lemma 4.2, we obtain fc(O) = 0 for any c, which
contradicts the fact that f(O) is normalized. This concludes the proof
of the theorem. □
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[BGR] S. Bosch, U. Güntzer and R. Remmert: Non-Archimedean analysis. A sys-
tematic approach to rigid analytic geometry, Grundlehren der Mathematischen
Wissenschaften 261, Springer-Verlag, Berlin, 1984.

[BLR] S. Bosch, W. Lütkebohmert and M. Raynaud: Formal and rigid geometry
IV. The Reduced Fibre Theorem, Invent. Math. 119 (1995), 361–398.

[Bre] C. Breuil: Integral p-adic Hodge theory, Algebraic geometry 2000, Azumino
(Hotaka), 51–80, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002.

[Buz] K. Buzzard: Eigenvarieties, L-functions and Galois representations, 59–120,
London Math. Soc. Lecture Note Ser. 320, Cambridge Univ. Press, Cambridge,
2007.

[BuC] K. Buzzard and F. Calegari: The 2-adic eigencurve is proper, Doc. Math.
(2006) Extra Vol., 211–232.



104 SHIN HATTORI

[Cal] F. Calegari: The Coleman-Mazur eigencurve is proper at integral weights,
Algebra Number Theory 2 (2008), no. 2, 209–215.

[CM] R. Coleman and B. Mazur: The eigencurve, Galois representations in arith-
metic algebraic geometry (Durham, 1996), 1–113, London Math. Soc. Lecture
Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998.

[CS] R. Coleman and W. Stein: Approximation of eigenforms of infinite slope by
eigenforms of finite slope, Geometric aspects of Dwork theory. Vol. I, II, 437–
449, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

[Con1] B. Conrad: Irreducible components of rigid spaces, Ann. Inst. Fourier
(Grenoble) 49 (1999), no. 2, 473–541.

[Con2] B. Conrad: Modular curves and rigid-analytic spaces, Pure Appl. Math. Q.
2 (2006), no. 1, part 1, 29–110.

[Con3] B. Conrad: Higher-level canonical subgroups in abelian varieties, preprint,
available at http://math.stanford.edu/~conrad/

[deJ] A. J. de Jong: Crystalline Dieudonné module theory via formal and rigid
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