
CANONICAL SUBGROUPS VIA BREUIL-KISIN MODULES

FOR p = 2

SHIN HATTORI

Abstract. Let p be a rational prime and K/Qp be an extension of
complete discrete valuation fields. Let G be a truncated Barsotti-Tate
group of level n, height h and dimension d over OK with 0 < d < h.
In this paper, we prove the existence of higher canonical subgroups
with standard properties for G if the Hasse invariant of G is less than
1/(2pn−1), including the case of p = 2.

1. Introduction

Let p be a rational prime and K/Qp be an extension of complete discrete
valuation fields. Let k be its residue field, π be its uniformizer, e be its
absolute ramification index, K̄ be its algebraic closure and vp be its valuation
extended to K̄ and normalized as vp(p) = 1. We let C denote the completion
of K̄. For any valuation field F (of height one) with valuation vF , we let

OF denote its valuation ring and put m≥i
F = {x ∈ F | vF (x) ≥ i} and

OF,i = OF /m
≥i
F for any positive real number i. We also put ÕK = OK,1

and ÕK̄ = OK̄,1.
One of the key ingredients of the theory of p-adic Siegel modular forms

is the existence theorem of canonical subgroups. Let X be the p-adic com-
pletion of the Siegel modular variety of genus g and level prime to p over
the Witt ring W (k), X be its Raynaud generic fiber, Xord be its ordinary
locus considered as an admissible open of X and A be the universal abelian
scheme over X. Consider the unit component A[pn]0 of the pn-torsion of
A. The rigid-analytic subgroup A[pn]0|Xord is etale locally isomorphic to the
constant group (Z/pnZ)g and it is a lift of the kernel of the n-th iterated
Frobenius of the special fiber of A. Then the theorem asserts that this sub-
group can be extended to a subgroup Cn with the same properties over a
larger rigid-analytic subspace X(r) of X containing Xord. In [9], the author
proved the existence of such a subgroup over the locus of the Hasse invariant
less than 1/(2pn−1) for p ≥ 3. The aim of this paper is to generalize the
result to the case of p = 2.

To state the main theorem, we introduce some notation. For any finite
torsion OK-module M which is isomorphic to OK/(π

r1) ⊕ · · · ⊕ OK/(π
rl),

we define its degree by deg(M) = e−1(r1 + · · · + rl). For any finite flat
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(commutative) group scheme G (resp. Barsotti-Tate group Γ) over OK ,
we let ωG (resp. ωΓ) denote its module of invariant differentials and put
deg(G) = deg(ωG). For any positive rational number i, the Hodge-Tate map
for a finite flat group scheme G over OK killed by pn is defined to be the
natural homomorphism

HTi : G(OK̄) ≃ Hom(G∨ × Spec(OK̄), µpn × Spec(OK̄))→ ωG∨ ⊗OK̄,i

defined by g 7→ g∗(dT/T ), where ∨ means the Cartier dual and µpn =
Spec(OK [T ]/(T pn − 1)) is the group scheme of pn-th roots of unity. We
normalize the upper and the lower ramification subgroups of G to be adapted
to the valuation vp. Namely, writing the affine algebra of G as

OK [T1, . . . , Tr]/(f1, . . . , fs)

and an r-tuple (x1, . . . , xr) ∈ Or
K̄

as x, we put

Gj(OK̄) = G(OK̄) ∩ {x ∈ Or
K̄ | vp(fl(x)) ≥ j for any l}0,

Gi(OK̄) = Ker(G(OK̄)→ G(OK̄,i)),

where (−)0 in the first equality means the geometric connected component
as an affinoid variety over K containing the zero section (see [1, Section

2]). We also put Gj+(OK̄) = ∪j′>jGj
′
(OK̄) for any non-negative rational

number j. The scheme-theoretic closure of Gj(OK̄) in G is denoted by Gj
and define Gj+ and Gi similarly. Finally, for any truncated Barsotti-Tate
group G ([10]) of level n, height h and dimension d over OK with d < h, we
define the Hasse invariant Ha(G) to be the truncated valuation vp(det(V )) ∈
[0, 1] of the determinant of the natural action of the Verschiebung V of

the group scheme G[p]∨ × Spec(ÕK) on the free ÕK-module of finite rank

Lie(G[p]∨ × Spec(ÕK)). Then our main theorem is the following, which is
proved in [9] except the case of p = 2.

Theorem 1.1. Let p be a rational prime and K/Qp be an extension of com-
plete discrete valuation fields. Let G be a truncated Barsotti-Tate group of
level n, height h and dimension d over OK with 0 < d < h and Hasse in-
variant w = Ha(G). If w < 1/(2pn−1), then the upper ramification subgroup
scheme Cn = Gj+ for

pw(pn − 1)/(p− 1)2 ≤ j < p(1− w)/(p− 1)

satisfies Cn(OK̄) ≃ (Z/pnZ)d. Moreover, the group scheme Cn has the fol-
lowing properties:

(a) deg(G/Cn) = w(pn − 1)/(p− 1).
(b) Cn × Spec(OK,1−pn−1w) coincides with the kernel of the n-th iterated

Frobenius of G × Spec(OK,1−pn−1w).

(c) The scheme-theoretic closure of Cn(OK̄)[pi] in Cn coincides with the sub-
group scheme Ci of G[pi] for 1 ≤ i ≤ n− 1.

(d) The subgroup Cn(OK̄) coincides with the kernel of the Hodge-Tate map
HTn−w(pn−1)/(p−1) : G(OK̄)→ ωG∨ ⊗OK̄,n−w(pn−1)/(p−1).



CANONICAL SUBGROUPS FOR p = 2 3

(e) Put C′n = (G∨)j+ for j as above. Then we have the equality Cn(OK̄) =
C′n(OK̄)⊥, where ⊥ means the orthogonal subgroup with respect to the
Cartier pairing

⟨ , ⟩G : G(OK̄)× G∨(OK̄)→ µpn(OK̄).

From Theorem 1.1, we can show the following corollary just as in the
proof of [9, Corollary 1.2].

Corollary 1.2. Let K/Qp be an extension of complete discrete valuation
fields. Let X be an admissible formal scheme over Spf(OK) which is quasi-
compact and G be a truncated Barsotti-Tate group of level n over X of con-
stant height h and dimension d with 0 < d < h. We let X and G denote
the Raynaud generic fibers of the formal schemes X and G, respectively. Let
Gj+ be the family of j-th upper ramification subgroups as in [9, Lemma 4.3].
For any finite extension L/K and x ∈ X(L), we put Gx = G×X,x Spf(OL),
where we let x also denote the map Spf(OL)→ X obtained from x by taking
the scheme-theoretic closure and the normalization. For any non-negative
rational number r, let X(r) be the rigid-analytic subspace of X defined by

X(r)(K̄) = {x ∈ X(K̄) | Ha(Gx) < r}.
Then the rigid-analytic group Gj+|X(r) over X(r) is etale locally isomor-

phic to the constant group (Z/pnZ)d for r = 1/(2pn−1) and j = (2pn−1 −
1)/(2pn−2(p− 1)).

The basic strategy of the proof of the main theorem is the same as in
[9]: we reduce to the case where k is perfect and then switch to a study of
ramification of finite flat group schemes over a complete discrete valuation
ring of equal characteristic p with residue field k. In [9], we carried out
this switching by the ramification correspondence theorem of the author
([8]). The latter theorem is based on a classification of finite flat group
schemes over OK killed by p for p ≥ 3 in terms of ϕ-modules over the formal
power series ring k[[u]], which is due to Breuil ([3], [4]) and Kisin ([11],
[12]). Instead, here we use a similar classification of unipotent finite flat
group schemes also due to Kisin which holds for any p ([13]) to prove a
correspondence result of lower ramification subgroups between mixed and
equal characteristics. We seek the canonical subgroup Cn of the truncated
Barsotti-Tate group G in its upper ramification subgroup schemes and they
depend only on its unit component G0. Moreover, we prove properties of
Cn by studying lower ramification subgroups of the unipotent group scheme
(G0)∨ via Cartier duality. Thus the classification theorem of unipotent group
schemes suffices to prove our existence theorem of canonical subgroups.

2. Classification of unipotent finite flat group schemes

In this and the next section, we assume that the residue field k of K is
perfect. For p ≥ 3, we have a classification theory of Barsotti-Tate groups
and finite flat group schemes over OK due to Breuil ([3], [4]) and Kisin ([11],
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[12]) in terms of so-called Breuil-Kisin modules. Kisin ([13]) also extended
this classification to the case of p = 2 and where groups are connected,
using Zink’s classification of formal Barsotti-Tate groups ([16], [17]). In this
section, we briefly recall this result of Kisin. Since we adopt a contravariant
notation contrary to his, what we describe here is a classification of unipotent
Barsotti-Tate groups and unipotent finite flat group schemes.

Let W = W (k) be the Witt ring of k and ϕ be its natural Frobenius
endomorphism which lifts the p-th power map of k. Natural ϕ-semilinear
Frobenius endomorphisms of various W -algebras are denoted also by ϕ. Let
E(u) ∈ W [u] be the Eisenstein polynomial of π over W . Let us fix once
and for all a system {πn}n≥0 of p-power roots of π in K̄ with π0 = π
and πpn+1 = πn. Put K∞ = ∪n≥0K(πn), S = W [[u]] and S1 = k[[u]]. We
write the ϕ-semilinear continuous ring endomorphisms of the latter two rings
defined by u 7→ up also as ϕ. Then a Kisin module is an S-module M such
that a ϕ-semilinear map ϕM : M → M is given. We write ϕM also as ϕ if
no confusion may occur. We follow the notation of [9, Subsection 2.1]. In

particular, we have categories Mod1,ϕ/S , Mod1,ϕ/S1
, Mod1,ϕ/S∞

of Kisin modules

of E-height ≤ 1 and a category Mod1,ϕ/B for any k[[u]]-algebra B.

Let M be an object of the category Mod1,ϕ/S∞
and put ϕ∗M = S⊗ϕ,S M.

Then the map 1 ⊗ ϕ : ϕ∗M → M is injective and we have a unique map
ψM : M → ϕ∗M satisfying (1 ⊗ ϕ) ◦ ψM = E(u). We say M is V -nilpotent
if the composite

ϕn−1∗(ψM) ◦ ϕn−2∗(ψM) ◦ · · · ◦ ψM : M→ ϕn∗M

factors through the submodule (p, u)ϕn∗M for any sufficiently large n. Simi-

larly, we say an object M of the category Mod1,ϕ/S is topologically V -nilpotent

if the same condition holds. The full subcategories of V -nilpotent (resp.

topologically V -nilpotent) objects are denoted by Mod1,ϕ,V/S1
and Mod1,ϕ,V/S∞

(resp. Mod1,ϕ,V/S ). Note that these notions are called connected and formal

in [13], respectively.
Let S be the p-adic completion of the divided power envelope ofW [u] with

respect to the ideal (E(u)). The ring S has a natural filtration Fil1S induced
by the divided power structure, a ϕ-semilinear Frobenius endomorphism
denoted also by ϕ and a ϕ-semilinear map ϕ1 : Fil1S → S. Then a Breuil
module is an S-module M such that an S-submodule Fil1M containing
(Fil1S)M and a ϕ-semilinear map ϕ1,M : Fil1M→M are given and these
satisfy some compatibility conditions. The map ϕ1,M is also denoted by ϕ1
if there is no risk of confusion. We also have categories of Breuil modules

Mod1,ϕ/S , Mod1,ϕ/S1
and Mod1,ϕ/S∞

(for the definitions, see [8, Subsection 2.1]).

For any object M of these categories, we define a ϕ-semilinear map ϕM :
M → M by ϕM(x) = ϕ1(E(u))−1ϕ1(E(u)x), which we abusively write as
ϕ.
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LetM be an object of the category Mod1,ϕ/S and put ϕ∗M = S ⊗ϕ,SM.

Then the map 1 ⊗ ϕ : ϕ∗M → M is injective and we have a unique map
ψM :M→ ϕ∗M satisfying (1⊗ϕ)◦ψM = p. Then we sayM is topologically
V -nilpotent if the composite

ϕn−1∗(ψM) ◦ ϕn−2∗(ψM) ◦ · · · ◦ ψM :M→ ϕn∗M

factors through the submodule (p,Fil1S)ϕn∗M for any sufficiently large n.
This notion is called S-window overOK in [13] and [16]. The full subcategory

of topologically V -nilpotent objects is denoted by Mod1,ϕ,V/S . For any Kisin

module M, define a Breuil moduleMS(M) = S ⊗ϕ,S M by putting

Fil1MS(M) = Ker(S ⊗ϕ,S M
1⊗ϕ→ S/Fil1S ⊗S M),

ϕ1 : Fil
1MS(M)

1⊗ϕ→ Fil1S ⊗S M
ϕ1⊗1→ MS(M).

This gives exact functors Mod1,ϕ/S∞
→ Mod1,ϕ/S∞

and Mod1,ϕ/S → Mod1,ϕ/S , which

are both denoted byMS(−), and the latter induces a functor Mod1,ϕ,V/S →
Mod1,ϕ,V/S ([13, Proposition 1.2.5]).

We can associate Galois representations to Kisin and Breuil modules.
Consider the ring R = lim←−(ÕK̄ ← ÕK̄ ← · · · ), where the transition maps

are p-th power maps. An element r ∈ R is written as r = (rn)n≥0 with

rn ∈ ÕK̄ , and define r(0) ∈ OC by r(0) = limn→∞ r̂p
n

n , where r̂n is a lift of
rn in OK̄ . Then the ring R is a valuation ring of characteristic p with its

valuation defined by vR(r) = vp(r
(0)) whose fraction field is algebraically

closed, and we put m≥i
R = {r ∈ R | vR(r) ≥ i} and Ri = R/m≥i

R . We
have a natural ring surjection W (R)→ OC which lifts the zeroth projection

pr0 : R→ ÕK̄ . The ring Acrys is the p-adic completion of the divided power
envelope of W (R) with respect to the kernel of this surjection. Thus we
have the induced surjection Acrys → OC. Put π = (π, π1, π2, . . .) ∈ R and
consider the rings W (R) and Acrys as S-algebras by the map u 7→ [π]. In
particular, we consider the ring k[[u]] as a subring of R by the map u 7→ π
and let vR also denote the induced valuation on the former ring, which
satisfies vR(u) = 1/e.

For any objects M of the category Mod1,ϕ/S andM of Mod1,ϕ/S , we associate

to them GK∞-modules

T ∗
S(M) = HomS,ϕ(M,W (R)),

T ∗
crys(M) = HomS,Fil1,ϕ(M, Acrys)

([6, Proposition B1.8.3] and [13, Subsection 1.2.6]). If the S-module M is
free of rank h, then the Zp-module T ∗

S(M) is also free of rank h ([11, Corol-
lary 2.1.4]). We also have a natural injection of GK∞-modules T ∗

S(M) →
T ∗
crys(MS(M)) defined by f 7→ 1 ⊗ (ϕ ◦ f) and this is a bijection if M is

topologically V -nilpotent ([13, Proposition 1.2.7]). Similarly, for any object
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M of the category Mod1,ϕ/S∞
, we have the associated GK∞-module

T ∗
S(M) = HomS,ϕ(M,W (R)⊗Qp/Zp).

Put Sn = Spec(OK,n), Sn = S/pnS and En = Spec(Sn). Let us consider
the big crystalline site CRYS(Sn/En) with the fppf topology and its topos
(Sn/En)CRYS. For any Barsotti-Tate group Γ over OK , we have the con-
travariant Dieudonné crystal D∗(Γ×Sn) = Ext1Sn/En

(Γ×Sn,OSn/En
) (for

the notation, see [2]). We put

D∗(Γ)(S → OK) = lim←−
n

D∗(Γ×Sn)(Sn → OK,n).

This module is considered as an object Mod(Γ) of the category Mod1,ϕ/S with

the natural ϕ-semilinear Frobenius map induced by the Frobenius of Γ×S1

and the filtration defined as the inverse image of the natural inclusion

ωΓ ⊆ lim←−
n

D∗(Γ×Sn)(OK,n → OK,n).

The Acrys-module

D∗(Γ)(Acrys → OC) = lim←−
n

D∗(Γ×Sn)(Acrys/p
nAcrys → OC,n)

also has a ϕ-semilinear Frobenius map and a filtration defined in the same
way. Similarly, for any finite flat group scheme G over OK , the S-module

D∗(G)(S → OK) = lim←−
n

D∗(G ×Sn)(Sn → OK,n)

is endowed with a natural ϕ-semilinear Frobenius map which is induced by
the Frobenius of the group scheme G ×S1 and is also denoted by ϕ, and a
filtration defined by the submodule

Fil1D∗(G)(S → OK) = lim←−
n

Ext1Sn/En
(G ×Sn,JSn/En

)(Sn → OK,n),

where JSn/En
is the canonical divided power ideal sheaf of the structure

sheaf OSn/En
.

We say a Barsotti-Tate group or a finite locally free group scheme is unipo-
tent if its Cartier dual is connected. We let (BT/OK)u (resp. (p-Gr/OK)u)
denote the category of unipotent Barsotti-Tate groups (resp. the category
of unipotent finite flat group schemes killed by some p-power) over OK . If a
Barsotti-Tate group Γ over OK is unipotent, then the object Mod(Γ) is topo-
logically V -nilpotent ([13, Lemma 1.1.3]). Moreover, we have the following
classification theorem of unipotent Barsotti-Tate groups and unipotent finite
flat group schemes, whose second assertion follows from the first assertion
by an argument of taking a resolution ([13, Subsection 1.3]).

Theorem 2.1. (1) ([13], Theorem 1.2.8) There exists an anti-equivalence
of categories

G(−) : Mod1,ϕ,V/S → (BT/OK)u
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with a natural isomorphism Mod(G(M))→MS(M). Moreover, we
also have a natural isomorphism of GK∞-modules εM : Tp(G(M))→
T ∗
crys(MS(M)).

(2) ([13], Theorem 1.3.9) There exists an anti-equivalence of categories

G(−) : Mod1,ϕ,V/S∞
→ (p-Gr/OK)u

with a natural isomorphism of GK∞-modules εM : G(M)(OK̄) →
T ∗
S(M).

□
Let M be an object of the category Mod1,ϕ,V/S . If we identify an element

g ∈ Tp(G(M)) with a homomorphism of Barsotti-Tate groups from Qp/Zp

to G(M) over OC, then by the natural isomorphism Mod(G(M))→MS(M)
the element εM(g) is identified with the induced map

D∗(g) : D∗(G(M))(Acrys → OC)→ D∗(Qp/Zp)(Acrys → OC) = Acrys.

A similar argument as in the proof of [12, Proposition 1.1.11] shows that
for any exact sequence

0→ N→ N′ →M→ 0

of Kisin modules such that N and N′ are objects of the category of Mod1,ϕ/S

and M is of Mod1,ϕ/S∞
, the functor MS(−) induces an exact sequence of

Breuil modules

0→MS(N)→MS(N
′)→MS(M)→ 0.

This and [2, Lemme 4.2.5 (ii)] imply that, for any object M of the category

Mod1,ϕ,V/S∞
, there exists a natural isomorphism of S-modules

D∗(G(M))(S → OK)→MS(M)

which is compatible with Fil1 and ϕ. Then we can show the following lemma
just as in the proof of [9, Lemma 2.4].

Lemma 2.2. (1) Let G be a unipotent truncated Barsotti-Tate group of

level one over OK and M be the corresponding object of Mod1,ϕ,V/S1
via

the anti-equivalence G(−). Then there exist natural isomorphisms of

ÕK-modules

Fil1MS(M)/(Fil1S)MS(M)→ ωG , MS(M)/Fil1MS(M)→ Lie(G∨).

(2) Let G be a unipotent finite flat group scheme over OK killed by p

and M be the corresponding object of the category Mod1,ϕ,V/S1
via the

anti-equivalence G(−). Then there exists a natural isomorphism of

ÕK-modules Fil1MS(M)/(Fil1S)MS(M)→ ωG.

□
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3. Ramification correspondence

Let K be as in the previous section. Recall that, for any k[[u]]-algebra B,

we have an anti-equivalence H(−) from the category Mod1,ϕ/B to a category of

finite locally free group schemes over B whose Verschiebung is the zero map
([7, Théorème 7.4]. See also [8, Subsection 3.2]). Moreover, for B = k[[u]]

and M ∈ Mod1,ϕ,V/S1
, the anti-equivalences G(−) and H(−) are related by the

natural isomorphism εM : G(M)(OK̄) → T ∗
S(M) = H(M)(R) of Theorem

2.1. Consider the lower ramification subgroups of the group scheme H(M)
adapted to the valuation vR. Namely, we define

H(M)i(R) = Ker(H(M)(R)→ H(M)(Ri))

for any positive rational number i. In this section, we prove that the iso-
morphism εM preserves the lower ramification subgroups of both sides. In
[8] where we treated the case of p ≥ 3, we proved this assertion for any finite
flat group scheme killed by p by using an explicit description of the affine
algebra of G(M) due to Breuil ([3]). For the case where group schemes are
unipotent and p ≥ 2, a crystalline method as in [2] is enough to show the
correspondence of lower ramification subgroups, though it seems insufficient
for obtaining a similar description of the affine algebra.

Let i ≤ 1 be a positive rational number and put S̄i = Spec(OK̄,i). We

let RDP
i abusively denote the divided power envelope of the ring R with

respect to the kernel of the natural surjection pr0 : R→ OK̄,i. The induced

surjection RDP
i → OK̄,i is considered as an element of the crystalline site

CRYS(S1/E1) and let this thickening be denoted by Ai. Note that, by

fixing a generator x of the principal ideal m≥i
R , we have an isomorphism of

R-algebras
Rpi[Y1, Y2, . . .]/(Y

p
1 , Y

p
2 , . . .)→ RDP

i

which sends Yl to the pl-th divided power γpl(x). The ring RDP
i is endowed

with the natural filtration defined by the divided power structure and we
have a natural isomorphism Rpi → RDP

i /FilpRDP
i . The ring RDP

1 is written
also as RDP and is naturally identified with the ring Acrys/pAcrys. We also
identify the module of sections D∗(Z/pZ)(Ai) with the ring RDP

i .

Lemma 3.1. Let i ≤ 1 be a positive rational number and G be a unipotent
finite flat group scheme over OK,i killed by p. Then the natural homomor-
phism of abelian groups

G(OK̄,i) = Hom(Z/pZ,G × S̄i)→ HomRDP
i ,ϕ(D

∗(G)(Ai), R
DP
i /FilpRDP

i )

defined by g 7→ D∗(g) and the identification D∗(Z/pZ)(Ai) ≃ RDP
i above is

an injection.

Proof. Note that, for any exact sequence of finite locally free group schemes
over OK̄,i killed by p

0→ H′ → H→ H′′ → 0,
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we have an exact sequence of abelian groups

0→ H′(OK̄,i)→ H(OK̄,i)→ H′′(OK̄,i)

and an exact sequence of ϕ-modules over RDP
i

0→ D∗(H′′)(Ai)→ D∗(H)(Ai)→ D∗(H′)(Ai)→ 0

by [2, Proposition 4.3.1]. Thus, by a dévissage argument, we may assume
that the Verschiebung of the group scheme G is zero. In this case, by [2,
Proposition 4.3.6] there exists a natural isomorphism

D∗(G)(Ai)→ Lie(G∨ × S̄i)⊗OK̄,i,ϕ
RDP

i ,

where the map ϕ : OK̄,i → RDP
i is induced by ϕ : RDP

i → RDP
i . By the

natural isomorphism Rpi → RDP
i /FilpRDP

i , the group on the right-hand side
of the theorem is identified with

HomR,ϕ(Lie(G∨ × S̄i)⊗OK̄,i,ϕ
Rpi,Lie((Z/pZ)∨)⊗OK̄,i,ϕ

Rpi).

Since the map pr0 : R → OK̄,i induces an isomorphism Ri → OK̄,i and the
map ϕ : OK̄,i ≃ Ri → Rpi is also an isomorphism, the claim follows from [7,
Théorème 7.4]. □

Theorem 3.2. For any object M of the category Mod1,ϕ,V/S1
, the natural

isomorphism εM : G(M)(OK̄)→ H(M)(R) induces an isomorphism of lower
ramification subgroups

G(M)i(OK̄)→ H(M)i(R)

for any positive rational number i.

Proof. Put G = G(M). Since the i-th lower ramification subgroups of G
and H(M) vanish for i > 1/(p− 1) ([8, Corollary 3.5 and Remark 3.6]), we
may assume i ≤ 1/(p − 1) ≤ 1. Consider a resolution of G by unipotent
Barsotti-Tate groups

0→ G → Γ1 → Γ2 → 0

and the associated exact sequence of Kisin modules

0→ N2 → N1 →M→ 0.
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Put M = D∗(G)(S → OK) and Ni = D∗(Γi)(S → OK). Then we have a
diagram

Tp(Γ1)
∼ //

��

T ∗
crys(N1)

��

T ∗
S(N1)

∼oo

��
Tp(Γ2)

∼ //

πG

��

T ∗
crys(N2)

πM
��

T ∗
S(N2)

∼oo

πM

��
G(OK̄)

εM

,,//

��

HomS,ϕ(M, RDP)

��

T ∗
S(M)oo

��
G(OK̄,i)

� � // HomS,ϕ(M, RDP
i /FilpRDP

i ) HomS,ϕ(M, Ri),
∼oo

where the left horizontal arrows are induced by g 7→ D∗(g) and the right
horizontal arrows are the maps sending f to 1 ⊗ (ϕ ◦ f). The middle left
vertical arrow πG : Tp(Γ2) → G(OK̄) is defined as follows: For g ∈ Tp(Γ2),
the element pg is contained in the image of Tp(Γ1) = lim←−n

Γ1[p
n](OK̄) and

put pg = h = (hn)n>0. Then the element h1 ∈ Γ1[p](OK̄) is contained in the
subgroup G(OK̄) and the map πG is defined by g 7→ h1. We define the map
πM : T ∗

crys(N2)→ HomS,ϕ(M, RDP) similarly: For any map f : N2 → Acrys,
the map pf induces a map N1 → Acrys. Its composite with the natural map
Acrys → RDP factors throughM and defines the map πM(f) :M→ RDP.
The map πM is defined in the same way. From these definitions, we see that
the diagram is commutative. Note that the bottom right horizontal arrow
is an isomorphism since ϕ : Ri → Rpi is an isomorphism and the bottom left
horizontal arrow is an injection by Lemma 3.1. The upper squares induce
the isomorphism εM : G(OK̄) → T ∗

S(M) = H(M)(R) and we also have
the equality H(M)(Ri) = HomS,ϕ(M, Ri). Thus we obtain a commutative
diagram of abelian groups

G(OK̄) εM

∼ //

��

H(M)(R)

��
G(OK̄,i)

� � // H(M)(Ri),

where the upper horizontal arrow is a bijection and the lower horizontal
arrow is an injection. Hence the theorem follows. □

4. Canonical subgroups

In this section, we prove Theorem 1.1. The proof is a modification of the
argument in [9], where we had to exclude the case of p = 2. A key step is
the following theorem treating the case of level one.
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Theorem 4.1. Let K/Qp be an extension of complete discrete valuation
fields. Let G be a truncated Barsotti-Tate group of level one, height h and
dimension d over OK with 0 < d < h and Hasse invariant w = Ha(G).

(1) Suppose w < (p2 − p− 1)/(p2 − 1) for p ≥ 3 and w < 1/2 for p = 2.

Then the upper ramification subgroup scheme C = Gpw/(p−1)+ is of
order pd. Moreover, the group scheme C has the following properties:
(a) deg(G/C) = w.
(b) C × Spec(OK,1−w) coincides with the kernel of the Frobenius of
G × Spec(OK,1−w).

(2) If w < 1/2, then C coincides with the upper ramification subgroup
scheme Gj+ for pw/(p−1) ≤ j < p(1−w)/(p−1). The group scheme
C also has the following properties:
(c) The subgroup C(OK̄) coincides with the kernel of the Hodge-

Tate map HTb : G(OK̄) → ωG∨ ⊗ OK̄,b for w/(p − 1) < b ≤
(1− w)/(p− 1).

(d) Put C′ = (G∨)j+ for j as above. Then we have the equality
C(OK̄) = C′(OK̄)⊥, where ⊥ means the orthogonal subgroup
with respect to the Cartier pairing ⟨ , ⟩G.

Proof. By a base change argument as in the proof of [9, Theorem 3.2], we
may assume that the residue field k of K is perfect. Let G0 (resp. Get) be
the unit component (resp. the maximal etale quotient) of the group scheme
G, and consider their Cartier duals (G0)∨ and (Get)∨. These four group
schemes are all truncated Barsotti-Tate groups of level one over OK and let
h0 be the height of G0. Then (G0)∨ is a unipotent truncated Barsotti-Tate
group of level one, height h0 and dimension h0−d. If h0 = d, then the group
scheme G is ordinary (namely, (G0)∨ is etale) and the assertions are clear.
Thus we may assume h0 > d.

Let M be the object of the category Mod1,ϕ,V/S1
corresponding to the unipo-

tent group scheme (G0)∨ via the anti-equivalence G(−). Put M1 = M/ueM

and AM1 = (1⊗ϕ)(ϕ∗M1). By the k-algebra isomorphism k[[u]]/(ue)→ ÕK

defined by u 7→ π, we identify both sides of the isomorphism. Then the
modules M1 and AM1 are naturally considered as objects of the category

Mod1,ϕ
/ÕK

and by Lemma 2.2 we can show that there exists a natural iso-

morphism of ÕK-modules Lie(G0) → AM1 as in [9, Subsection 2.3]. Since
Ha(G) = Ha(G∨) and Lie(G) = Lie(G0), we obtain an exact sequence of

ϕ-modules over ÕK

0→ AM1 →M1 →M1/AM1 → 0

which splits as a sequence of ÕK-modules and the equality of truncated
valuation vp(det(ϕAM1)) = w. We choose a basis e1, . . . , eh0 of M such that
the images of e1, . . . , ed form a basis of AM1 and the images of ed+1, . . . , eh0

form a basis of M1/AM1. Define matrices P1, P2, P3, P4 with coefficients in



12 SHIN HATTORI

the ring k[[u]] by P1 ∈Md(k[[u]]) and

ϕM(e1, . . . , eh0) = (e1, . . . , eh0)

(
P1 P2

ueP3 ueP4

)
.

We have the equality vR(det(P1)) = w and thus there exists an element

P̂1 of Md(k[[u]]) satisfying P1P̂1 = P̂1P1 = uewId, where Id is the identity
matrix. Put L = k[[u]]e1 ⊕ · · · ⊕ k[[u]]ed, which we consider as an object of

the category Mod1,ϕ/S1
by putting

ϕL(e1, . . . , ed) = (e1, . . . , ed)P1.

We can lift the modulo ue(1−w) of the above sequence to an exact sequence

of the category Mod1,ϕ/S1

0→ L→M→ N→ 0

as in the proof of [9, Lemma 3.4] and the objects L and N are also contained

in the full subcategory Mod1,ϕ,V/S1
.

Lemma 4.2. The subgroup H(N)(R) coincides with the lower ramification
subgroup H(M)(1−w)/(p−1)(R).

Proof. Let x be an element of the subgroup H(N)(R) ⊆ H(M)(R) and
identify this with a map M → R defined by ei 7→ xi for 1 ≤ i ≤ d and
ed+i 7→ zi for 1 ≤ i ≤ h0 − d. The h0-tuple (x1, . . . , xd, z1, . . . , zh0−d) is a
solution in R with vR(xi) ≥ 1− w of the equation

πew(x1, . . . , xd) = (xp1, . . . , x
p
d)P̂1 − πe(z1, . . . , zh0−d)P3P̂1,

(zp1 , . . . , z
p
h0−d) = (x1, . . . , xd)P2 + πe(z1, . . . , zh0−d)P4.

Then the proof of [9, Lemma 3.5] works verbatim and the lemma follows for
p ≥ 3.

We need a special care for the case of p = 2, as follows. Put ε = 1/2−w.
As in loc. cit., we first show the inequality vR(xi) ≥ 1 for any i. Consider
the sequences {ξn}n and {ζn}n defined by ξ0 = 1/2 + ε, ζ0 = 1/4 + ε/2 and

ξn+1 = min(2ξn, 1 + ζn)− w,
ζn+1 = 2−1min(ξn, 1 + ζn),

which satisfy ξn ≥ 0 and ζn ≥ 0. It is enough to show ξn ≥ 1 for some n.
Suppose on the contrary ξn < 1 for any n. Then we have ζn+1 = ξn/2 and

ξn+1 = min(2ξn − 1/2 + ε, ξn−1/2 + 1/2 + ε).

Each ξn is an increasing function of ε and we may assume ε < 1/6. Then we
have ξ1 = 1/2+3ε. Suppose that the minimum on the right-hand side of the
above equality is obtained by the first term 2ξn−1/2+ε for any n. Then we
have ξn+1 = 1/2+ (2n+2− 1)ε, which contradicts to the assumption ξn < 1.
Let N be the smallest integer such that the minimum is obtained by the
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second term ξN−1/2 + 1/2 + ε. Then we have ξN+1 = 3/4 + (2N−1 + 1/2)ε,
ξN+2 = 3/4 + (2N + 1/2)ε and

ξN+2l+1 = (2l+2 − 1)/2l+2 + (2N−l−1 + 2− 3/2l+1)ε,

ξN+2l+2 = (2l+2 − 1)/2l+2 + (2N−l + 2− 3/2l+1)ε

for any non-negative integer l. However, this sequence satisfies ξN+2l+1 ≥ 1
for sufficiently large l, which is a contradiction and we obtain the inequality
vR(xi) ≥ 1 for any i. Then the rest of the argument of loc. cit. works
verbatim and the lemma follows also for p = 2. □

Hence we see that if w is as in the theorem, the equalities

H(N)(R) = Ker(H(M)(R)→ H(AM1)(Ri)) = H(M)(1−w)/(p−1)(R)

hold for any rational number i satisfying w/(p − 1) < i ≤ 1 − w and these
subgroups are of order ph0−d. In this case, we put b = (1 − w)/(p − 1).
Moreover, we also see that if w < 1/2, then these subgroups coincide with
the subgroup H(M)b(R) for w/(p− 1) < b ≤ (1− w)/(p− 1). By Theorem
3.2, the subgroup scheme G(N) of (G0)∨ is equal to the lower ramification
subgroup scheme ((G0)∨)b for both cases.

Now we define the subgroup scheme C of G0 to be the scheme-theoretic clo-
sure of the orthogonal subgroup ((G0)∨)b(OK̄)⊥ with respect to the Cartier
pairing ⟨ , ⟩G0 . The group scheme C is of order pd. We insert here the
following lemma due to the lack of references.

Lemma 4.3. Let H be a finite flat group scheme over OK and H0 be its
unit component. Then we have Hj = (H0)j for any positive rational number
j.

Proof. Replacing K by a finite extension, we may assume that the maximal
etale quotient Het is a constant group scheme M for some abelian group M .
Then we have an isomorphism of schemes over OK

H0 ×M → H
which induces the natural isomorphism of group schemes H0 × {0} → H0.
Let F j be the functor of the set of geometric connected components of
the j-th tubular neighborhood as in [1, Section 2]. By [1, Lemme 2.1.1], the
functor F j is compatible with products and we have a commutative diagram

H0(OK̄)×M(OK̄) //

��

H(OK̄)

��
F j(H0)×F j(M) // F j(H),

where the vertical arrows are homomorphisms and the horizontal arrows are
bijections preserving zero elements. For j > 0, the natural map M(OK̄)→
F j(M) is an isomorphism and the kernel of the left vertical arrow is the
subgroup (H0)j(OK̄) × {0}. Thus the kernel of the right vertical arrow is
the subgroup (H0)j(OK̄) and the lemma follows. □
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By this lemma and a theorem of Tian and Fargues ([15, Theorem 1.6]
or [5, Proposition 6]), we have the equalities C = (G0)j+ = Gj+ for j =
p/(p− 1)− pb and the first assertions of (1) and (2) hold.

Let us show the assertion (a). From the definition, we see that the group
scheme C is isomorphic to ((G0)∨/G(N))∨ and thus we have the equalities

deg(G/C) = deg((G0)∨/G(N)) = deg(G(L))
= deg(Fil1MS(L)/(Fil

1S)MS(L)),

where the last equality follows from Lemma 2.2. The ÕK-module of the last
term is equal to

SpanÕK
((1⊗ e1, . . . , 1⊗ ed)P̂1u

e(1−w))

and we see that its degree is equal to w.
For the assertion (b), we need the following lemma.

Lemma 4.4. Let i ≤ 1 be a positive rational number and H be a finite
locally free group scheme over OK̄,i killed by p and of order ph. Then the
Verschiebung VH of the group scheme H is zero if and only if the OK̄,i-

module νH∨ = Ext1
S̄i
(H,Ga)S̄i

is locally free of rank h.

Proof. By [2, Proposition 4.3.1], we have an exact sequence of locally free
RDP

i -modules

D∗(H)(Ai)
V→ D∗(H(p))(Ai)→ D∗(Ker(VH))(Ai)→ 0,

where V denotes the induced map D∗(VH). On the other hand, by [2, Propo-
sition 4.3.9], we also have a natural isomorphism of RDP

i -modules

D∗(H(p))(Ai)/V D∗(H)(Ai)→ νH∨ ⊗OK̄,i,ϕ
RDP

i .

Thus the map VH is zero if and only if the natural surjection

D∗(H(p))(Ai)→ D∗(H(p))(Ai)/V D∗(H)(Ai)

is an isomorphism, and it is equivalent to saying that the RDP
i -module

νH∨ ⊗OK̄,i,ϕ
RDP

i is locally free of rank h. Since we have isomorphisms

OK̄,i
ϕ→ Rpi → RDP

i /FilpRDP
i , this holds if and only if the OK̄,i-module νH∨

is locally free of rank h. □

Now we put H = G(L)× S̄i. We have an exact sequence of OK̄,i-modules

ωH → D∗(H)(OK̄,i → OK̄,i)→ νH∨ → 0

for any positive rational number i ≤ 1. Note that the OK̄,i-module νH∨

is the first homology group of the Lie complex of the Cartier dual H∨ ([2,
Subsection 3.2.1]) and thus its formation is compatible with any base change.
Therefore we obtain a natural isomorphism of OK̄,i-modules

(MS(L)/Fil
1MS(L))⊗ÕK

OK̄,i → νH∨ .
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Let us1 , . . . , usd be the elementary divisors of the matrix P1 and put L1 =
L/ueL. Then we have isomorphisms

MS(L)/Fil
1MS(L)

1⊗ϕ→ (1⊗ ϕ)(ϕ∗L1)→ ⊕d
l=1k[[u]]/(u

e−sl).

The equality s1 + · · ·+ sd = ew implies the inequality e(1− w) ≤ e− sl for
any l and we see that the OK̄,i-module νH∨ is free of rank d for i = 1− w.
By Lemma 4.4, the Verschiebung of the group scheme G(L)× S̄1−w is zero
and its Cartier dual C × S̄1−w is killed by the Frobenius. Since the group
scheme C is of order pd, we obtain the assertion (b).

Next we prove the assertion (d). We first show the following lemmas.

Lemma 4.5. Let H be a finite flat group scheme over OK killed by pn.
Then the Cartier pairing

⟨ , ⟩H : H(OK̄)×H∨(OK̄)→ µpn(OK̄)

sends the subset Hi(OK̄) × (H∨)i′(OK̄) into (µpn)i+i′(OK̄) for any positive
rational numbers i and i′.

Proof. Let B and J (resp. B∨ and J∨ ) be the affine algebra and the
augmentation ideal of H (resp. of H∨). Let (h, h∨) be an element of the
subset in the lemma. Note that we have a natural decomposition B =
OK ⊕ J as an OK-module. We identify the element h with an OK-algebra
homomorphism h∗ : B → OK̄ which sends the ideal J intom≥i

K̄
. On the other

hand, the element h∨ can be identified with an OK̄-algebra homomorphism
(h∨)∗ : OK̄ [T ]/(T pn − 1) → B ⊗ OK̄ which sends the element T − 1 into

J ⊗ m≥i′

K̄
. The element ⟨h, h∨⟩H of the group µpn(OK̄) is defined by the

composite h∗◦(h∨)∗ : OK̄ [T ]/(T pn−1)→ OK̄ . Hence the lemma follows. □
Lemma 4.6. Let H be a finite flat group scheme over OK . Then the i-th
lower ramification subgroup scheme Hi is connected for any positive rational
number i.

Proof. We have a commutative diagram

0 // H0(OK̄) // H(OK̄) //

��

Het(OK̄) //

≀
��

0

H(OK̄,i)
// Het(OK̄,i),

where the upper row is exact and the right vertical arrow is an isomorphism.
This implies that the subgroup Hi(OK̄) is contained in H0(OK̄) and the
lemma follows. □

Put D = G(N) = ((G0)∨)b and set D̃ to be the inverse image of D by
the natural epimorphism f∨ : G∨ → (G0)∨. Then, for any x ∈ C(OK̄) and
x∨ ∈ G∨(OK̄), we have the equality of Cartier pairings

⟨x, x∨⟩G = ⟨x, f∨(x∨)⟩G0
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and thus the orthogonal subgroup of C(OK̄) with respect to the Cartier

pairing ⟨ , ⟩G is D̃(OK̄). Moreover, since the group scheme D is connected

by Lemma 4.6, the group scheme D̃, which is an extension of D by the
connected group scheme T = (Get)∨, is also connected and thus it is a
closed subgroup scheme of (G∨)0.

Put D′ = (((G∨)0)∨)b. By definition, the subgroup C′(OK̄) is the or-
thogonal subgroup of D′(OK̄) with respect to the Cartier pairing ⟨ , ⟩(G∨)0 .
To prove the assertion (d), it is enough to show that the Cartier pairing

⟨ , ⟩(G∨)0 kills the subset D̃(OK̄)×D′(OK̄), since both of the group schemes

C′ and D̃ are of order ph−d. For this, first note that the group scheme T is
of multiplicative type and thus it is a closed subgroup scheme of the lower
ramification subgroup scheme ((G∨)0)1/(p−1). Since b > 0, Lemma 4.5 im-
plies that the Cartier pairing ⟨ , ⟩(G∨)0 kills the subset T (OK̄) × D′(OK̄).
Thus we reduce ourselves to showing that the Cartier pairing ⟨ , ⟩(G∨)0/T
kills the subset D(OK̄) × D′(OK̄). Since the lower ramification subgroup
is compatible with subgroups, we have the equalities D = ((G∨)0/T )b and
D′ = (((G∨)0/T )∨)b. Putting b = (1 − w)/(p − 1) and observing the in-
equality 2(1−w)/(p− 1) > 1/(p− 1), the assertion (d) follows from Lemma
4.5.

Finally we show the assertion (c). For simplicity, after replacing G by G∨
we show the assertion for C′. Note that we have shown the equality C′ = D̃.
Now we have a commutative diagram with exact rows

0 // T (OK̄) // D̃(OK̄) //

��

D(OK̄) //

��

0

0 // T (OK̄) // G∨(OK̄) //

��

(G0)∨(OK̄) //

��

0

ωG ⊗OK̄,b
∼ // ωG0 ⊗OK̄,b,

where the lowest vertical arrows are the Hodge-Tate maps HTb and the
lowest horizontal arrow is an isomorphism. The proof of [9, Lemma 2.5] is
valid also for p = 2 and the subgroup D(OK̄) coincides with the kernel of

the lowest right vertical arrow. This implies that the subgroup D̃(OK̄) is
the kernel of the lowest left vertical arrow and the assertion (c) follows. □

Since the arguments in [9, Section 4] work verbatim also for p = 2, The-
orem 1.1 follows from Theorem 4.1.

We can also prove the following result on anti-canonical isogenies for any
p, generalizing [5, Proposition 16]. For a Barsotti-Tate group Γ over OK ,
we define its Hasse invariant Ha(Γ) by Ha(Γ) = Ha(Γ[p]).

Proposition 4.7. Let Γ be a Barsotti-Tate group over OK of height h,
dimension d with 0 < d < h and Hasse invariant w = Ha(Γ). Suppose
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w < 1/2 and let C be the canonical subgroup of Γ[p] as in Theorem 4.1. Let
E be a finite flat closed subgroup scheme of Γ[p] such that the natural map
C(OK̄) ⊕ E(OK̄) → Γ[p](OK̄) is an isomorphism. Then we have the equal-
ity Ha(Γ/E) = p−1Ha(Γ) and the subgroup scheme Γ[p]/E is the canonical
subgroup of (Γ/E)[p].

Proof. Note that the Barsotti-Tate group Γ/E is also of height h and dimen-
sion d. The natural homomorphism C → Γ[p]/E induces an isomorphism be-
tween the generic fibers of both sides. Since the group scheme C is connected,
the connected-etale sequence implies that the group scheme Γ[p]/E is also
connected. Now we claim that the group scheme (Γ[p]/E) × Spec(OK,1−w)
is killed by the Frobenius. For this, by replacing K as in the proof of [9,
Theorem 3.2], we may assume that the residue field k is perfect. Let L and

L′ be the objects of the category Mod1,ϕ,V/S corresponding to the finite flat

unipotent group schemes C∨ and (Γ[p]/E)∨ via the anti-equivalence G(−), re-
spectively. By [14, Corollary 2.2.2], the generic isomorphism (Γ[p]/E)∨ → C∨
corresponds to an injection L → L′. Then the S1-modules ∧dL and ∧dL′

are free of rank one and this injection induces an injection ∧dL → ∧dL′.
Hence we obtain the inequality vu(detϕL′) ≤ vu(detϕL) = ew. As in the
proof of Theorem 4.1 (b), this implies the claim and the group scheme in
the claim coincides with the kernel of the Frobenius of the group scheme
(p−1E/E)× Spec(OK,1−w). Considering the Hasse invariant of the Barsotti-
Tate group (Γ/E)/(Γ[p]/E) ≃ Γ, we have the equality

min{w, 1− w} = min{pHa(Γ/E), 1− w},

from which the equality of the proposition follows.
On the other hand, for any rational number j with pw/(p − 1) < j <

p(1− w)/(p− 1), we have the commutative diagram

C(OK̄)

�� ''OO
OOO

OOO
OOO

O

Γ[p](OK̄) // (Γ[p]/E)(OK̄) // (p−1E/E)(OK̄),

where the oblique arrow is an isomorphism. Since C = Γ[p]j , the func-
toriality of j-th upper ramification subgroups implies that the closed sub-
group scheme Γ[p]/E of p−1E/E is contained in (p−1E/E)j . By the inequality
w/(p−1) < j < p(1−w/p)/(p−1), the latter group scheme is the canonical
subgroup of p−1E/E and its height is equal to d. Thus the group scheme
coincides with the subgroup scheme Γ[p]/E and we conclude the proof of the
proposition. □
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