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Abstract. Let p > 2 be a rational prime, k be a perfect field of char-
acteristic p and K be a finite totally ramified extension of the fraction
field of the Witt ring of k. Let G and H be finite flat commutative group
schemes killed by p over OK and k[[u]], respectively. In this paper, we
show the ramification subgroups of G and H in the sense of Abbes-Saito
are naturally isomorphic to each other when they are associated to the
same Kisin module.

1. Introduction

Let p be a rational prime, k be a perfect field of characteristic p, W =
W (k) be the Witt ring of k and K be a finite totally ramified extension of
Frac(W ) of degree e. Let ϕ denote the Frobenius endomorphism of W . We
fix once and for all an algebraic closure K̄ of K, a uniformizer π of K and a
system of its p-power roots {πn}n∈Z≥0

in K̄ with π0 = π and πn = πp
n+1. Put

Kn = K(πn), K∞ = ∪nKn, GK = Gal(K̄/K) and GK∞ = Gal(K̄/K∞). By
the theory of norm fields ([30]), there exist a complete discrete valuation
field X ≃ k((u)) of characteristic p with residue field k and an isomorphism
of groups

GK∞ ≃ GX = Gal(X sep/X ),
where X sep is a separable closure of X . A striking feature of this isomorphism
is its compatibility with the upper ramification subgroups of both sides up
to a shift by the Herbrand function of K∞/K ([30, Corollaire 3.3.6]).

On the other hand, Breuil ([7]) introduced linear algebraic data over a
ring S, which are now called as Breuil modules, and proved a classification
of finite flat (commutative) group schemes over OK via these data for p > 2.
He ([6], [8]) also simplified this classification by replacing these data by ϕ-
modules over W [[u]], which are referred as Kisin modules since the latter
classification was reproved and investigated further by Kisin ([20], [21]).
Let us consider the case where finite flat group schemes are killed by p. Put
S1 = k[[u]], which is isomorphic to the k-algebra OX . We let ϕ also denote
the absolute Frobenius endomorphism of the ring S1. For a non-negative

integer r, let Modr,ϕ/S1
be the category of free S1-modules M of finite rank
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endowed with a ϕ-semilinear map ϕM : M → M such that the cokernel of
the map 1 ⊗ ϕM : S1 ⊗ϕ,S1 M → M is killed by uer. Then there exists an

anti-equivalence of categories G(−) from Mod1,ϕ/S1
to the category of finite

flat group schemes over OK killed by p. It is well-known that, for any r,

we also have an anti-equivalence H(−) from Modr,ϕ/S1
to a category of finite

flat generically etale group schemes over OX killed by their Verschiebung
([16]). Hence a correspondence between finite flat group schemes over OK

and OX is obtained, and if finite flat group schemes G over OK and H over
OX are in correspondence with each other, then their generic fiber Galois
modules G(OK̄) and H(OX sep) are also in correspondence via the theory of

norm fields. Namely, for an object M of Mod1,ϕ/S1
, we have an isomorphism

of GK∞-modules

G(M)(OK̄)|GK∞ → H(M)(OX sep)

([21, Proposition 1.1.13]). From this, we can show that the Galois mod-
ules G(M)(OK̄) and H(M)(OX sep) have exactly the same greatest upper
ramification jump in the classical sense (see also [1]).

Besides the classical ramification theory of their generic fibers, finite flat
group schemes over a complete discrete valuation ring have their own ram-
ification theory, which was discovered by Abbes-Saito ([3], [4]) and Abbes-
Mokrane ([2]). Such a finite flat group scheme G has filtrations of upper
ramification subgroups {Gj}j∈Q>0 ([2]) and lower ramification subgroups
{Gi}i∈Q≥0

([14], [17]) as in the classical ramification theory of local fields.
For simplicity, let K be a complete discrete valuation field as above and
consider a finite flat group scheme G over OK . Then, using the upper ram-
ification filtration of G, we can bound the classical greatest upper ramifica-
tion jump of the generic fiber GK-module G(OK̄) ([17]) and also describe
completely the semi-simplification of the restriction to the inertia subgroup
of this GK-module ([18]). Moreover, the canonical subgroup of a possibly
higher dimensional abelian scheme A over OK is found in the upper ram-
ification filtration of A[pn] ([2], [28], [29]), while the canonical subgroup is
also found in the Harder-Narasimhan filtration of A[pn] defined by Fargues
([13], [14]).

In this paper, we establish the following correspondence of the ramifica-
tion filtrations between finite flat group schemes over OK and OX which
is similar to that of the classical ramification jumps of their generic fiber
Galois modules stated above.

Theorem 1.1. Let p > 2 be a rational prime and K and X be as before.

Let M be an object of the category Mod1,ϕ/S1
. Then the natural isomorphism

of GK∞-modules G(M)(OK̄)|GK∞ → H(M)(OX sep) induces isomorphisms of
the upper and the lower ramification subgroups

G(M)j(OK̄)|GK∞ → H(M)j(OX sep),

G(M)i(OK̄)|GK∞ → H(M)i(OX sep)
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for any j ∈ Q>0 and i ∈ Q≥0.

This theorem enables us to reduce the study of ramification of finite flat
group schemes over OK killed by p to the case where the base is a complete
discrete valuation ring of equal characteristic. This makes calculations of
ramification of finite flat group schemes over OK , for example as in [18, Sec-
tion 5], much easier. We remark that, for the Harder-Narasimhan filtration,
such a correspondence of filtrations of G(M) and H(M) follows easily from
the definition.

A key idea to prove the theorem is to switch from the upper ramification
filtration to the lower ramification filtration via Cartier duality, which the
author learned from works of Tian ([28]) and Fargues ([14]). Let G be a finite
flat group scheme over OK killed by p and G∨ be its Cartier dual. Then
they showed that the upper ramification subgroup Gj(OK̄) is the orthogonal
subgroup of the lower ramification subgroup (G∨)i(OK̄) for some i via the
Cartier pairing

G(OK̄)× G∨(OK̄)→ Z/pZ(1).
We prove a version of this theorem for the group scheme H(M) over OX .
Since we are in characteristic p, usual Cartier dual does not preserve the
generic etaleness of finite flat group schemes. Instead, we use a duality the-
ory of Liu ([24]) for Kisin modules. This requires us to check compatibilities
of these two duality theories, though it is straightforward to carry out. Thus
we reduce ourselves to proving the correspondence of the lower ramification
subgroups of G(M) and H(M). This is a consequence of the fact that, up to
the base changes from K and X to the extensions generated by p-th roots of
their uniformizers π and u, the schemes G(M) modulo πe and H(M) modulo
ue become isomorphic to each other, not as group schemes but as pointed
schemes. We prove this fact by using Breuil’s explicit computation of the
affine algebra of a finite flat group scheme over OK killed by p in terms
of its corresponding Breuil module ([7, Section 3]), after showing that his
classification of finite flat group schemes is compatible with the base change
from K to Kn.

It should be mentioned that a classification of finite flat group schemes
via Kisin modules is also proved for p = 2 by Kisin ([22]) for the case of
unipotent finite flat group schemes and independently by Kim ([19]), Lau
([23]) and Liu ([26]) for the general case. However, the author does not know
whether a similar correspondence of ramification between characteristic zero
and two holds for finite flat group schemes with non-trivial multiplicative
parts.

2. Review of Cartier duality theory for Kisin modules

Let p > 2 be a rational prime and K be a complete discrete valuation
field of mixed characteristic (0, p) with perfect residue field k, as in Section
1. It is well-known that finite flat group schemes over OK killed by some
p-power are classified by linear algebraic data, Breuil modules ([7]) or Kisin
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modules ([6], [8], [20], [21]). For these data, corresponding notions of duality
to Cartier duality for finite flat group schemes are introduced by Caruso and
Liu ([9], [10], [11], [24]), which play key roles in the integral p-adic Hodge
theory. In this section, we recall the definitions of these data and the theory
of Cartier duality for Kisin modules.

2.1. Breuil and Kisin modules. Let E(u) ∈W [u] be the Eisenstein poly-
nomial of the uniformizer π over W . Put F (u) = p−1(ue − E(u)). This
defines units in the rings S = W [[u]] and S1 = k[[u]]. The ϕ-semilinear
continuous ring endomorphisms of these rings defined by u 7→ up are also
denoted by ϕ. Let r be a non-negative integer. Then a Kisin module over
S of E-height ≤ r is an S-module M endowed with a ϕ-semilinear map
ϕM : M →M such that the cokernel of the map 1 ⊗ ϕM : S ⊗ϕ,S M →M
is killed by E(u)r. We write ϕM also as ϕ if there is no risk of confusion.
A morphism of Kisin modules over S is an S-linear map which is compat-
ible with ϕ’s of the source and the target. The Kisin modules over S of
E-height ≤ r form a category with an obvious notion of exact sequences.

We let Modr,ϕ/S1
(resp. Modr,ϕ/S) denote its full subcategory consisting of M

which is free of finite rank over S1 (resp. S). We also let Modr,ϕ/S∞
denote

its full subcategory consisting of M such that M is a finite S-module which
is p-power torsion and u-torsion free.

The categories of Kisin modules have a natural duality theory ([11, Sub-

section 2.4]). For an object M of the category Modr,ϕ/S∞
, we let M∨ denote

its dual object as in loc. cit.. We give here an explicit description of the

duality theory of the category Modr,ϕ/S1
for the convenience of the reader.

Let M be an object of this category. By definition, the S1-module M∨ is
HomS(M,S1). Choose a basis e1, . . . , ed of the free S1-module M and let
e∨1 , . . . , e

∨
d denote its dual basis. Define a matrix A ∈Md(S1) by

ϕM(e1, . . . , ed) = (e1, . . . , ed)A.

Put c0 = p−1E(0) ∈ W×. Then the ϕ-semilinear map ϕM∨ : M∨ → M∨ is
given by

ϕM∨(e∨1 , . . . , e
∨
d ) = (e∨1 , . . . , e

∨
d )(E(u)/c0)

r(tA)−1.

For r < p − 1, we also have categories Modr,ϕ/S1
, Modr,ϕ/S∞

and Modr,ϕ/S of

Breuil modules defined as follows. Let S be the p-adic completion of the
divided power envelope W [u]DP of W [u] with respect to the ideal (E(u))
and the compatibility condition with the canonical divided power struc-
ture on pW . The ring S has a natural filtration FiliS defined as the clo-
sure in S of the ideal generated by E(u)j/j! for integers j ≥ i. The ϕ-
semilinear continuous ring endomorphism of S defined by u 7→ up is also
denoted by ϕ. For 0 ≤ i ≤ p − 1, we have ϕ(FiliS) ⊆ piS and put
ϕi = p−iϕ|FiliS . These filtration and ϕi’s induce a similar structure on

the ring Sn = S/pnS. Put c = ϕ1(E(u)) ∈ S×. Then we let ′Modr,ϕ/S de-

note the category of S-modules M endowed with an S-submodule FilrM



RAMIFICATION CORRESPONDENCE OF FINITE FLAT GROUP SCHEMES 5

containing (FilrS)M and a ϕ-semilinear map ϕr,M : FilrM→M satisfying
ϕr,M(srm) = c−rϕr(sr)ϕr,M(E(u)rm) for any sr ∈ FilrS and m ∈ M. A
morphism of this category is defined to be a homomorphism of S-modules
compatible with Filr’s and ϕr’s. We drop the subscript M of ϕr,M if no

confusion may occur. The category ′Modr,ϕ/S has an obvious notion of exact

sequences. Its full subcategory consisting of M such that M is a free S1-
module of finite rank and the image ϕr,M(FilrM) generates the S-module

M is denoted by Modr,ϕ/S1
. We let Modr,ϕ/S∞

denote the smallest full sub-

category of ′Modr,ϕ/S containing Modr,ϕ/S1
and stable under extensions, and

Modr,ϕ/S denote the full subcategory consisting of M such that M is a free

S-module of finite rank, the S-module M/FilrM is p-torsion free and the
image ϕr,M(FilrM) generates the S-moduleM.

The categories Modr,ϕ/S∞
and Modr,ϕ/S∞

for r < p− 1 are in fact equivalent.

We define an exact functorMS : Modr,ϕ/S∞
→ Modr,ϕ/S∞

by puttingMS(M) =

S ⊗ϕ,S M with

FilrMS(M) = Ker(S ⊗ϕ,S M
1⊗ϕ→ (S/FilrS)⊗S M),

ϕr : Fil
rMS(M)

1⊗ϕ→ FilrS ⊗S M
ϕr⊗1→ S ⊗ϕ,S M =MS(M).

Then the functorMS is an equivalence of categories ([11, Theorem 2.3.1]).

Similarly, we have an equivalence of categories Modr,ϕ/S → Modr,ϕ/S ([11, The-

orem 2.2.1]), which is denoted also byMS.

2.2. The associated Galois representations and duality. Next we re-
call constructions of the associated Galois representations to Breuil and
Kisin modules and their duality theories. Let vK be the valuation on K
which is normalized as vK(π) = 1 and we extend it naturally to K̄. Set

ÕK̄ = OK̄/pOK̄ and C to be the completion of K̄. Consider the ring

R = lim←−(ÕK̄ ← ÕK̄ ← · · · ),
where the transition maps are defined by x 7→ xp. For an element x =

(x0, x1, . . .) ∈ R with xi ∈ ÕK̄ , we put x(m) = limn→∞ x̂p
n

n+m ∈ OC, where
x̂i is a lift of xi in OK̄ . This is independent of the choice of lifts. Then
the ring R is a complete valuation ring of characteristic p with valuation
vR(x) = vK(x(0)). We put m≥i

R = {x ∈ R | vR(x) ≥ i} and similarly for

m>i
R . Define an element π of R by π = (π, π1, π2, . . .), where we abusively

write πn also for its image in ÕK̄ . TheW -algebras R andW (R) have natural
S-algebra structures defined by the continuous mapS→W (R) which sends
u to the Teichmüller lift [π] of the element π. Note that the identification
GK∞ ≃ GX stated in Section 1 is given by the action of GK∞ on the ring R
and the inclusion k[[u]]→ R defined by u 7→ π ([8, Subsection 3.3]).

We set OE to be the p-adic completion of S[1/u] and put E = Frac(OE).
We extend the inclusionS→W (R) to an inclusion OE →W (Frac(R)). The
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maximal unramified extension of E in the field W (Frac(R))[1/p] is denoted

by Eur and its closure in the same field by Êur. We put Sur = OÊur ∩W (R)
inside the ring W (Frac(R)). The Galois group GK∞ acts naturally on the

S-algebra Sur. For an object M ∈ Modr,ϕ/S∞
, its associated GK∞-module

T ∗
S(M) is by definition

T ∗
S(M) = HomS,ϕ(M,Qp/Zp ⊗Sur).

If the S-module M is killed by pn, then we have a natural identification
T ∗
S(M) ≃ HomS,ϕ(M,Wn(R)) ([15, Proposition 1.8.3]). Similarly, for an

object M of the category Modr,ϕ/S, its associated GK∞-module is defined as

T ∗
S(M) = HomS,ϕ(M,Sur).

Consider the natural W -algebra surjection θ : W (R)→ OC defined by

θ((z0, z1, . . .)) =

∞∑
i=0

piz
(i)
i ,

where zi is an element of R. The p-adic completion of the divided power
envelope of W (R) with respect to the ideal Ker(θ) is denoted by Acrys. The
ring Acrys has a Frobenius endomorphism ϕ and a GK-action induced by
those of R, and also a filtration induced by the divided power structure.
The W -algebra homomorphism W [u] → W (R) defined by u 7→ [π] induces
a map S → Acrys, by which we consider the ring Acrys as an S-algebra. For

0 ≤ r ≤ p− 2, the ring Acrys has a natural structure as an object of ′Modr,ϕ/S
by putting ϕr = p−rϕ|FilrAcrys .

LetM be an object of Modr,ϕ/S∞
. Then we also have the associated GK∞-

module
T ∗
crys(M) = HomS,Filr,ϕr(M,Qp/Zp ⊗Acrys).

IfM is killed by p, then we have a natural identification

T ∗
crys(M) ≃ HomS,Filr,ϕr(M, RDP),

where RDP is the divided power envelope of R with respect to the ideal m≥e
R

and we identify this ring with Acrys/pAcrys. Similarly, for an object M of

the category Modr,ϕ/S , we put

T ∗
crys(M) = HomS,Filr,ϕr(M, Acrys).

The functors T ∗
S and T ∗

crys from Modr,ϕ/S∞
and Modr,ϕ/S∞

to the category of

GK∞-modules are exact. For an object M of Modr,ϕ/S1
, we have the equality

dimFp(T
∗
S(M)) = rankS1(M) and a similar assertion also holds for T ∗

crys.

Then, for an object M of the category Modr,ϕ/S∞
or Modr,ϕ/S, we have an

isomorphism of GK∞-modules

T ∗
S(M)→ T ∗

crys(MS(M))

defined by f 7→ (s⊗m 7→ sϕ(f(m))) ([25, Lemma 3.3.4]).
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To describe the duality theory for T ∗
S(M), let us also fix a system {ζpn}n∈Z≥0

of p-power roots of unity in K̄ such that ζ1 = 1, ζp ̸= 1 and ζpn = ζp
pn+1 ,

and set an element ε ∈ R to be ε = (1, ζp, ζp2 , . . .) with an abusive notation
as before. Define an element t of Acrys by

t = log([ε]) =
∞∑
i=1

(−1)i−1 ([ε]− 1)i

i
.

Put c0 = p−1E(0) ∈W× and

λ =
∞∏
i=1

ϕi(E(u)/E(0)) ∈ S×.

Let S(r) = Se be the object of the category Mod1,ϕ/S of rank one with a basis

e satisfying ϕ(e) = (E(u)/c0)
re. Similarly, we define an object S(r) of the

category Mod1,ϕ/S of rank one by S(r) = Se = FilrS(r) and ϕr(e) = e. Then

the Breuil module MS(S(r)) is isomorphic to S(r) via the multiplication
by λ−r. Thus we have isomorphisms of GK∞-modules

T ∗
S(S(r))→ T ∗

crys(MS(S(r)))→ T ∗
crys(S(r)) = Zp(e 7→ tr).

Their composite is given by f 7→ (e 7→ λrϕ(f(e))). Set an element t ∈ Acrys

to be

t = (
E(u)

c0
)−1λ−1t.

Then the element t is contained in the subring Sur ([24, Subsection 3.2]).

Let M be an object of the category Modr,ϕ/S and M∨ be its dual object.

Then as in [11, Subsection 2.4], the evaluation map M×M∨ → S(r) induces
a natural perfect pairing of GK∞-modules

⟨ , ⟩M : T ∗
S(M)× T ∗

S(M
∨)→ T ∗

S(S(r)) ≃ Zpt
r ⊆ Sur,

which gives an isomorphism of GK∞-modules

T ∗
S(M

∨)→ HomZp(T
∗
S(M),Zpt

r).

We also have a similar perfect pairing ⟨ , ⟩M for the category Modr,ϕ/S∞
([11]).

3. Cartier duality for upper and lower ramification subgroups

Let G be a finite flat generically etale (commutative) group scheme over
the ring of integers of a complete discrete valuation field. Abbes-Mokrane
([2]) initiated a study of ramification of G using a ramification theory of
Abbes-Saito ([3], [4]). As in the classical ramification theory of local fields,
G has upper and lower ramification subgroups ([14], [17]). When the base
field is of mixed characteristic, Tian proved that the upper and the lower
ramification subgroups correspond to each other via usual Cartier duality if
G is killed by p ([28]), and Fargues gave a much simpler proof of this theorem
([14]). In this section, after briefly recalling the ramification theory of finite
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flat group schemes, we show a variant of Tian’s theorem for a complete
discrete valuation field of equal characteristic p with perfect residue field,
using the duality techniques presented in the previous section instead of
Cartier duality of finite flat group schemes.

3.1. Ramification theory of finite flat group schemes. In this subsec-
tion, we let K denote a complete discrete valuation field, π a uniformizer
of K, OK the ring of integers and Ksep a separable closure of K. Let vK
be the valuation of K normalized as vK(π) = 1 and extend it naturally to

Ksep. We put m≥i
Ksep = {x ∈ OKsep | vK(x) ≥ i} and similarly for m>i

Ksep .
We also put GK = Gal(Ksep/K).

Let G = Spec(B) be a finite flat generically etale group scheme over OK .
Then G is locally of complete intersection over OK ([7, Proposition 2.2.2])
and we have a natural surjection of GK-modules G(OKsep) → F j(B) for
j ∈ Q>0, where F j(B) is the set of geometric connected components of the
j-th tubular neighborhood of B with a group structure induced by that of G
([2, Subsection 2.3]). We define the j-th upper ramification subgroup Gj of
G for j ∈ Q>0 to be the scheme-theoretic closure in G of (the finite subgroup
scheme of G × Spec(K) associated to) the kernel of this surjection. On the
other hand, for i ∈ Q≥0, the scheme-theoretic closure in G of the kernel of

the natural homomorphism G(OKsep) → G(OKsep/m≥i
Ksep) is denoted by Gi

and called the i-th lower ramification subgroup of G. In particular, we have
the equality

Gi(OKsep) = Ker(G(OKsep)→ G(OKsep/m≥i
Ksep)).

We also put

Gj+(OKsep) =
∪
j′>j

Gj′(OKsep), Gi+(OKsep) =
∪
i′>i

Gi′(OKsep)

and set Gj+ and Gi+ to be their scheme-theoretic closures in G, respectively.
As in the classical case, the upper (resp. lower) ramification subgroups

are compatible with quotients (resp. subgroups). Namely, for a faithfully
flat homomorphism G → G′′ of finite flat group schemes over OK , the image
of Gj(OKsep) in G′′(OKsep) coincides with (G′′)j(OKsep) ([2, Lemme 2.3.2]).
From the definition, we also see that for a closed immersion G′ → G of
finite flat group schemes over OK , the subgroup G′(OKsep) ∩ Gi(OKsep) co-
incides with (G′)i(OKsep). In addition, for a finite extension L/K of relative
ramification index e′, we have natural isomorphisms

(OL ×OK
G)je′ → OL ×OK

Gj , (OL ×OK
G)ie′ → OL ×OK

Gi

of finite flat group schemes over OL.
Suppose that K is of mixed characteristic (0, p) and G is killed by pn.

Then we have Gj = 0 for j > e(n + 1/(p − 1)), where e is the absolute
ramification index of K ([17, Theorem 7]). Let G∨ be the Cartier dual of G
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and consider the Cartier pairing

⟨ , ⟩G : G(OK̄)× G∨(OK̄)→ Z/pnZ(1).

When G is killed by p, we have the following duality theorem for the upper
and the lower ramification subgroups of G ([28, Theorem 1.6], [14, Proposi-
tion 6]).

Theorem 3.1. Let K be a complete discrete valuation field of mixed charac-
teristic (0, p) with absolute ramification index e and G be a finite flat group
scheme over OK killed by p. For j ≤ pe/(p− 1), we have an equality

Gj(OK̄)⊥ = (G∨)l(j)+(OK̄)

of subgroups of G∨(OK̄), where ⊥ means the orthogonal subgroup with respect
to the pairing ⟨ , ⟩G and l(j) = e/(p− 1)− j/p.

3.2. Kisin modules and finite flat group schemes of equal charac-
teristic. Consider the complete discrete valuation field X = k((u)) with
uniformizer u and perfect residue field k. We embed OX = S1 = k[[u]] into
R by u 7→ π as before. Then R is the completion of the ring of integers of
an algebraic closure of X . We let X sep denote the separable closure of X in
Frac(R).

Let Y be a finite extension of X in Frac(R) of relative ramification index
e′ and let ϕ also denote the absolute Frobenius endomorphism of Y. We

identify OY with l[[v]] for a finite extension l of k. Define a category Modr,ϕ/OY
to be the category of free OY -modules N of finite rank endowed with a ϕ-
semilinear map ϕN : N → N such that the cokernel of the map 1 ⊗ ϕN :
OY ⊗ϕ,OY N→ N is killed by uer.

For an object M of Modr,ϕ/OX
= Modr,ϕ/S1

, we consider the OY -module

OY⊗OX M with the ϕ-semilinear map ϕ⊗ϕM as an object of Modr,ϕ/OY
. This

defines a base change functor OY ⊗OX − : Modr,ϕ/S1
→ Modr,ϕ/OY

. We also

have a dual object N∨ for an object N of the category Modr,ϕ/OY
, which is

defined similarly to the duality theory of Modr,ϕ/S1
. Moreover, for an object

M of Modr,ϕ/S1
, we have a natural isomorphism

OY ⊗OX M∨ → (OY ⊗OX M)∨

of Modr,ϕ/OY
, by which we identify both sides.

For a finite flat group scheme H over a base scheme of characteristic
p, we let FH and VH denote the Frobenius and the Verschiebung of H,
respectively. We say that a finite flat group scheme H over OY is v-height
≤ s if its Verschiebung VH is zero and the cokernel of the natural map

VH∨ : OY ⊗ϕ,OY Lie(H∨)→ Lie(H∨)



10 SHIN HATTORI

is killed by vs. The category of finite flat group schemes over OY of v-height

≤ s is denoted by C≤s
OY

. Then we have an anti-equivalence of categories

HY(−) : Modr,ϕ/OY
→ C≤ee′r

OY

([16, Théorème 7.4]). The group scheme HY(N) is defined as a functor over
OY by

A 7→ HomOY ,ϕ(N,A),

where we consider an OY -algebra A as a ϕ-module over OY with the absolute
Frobenius endomorphism of A. If we choose a basis e1, . . . , ed of N and take
a matrix A = (ai,j) ∈Md(OY) satisfying

ϕ(e1, . . . , ed) = (e1, . . . , ed)A,

then HY(N) is isomorphic to the additive group scheme over OY defined by
the system of equations

Xp
i −

d∑
j=1

aj,iXj = 0 (i = 1, . . . , d).

For an object M of Modr,ϕ/S1
, we also have a natural isomorphism

OY ×OX HX (M)→ HY(OY ⊗OX M)

of finite flat group schemes over OY . We drop the subscript Y of HY if there
is no risk of confusion.

The following lemma is a variant of the scheme-theoretic closure for finite
flat group schemes.

Lemma 3.2. Let M be an object of Modr,ϕ/S1
and L be a GX -stable subgroup

of T ∗
S(M). Then there exists a surjection M → M′′ of Modr,ϕ/S1

such that

the image of the corresponding injection T ∗
S(M

′′) → T ∗
S(M) coincides with

L. A surjection M →M′′ satisfying this property is unique up to a unique
isomorphism.

Proof. This follows from [24, Lemma 2.3.6]. Indeed, let Modϕ/X denote the

category of etale ϕ-modules over X ([15, Section A1]). We have an equiv-

alence of categories T∗ from Modϕ/X to the category of finite GX -modules

over Fp defined by T∗(M) = (X sep ⊗X M)ϕ=1. For an object M of Modϕ/X ,

we also put T ∗(M) = HomX ,ϕ(M,X sep). Then the natural map

T∗(M)→ HomFp(T
∗(M),Fp)

is an isomorphism of GX -modules. Set M = X ⊗S1 M. We have a natural
isomorphism of GX -modules T ∗

S(M) → T ∗(M) and let M ′′ be the quotient
of M corresponding to the surjection

T∗(M)→ HomFp(T
∗(M),Fp)→ HomFp(L,Fp).
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Then the Kisin module M′′ = Im(M → M → M ′′) satisfies the desired
property. □

Since the finite flat group scheme H(M) is generically etale, the group
H(M)(OX sep) can be identified with the group H(M)(R) and we have the j-
th upper ramification subgroup H(M)j(OX sep) = H(M)j(R) of H(M). We
also have the i-th lower ramification subgroup

H(M)i(OX sep) = Ker(H(M)(OX sep)→ H(M)(OX sep/m≥i
X sep)),

which we identify with

H(M)i(R) = Ker(H(M)(R)→ H(M)(R/m≥i
R ))

by using the injection OX sep/m≥i
X sep → R/m≥i

R . Since H(M)(R) = T ∗
S(M),

the pairing ⟨ , ⟩M of Subsection 2.2 induces a perfect pairing

⟨ , ⟩M : H(M)(R)×H(M∨)(R)→ R.

Then the main theorem of this section is the following.

Theorem 3.3. Let M be an object of Modr,ϕ/S1
. Then we have H(M)j = 0

for j > per/(p− 1). Moreover, for j ≤ per/(p− 1), we have the equality

H(M)j(R)⊥ = H(M∨)lr(j)+(R)

of subgroups of H(M∨)(R), where ⊥ means the orthogonal subgroup with
respect to the pairing ⟨ , ⟩M and lr(j) = er/(p− 1)− j/p.

Proof. We proceed as in the proof of [14, Proposition 6]. Let Y be a finite
separable extension of X in X sep of relative ramification index e′ and put
MY = OY ⊗S1 M. Then we have a commutative diagram

H(M)(R)×H(M∨)(R)

≀
��

≀
��

⟨ , ⟩M // R

HY(MY)(R)×HY(M
∨
Y)(R)

⟨ , ⟩MY

// R,

where ⟨ , ⟩MY is a perfect pairing defined similarly to the pairing ⟨ , ⟩M
and the vertical arrows are isomorphisms. Since H(M∨) is generically etale,
after making a finite separable base change and replacing e by ee′, we may
assume that the GX -action on H(M∨)(R) is trivial.

Let x∨ be an element of H(M∨)(R) and consider the surjection M∨ → N

of the category Modr,ϕ/S1
corresponding to the subspace Fpx

∨ ⊆ H(M∨)(R)

by Lemma 3.2. Then we have the commutative diagram

H(M)(R)×H(M∨)(R)

��

⟨ , ⟩M // R

H(N∨)(R)×H(N)(R)

OO

⟨ , ⟩N
// R.
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Thus, by the compatibility with quotients (resp. subgroups) of the upper
(resp. lower) ramification subgroups, the theorem follows from Lemma 3.4
below. □
Lemma 3.4. Let N be an object of Modr,ϕ/S1

which is free of rank one over

S1. Then we have H(N∨)j(R) = 0 if j > per/(p− 1) and H(N)i(R) = 0 if
i > er/(p− 1). For j ≤ per/(p− 1), the subgroup H(N∨)j(R) is zero if and
only if H(N)lr(j)+(R) = H(N)(R).

Proof. Let n be a basis of N and n∨ be its dual basis of N∨. Put ϕN(n) =
usan with 0 ≤ s ≤ er and a ∈ S×

1 . Then we have ϕN∨(n∨) = uer−sa′n∨

with some a′ ∈ S×
1 . Hence the defining equations of H(N) and H(N∨) are

Xp − usaX = 0 and Xp − uer−sa′X = 0, respectively. By a calculation as
in [17, Section 3], we see that

H(N∨)j(R) =

{
H(N∨)(R) (j ≤ p(er − s)/(p− 1))
0 (j > p(er − s)/(p− 1)),

H(N)i(R) =

{
H(N)(R) (i ≤ s/(p− 1))
0 (i > s/(p− 1))

and the first assertion follows. Moreover, for j ≤ per/(p − 1), we have
lr(j) ≥ 0 and

H(N∨)j(R) = 0⇔ j > p(er − s)/(p− 1)

⇔ lr(j) < s/(p− 1)⇔ H(N)lr(j)+(R) = H(N)(R).

□
By the previous lemma, we also have the following corollary.

Corollary 3.5. Let M be an object of Modr,ϕ/S1
. Then the i-th lower rami-

fication subgroup H(M)i vanishes for i > er/(p− 1).

Proof. As in the proof of Theorem 3.3, we may assume that the GX -module
H(M)(R) is trivial. For i > er/(p − 1), take an element x ∈ H(M)i(R)
and consider the quotient M → N corresponding to the subspace Fpx ⊆
H(M)(R). By Lemma 3.4, we have H(N)i(R) = 0 and thus x = 0. □
Remark 3.6. Let K be a complete discrete valuation field of mixed char-
acteristic (0, p) and G be a finite flat group scheme over OK killed by p.
Then, by using the usual scheme-theoretic closure of finite group schemes,
we can easily see that the i-th lower ramification subgroup Gi vanishes for
i > e/(p− 1), just as in the proof of Corollary 3.5.

4. Comparison of ramification

Let p > 2 be a rational prime and K be a complete discrete valuation
field of mixed characteristic (0, p) with perfect residue field k, as in Section
2. Then it is known that there exists an anti-equivalence G(−) from the cate-

gory Mod1,ϕ/S1
to the category of finite flat group schemes over OK killed by p.
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On the other hand, we also have the anti-equivalenceH(−) : Mod1,ϕ/S1
→ C≤e

OX
defined in Section 3 and an isomorphism of GK∞-modules

εM : G(M)(OK̄)|GK∞ → H(M)(R).

In this section, we prove that this isomorphism is compatible with the upper
and the lower ramification subgroups of both sides. For the proof, after re-
calling the definitions of the anti-equivalence G(−) and the isomorphism εM
([7], [20], [21]), we show that these are compatible with the base changes in-
side K∞/K and dualities on both sides. Then, by the duality theorems pre-
sented in Section 3, we reduce ourselves to comparing the lower ramification
subgroups of both sides, which is achieved by constructing an isomorphism
as pointed schemes between reductions of G(M) and H(M).

4.1. Breuil-Kisin classification. In this subsection, we briefly recall the
classification of finite flat group schemes and p-divisible groups over OK

due to Breuil and Kisin ([6], [7], [8], [20], [21]) and its properties. Their
classification theorem is as follows.

Theorem 4.1. (1) There exists an anti-equivalence of categories G(−)
from Mod1,ϕ/S to the category of p-divisible groups over OK with a

natural isomorphism of GK∞-modules

εM : TpG(M)|GK∞ → T ∗
S(M),

where TpG(M) = lim←−n
G(M)[pn](OK̄) is the p-adic Tate module of

the p-divisible group G(M).

(2) There exists an anti-equivalence of categories G(−) from Mod1,ϕ/S∞
to the category of finite flat group schemes over OK killed by some
p-power with a natural isomorphism of GK∞-modules

εM : G(M)(OK̄)|GK∞ → T ∗
S(M).

(3) Let M be an object of the category Mod1,ϕ/S∞
and take a resolution of

Kisin modules

0→M1
f→M2 →M→ 0,

where Mi is an object of the category Mod1,ϕ/S . Put G = G(M) and

Γi = G(Mi). Then we have an exact sequence of fppf sheaves

0→ G → Γ2
G(f)→ Γ1 → 0

which induces the commutative diagram with exact rows

0 // TpΓ2
//

εM2

��

TpΓ1
//

εM1

��

G(OK̄) //

εM
��

0

0 // T ∗
S(M2) // T ∗

S(M1) // T ∗
S(M) // 0.



14 SHIN HATTORI

We have two definitions of the functor G(−) and the isomorphism εM. One
is putting G(−) = GrB(MS(−)) with the anti-equivalence GrB(−) of [7], as
in [21]. The isomorphism εM is constructed in the proof of [21, Proposition
1.1.13]. Then we can prove Theorem 4.1 (3) by using [11, Proposition 2.1.3
and Theorem 2.3.4]. The other is given in [20], as follows. For a p-divisible
group Γ over OK , set ModK(Γ) to be the section D∗(Γ)(S→OK) of the con-
travariant Dieudonné crystal D∗(Γ) ([5]) on the divided power thickening
S → OK defined by u 7→ π. The S-module ModK(Γ) is endowed with the
natural Frobenius and the Hodge filtration. Then it is shown that this de-
fines an anti-equivalence from the category of p-divisible groups over OK to

the category Mod1,ϕ/S with a quasi-inverse GrK ([20, Proposition A.6]). Put

G(−) = GrK(MS(−)) and define G(−) for the category Mod1,ϕ/S∞
by taking

a resolution as in Theorem 4.1 (3). For an object M of the category Mod1,ϕ/S ,

put M =MS(M) and Γ = G(M). Consider the divided power thickening
Acrys → OC induced by the map θ : W (R) → OC and we let FAcrys de-
note the section of a crystalline sheaf F on this thickening. Then we define
the isomorphism εM in this case to be the composite of the isomorphism
T ∗
S(M) → T ∗

crys(M) and the natural isomorphism εM : TpΓ → T ∗
crys(M)

induced by the isomorphism

TpΓ→ T ∗
crys(D∗(Γ)(S→OK)) = HomS,Fil1,ϕ1

(D∗(Γ)Acrys ,D∗(Qp/Zp)Acrys)

sending a homomorphism g : Qp/Zp → Γ of p-divisible groups over OC to
D∗(g) ([12, Theorem 7]). We can see that these two definitions are naturally
isomorphic to each other.

We need an explicit construction of the isomorphism εM for an objectM of

Mod1,ϕ/S1
([21, Proposition 1.1.13]). Let H1 be the divided power polynomial

ring RDP⟨u−π⟩ over RDP. Consider the n-th projection prn : R→ ÕK̄ . The

map pr0 induces a surjection H1 = RDP⟨u − π⟩ → ÕK̄ defined by u 7→ π,

which is a divided power thickening of ÕK̄ . The map H1 → RDP defined by
u 7→ π induces an isomorphism of GK∞-modules

G(M)(OK̄) = HomS,Fil1,ϕ1
(M,H1)→ HomS,Fil1,ϕ1

(M, RDP)

(see the proof of [7, Lemme 5.3.1]) and the isomorphism εM is the composite
of this map and the natural isomorphism T ∗

S(M)→ T ∗
crys(M).

Let M be an object of Mod1,ϕ/S1
and put M = MS(M). In [7, Section

3], Breuil gave an explicit description of the affine algebra RM of the finite
flat group scheme G(M) = GrB(M) in terms of M. Let e1, . . . , ed be an
adapted basis ofM ([7, Définition 2.1.2.6]) such that

Fil1M = ur1S1e1 ⊕ · · · ⊕ urdS1ed + (FilpS)M,

ϕ1(u
r1e1, . . . , u

rded) = (e1, . . . , ed)G

with a matrix G ∈ GLd(S1) (note that we adopt the transpose of the nota-

tion in [7]). Put S̃1 = k[u]/(uep) and identify this k-algebra with S1/Fil
pS1.
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Assume that the image G̃ of G in GLd(S̃1) is contained in the subgroup
GLd(k[u

p]/(uep)). Consider the ring homomorphisms

k[u]/(uep)→ OK1/pOK1 ← OK1 ,

where the first map is the ϕ−1-semilinear isomorphism defined by u 7→ π1.
We choose a lift Gπ = (ai,j) of G̃ by this map to GLd(OK) using the as-
sumption on G and put

RM =
OK [X1, . . . , Xd](

Xp
1 + πe−r1

F (π) (
∑d

j=1 aj,1Xj), . . . , X
p
d + πe−rd

F (π) (
∑d

j=1 aj,dXj)
) .

Then we have an isomorphism of p-adic formal schemes Spf(RM) ≃ G(M).
The induced map

Ψ : HomOK -alg.(RM,OK̄)→ G(M)(OK̄) = HomS,Fil1,ϕ1
(M,H1)

is defined as follows. Let f : RM → OK̄ be an element of the left-hand

side. Set xi = f(Xi) and x̄i to be its image in ÕK̄ . Let (ÕK̄)DP be the

divided power envelope of the ring ÕK̄ with respect to the ideal m
≥e/p

K̄
.

Then the map pr1 induces an isomorphism pr1 : RDP → (ÕK̄)DP. We let
yi denote the inverse image of x̄i by this isomorphism. Then Ψ(f) is the
unique element of the right-hand side which is congruent to the S-linear
map (ei 7→ yi) modulo FilpH1 (see the proof of [7, Proposition 3.1.5]). From
this description, we see that the zero section of the group scheme Spec(RM)
is defined by X1 = · · · = Xd = 0.

4.2. Compatibility with a base change and Cartier duality. The
functor G(−) is compatible with the base changes inside K∞/K. More-
over, Caruso proved its compatibility with Cartier duality ([10]). In this
subsection, we briefly present a proof of these facts, along with similar com-
patibilities of the isomorphism εM. First we recall the following lemma.

Lemma 4.2. The functor Γ 7→ TpΓ|GK∞ from the category of p-divisible
groups over OK to the category of p-adically continuous GK∞-representations
is fully faithful.

Proof. This follows from Tate’s theorem ([27, Subsection 4.2, Corollary 1])
and [8, Theorem 3.4.3]. □

Let us show the compatibility with the base change. Put S′ = W [[v]] and
let ϕ : S′ → S′ denote the natural ϕ-semilinear map defined by v 7→ vp.
Note that the polynomial E′(v) = E(vp

n
) is the Eisenstein polynomial of

the uniformizer πn ∈ Kn. Consider the categories Mod1,ϕ
/S′

1
, Mod1,ϕ/S′

∞
and

Mod1,ϕ/S′ of Kisin modules over S′ of E′-height ≤ 1. Using the W -algebra

homomorphism S′ → W (R) defined by v 7→ [π1/pn ], we define a similar
functor T ∗

S′ to T ∗
S. The homomorphism of W -algebras S → S′ defined by
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u 7→ vp
n
induces natural functors (−)′ : Mod1,ϕ/S∞

→ Mod1,ϕ/S′
∞

and (−)′ :
Mod1,ϕ/S → Mod1,ϕ/S′ by

M 7→M′ = S′ ⊗S M, ϕM′ = ϕ⊗ ϕM.

Then we have a natural isomorphism of GK∞-modules T ∗
S(M) → T ∗

S′(M′).
On the other hand, these categories classify finite flat group schemes killed
by some p-power and p-divisible groups over OKn by Theorem 4.1, and we
let G′(−) denote the anti-equivalences of the theorem over OKn .

Proposition 4.3. Let M be an object of the category Mod1,ϕ/S (resp. Mod1,ϕ/S∞
)

and M′ be the associated object of the category Mod1,ϕ/S′ (resp. Mod1,ϕ/S′
∞
).

Then there exists a natural isomorphism

G′(M′)→ OKn ×OK
G(M)

of p-divisible groups (resp. finite flat group schemes) over OKn which re-
spectively makes the following diagrams commutative:

TpG(M)|GK∞ ∼
//

≀
��

TpG′(M′)|GK∞

≀
��

T ∗
S(M) ∼

// T ∗
S′(M′),

G(M)(OK̄)|GK∞ ∼
//

≀
��

G′(M′)(OK̄)|GK∞

≀
��

T ∗
S(M) ∼

// T ∗
S′(M′).

Proof. The assertion for the category Mod1,ϕ/S follows from Lemma 4.2, and

this implies the assertion for Mod1,ϕ/S∞
by taking a resolution of M as in

Theorem 4.1 (3). Note that the isomorphism G′(M′) → OKn ×OK
G(M) is

independent of the choice of a resolution ([20, Lemma 2.3.4]). □

Next we show the compatibility with Cartier duality. For the element
t ∈ Sur, we let tn denote its image in the ring Sur

n = Sur/pnSur.

Proposition 4.4. Let M be an object of the category Mod1,ϕ/S (resp. Mod1,ϕ/S∞
)

and M∨ be its dual object. Then there exists a natural isomorphism G(M)∨ →
G(M∨) of p-divisible groups (resp. finite flat group schemes) over OK such
that the induced map

δM : Tp(G(M)∨)→ TpG(M∨)
εM∨→ T ∗

S(M
∨)

(resp. δM : G(M)∨(OK̄)→ G(M∨)(OK̄)
εM∨→ T ∗

S(M
∨))
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respectively makes the following diagrams of GK∞-modules commutative:

TpG(M)× Tp(G(M)∨)

≀εM
��

≀δM
��

// Zp(1)

≀
��

T ∗
S(M)× T ∗

S(M
∨)

⟨ , ⟩M
// Zpt,

G(M)(OK̄)× G(M)∨(OK̄) //

≀εM
��

≀δM
��

Z/pnZ(1)

≀
��

T ∗
S(M)× T ∗

S(M
∨)

⟨ , ⟩M
// (Z/pnZ)tn.

Here the top arrows are the Cartier pairings and the right vertical arrows
are the isomorphisms induced by (ζpn)n∈Z≥0

7→ t.

Proof. For an object M of the category Mod1,ϕ/S , define δM : Tp(G(M)∨) →
T ∗
S(M

∨) to be the unique isomorphism which fits into the commutative
diagram of GK∞-modules

Tp(G(M)∨) //

��

HomZp(Tp(G(M)),Zp(1))

��
T ∗
S(M

∨) // HomZp(T
∗
S(M),Zpt),

where the top (resp. the bottom) arrow is induced by the Cartier pairing
(resp. the pairing ⟨ , ⟩M) and the right vertical arrow is induced by εM
and the natural isomorphism Zp(1) → Zpt as in the proposition. Then the

isomorphism ε−1
M∨ ◦ δM defines the desired isomorphism G(M)∨ → G(M∨)

uniquely by Lemma 4.2.

Next let M be an object of the category Mod1,ϕ/S∞
. Take a resolution

0 → M1 → M2 → M → 0 of M as in Theorem 4.1 (3). Then this induces
a resolution 0 → M∨

2 → M∨
1 → M∨ → 0 by the snake lemma. Put G =

G(M) and Γi = G(Mi). By the snake lemma, we have an epimorphism
w : Γ1[p

n]→ G whose dual map w∨ fits into the commutative diagram with
exact rows

0 // G(M∨) //

��

G(M∨
1 )

//

≀
��

G(M∨
2 )

//

≀
��

0

0 // G∨ w∨
// Γ∨

1
// Γ∨

2
// 0.

Thus we get an isomorphism G(M∨) → G∨, which is independent of the
choice of a resolution ([20, Lemma 2.3.4]). On the other hand, we can check
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the commutativity of the diagram of the Cartier pairings

TpΓ1
//

��

Hom(Tp(Γ
∨
1 ),Zp(1))

��
G(OK̄) // Hom(G∨(OK̄),Z/pnZ(1))

and of a similar diagram for T ∗
S(M). Hence we can prove the compatibility

with the duality pairings by the functoriality of the connecting homomor-
phism of the snake lemma. □

4.3. Proof of the main theorem. Now we prove Theorem 1.1. By The-
orem 3.1, Theorem 3.3 and Proposition 4.4, the assertion for the upper
ramification subgroups is reduced to showing that the isomorphism

δM : G(M)∨(OK̄)→ T ∗
S(M

∨) = H(M∨)(R)

induces an isomorphism of the lower ramification subgroups

(G(M)∨)i(OK̄)→ H(M∨)i(R)

for any i ∈ Q≥0. By the definition of the map δM, it is enough to show the
assertion of Theorem 1.1 for the lower ramification subgroups. Namely, for

an object M of the category Mod1,ϕ/S1
, we reduced ourselves to showing the

natural map

εM : G(M)(OK̄)→ T ∗
S(M) = H(M)(R)

induces an isomorphism of the i-th lower ramification subgroups for any i.
For this, by Proposition 4.3 and replacing K1 by K, we may assume that e
is divisible by p and the entries of a representing matrix of ϕM is contained
in the subring k[[up]] of S1. Note that, by Corollary 3.5 and Remark 3.6,
the i-th lower ramification subgroups of both sides vanish for i > e/(p− 1).
Thus we are reduced to showing the theorem below.

Theorem 4.5. Let M be an object of Mod1,ϕ/S1
. Suppose that e is divisible by

p and the entries of a representing matrix of ϕM is contained in the subring
k[[up]] of S1. Consider the isomorphism of k-algebras k[u]/(ue)→ OK/pOK

defined by u 7→ π, by which we identify both sides. Then there exists an
isomorphism of schemes

ηM : (OK/pOK)×OK
G(M)→ (k[u]/(ue))×k[[u]] H(M)

which preserves the zero section and makes the following diagram commu-
tative for any non-negative rational number i ≤ e:

G(M)(OK̄)
εM //

��

H(M)(R)

��

G(M)(OK̄/m≥i
K̄
) ηM

// H(M)(R/m≥i
R ).
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Here the bottom arrow is induced by the isomorphism pr0 : R/m≥i
R →

OK̄/m≥i
K̄

lying over the isomorphism k[u]/(ue)→ OK/pOK .

Proof. Let m1, . . . ,md be a basis of M such that we can write as

ϕM(m1, . . . ,md) = (m1, . . . ,md)A

for some A ∈ Md(k[[u
p]]). We can take matrices P,Q ∈ GLd(k[[u

p]]) such
that

PAQ = diag(ue−r1 , . . . , ue−rd)

for some non-negative integers ri divisible by p with ri ≤ e. Here diag(a1, . . . , ad)
denotes the diagonal matrix whose (i, i)-th entry is ai. Set a basis n1, . . . , nd

of M to be (n1, . . . , nd) = (m1, . . . ,md)ϕ
−1(Q). Then we have

ϕM(n1, . . . , nd) = (n1, . . . , nd)ϕ
−1(Q)−1P−1diag(ue−r1 , . . . , ue−rd).

Thus the objectM =MS(M) is described as

Fil1M = SpanS(u
r1 ⊗ n1, . . . , u

rd ⊗ nd) + (FilpS)M,

ϕ1(u
r1 ⊗ n1, . . . , u

rd ⊗ nd) = (1⊗ n1, . . . , 1⊗ nd)G,

where G = cQ−1ϕ(P )−1 ∈ GLd(S1) with c = ϕ1(E(u)) as before. Take

lifts P̂ and Q̂ of the matrices P and Q in GLd(W [[up]]), respectively. Put

Ĝ = ϕ(−F (u))Q̂−1ϕ(P̂ )−1 ∈ GLd(W [[up]]). Since we have the equality

c = ϕ(−F (u)) in the ring S̃1, the images of the matrices G and Ĝ in GLd(S̃1)

coincide with each other. We write this image as G̃, which is contained in
the subgroup GLd(k[u

p]/(uep)).
Note that we have a commutative diagram of W -algebras

W [[u]]
u7→π //

��

OK

��
k[[u]] // k[u]/(ue) ∼

// OK/pOK .

Consider the composite map

W [[u]]→ OK/pOK → OK1/pOK1

∼→ k[u]/(uep) = S̃1,

where the last arrow is the ϕ-semilinear isomorphism defined by π1 7→ u.
Then the image of the matrix −F (u)ϕ−1(Q̂)−1P̂−1 by this composite map

coincides with G̃. Let ai,j(u) ∈ W [[u]] be the (i, j)-th entry of this matrix.

From the explicit description of the affine algebra RM of G(M) = GrB(M)
recalled in Subsection 4.1, we see that RM is defined by the system of
equations over OK

Xp
i +

πe−ri

F (π)
(

d∑
j=1

aj,i(π)Xj) (i = 1, . . . , d),
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where ai,j(π) denotes the image of ai,j(u) by the map W [[u]]→ OK defined
as in the above diagram. On the other hand, the defining equations of H(M)
over k[[u]] are

Xp
i +

ue−ri

F (u)
(

d∑
j=1

āj,i(u)Xj) (i = 1, . . . , d),

where āi,j(u) denotes the image of ai,j(u) by the natural map W [[u]] →
k[[u]], and the zero section of H(M) is by definition X1 = · · · = Xd = 0.
This implies that there exists an isomorphism

ηM : (OK/pOK)×OK
G(M)→ (k[u]/(ue))×k[[u]] H(M)

of schemes over the isomorphism k[u]/(ue) ≃ OK/pOK defined by Xi 7→ Xi.
Thus, for i ≤ e, we get a bijection

ηM : G(M)(OK̄/m≥i
K̄
)→ H(M)(R/m≥i

R )

satisfying ηM(0) = 0.
To prove the compatibility of εM and ηM, let us consider the diagram

OK̄
//

��

(ÕK̄)DP RDP
pr1
∼

oo R
ϕoo

��

ÕK̄ R/m≥e
R .

pr0
∼

oo

Let x = (x1, . . . , xd) be an element of Spec(RM)(OK̄) and z = (ni 7→ zi) be
the corresponding element of T ∗

S(M) = HomS,ϕ(M, R) via the composite

Spec(RM)(OK̄) ≃ G(M)(OK̄)
εM→ T ∗

S(M).

Let yi ∈ R be the element such that pr1(yi) coincides with the image x̄i
of xi in ÕK̄ . Then, in the ring RDP, we have ϕ(zi) − yi ∈ FilpRDP. Put

yi = (yi,0, yi,1, . . .) and zi = (zi,0, zi,1, . . .) with yi,j , zi,j ∈ ÕK̄ . Since the
natural map R→ RDP induces an isomorphism

R/m≥ep
R → RDP/FilpRDP

and the kernel of the map pr1 : R→ ÕK̄ coincides with the ideal m≥ep
R , we

have yi,1 = zpi,1 = zi,0. This implies x̄i = zi,0 and the compatibility of εM
and ηM as in the theorem follows. Hence we conclude the proof of Theorem
1.1. □

Note that we have also shown the following corollary.

Corollary 4.6. Let M be an object of the category Mod1,ϕ/S1
. Consider the

k-algebra k[[v]] as a k[[u]]-algebra by the map u 7→ vp. By the k-algebra
isomorphism k[[v]]/(vep) → OK1/pOK1 defined by v 7→ π1, we identify both
sides. Then we have an isomorphism

(OK1/pOK1)×OK
G(M)→ (k[[v]]/(vep))×k[[u]] H(M)
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of schemes over k[[v]]/(vep) ≃ OK1/pOK1 preserving the zero section.

Remark 4.7. Let M be an object of the category Modr,ϕ/S1
. For j ∈ Q>0

(resp. i ∈ Q≥0), let M
j (resp. Mi) be the object which corresponds via the

anti-equivalence H(−) to the closed subgroup scheme H(M)j (resp. H(M)i)
of H(M). These objects define cofiltrations {Mj}j∈Q>0 and {Mi}i∈Q≥0

of

M in the category Modr,ϕ/S1
. Note that, for a finite flat group scheme over a

discrete valuation ring, its finite flat closed subgroup scheme is determined
by the generic fiber. Therefore, for r = 1, Theorem 1.1 and [8, Theorem
3.4.3] imply that the quotient M → Mj (resp. M → Mi) also corresponds
via the anti-equivalence G(−) to the closed subgroup scheme G(M)j (resp.
G(M)i) of G(M). They can be considered as “upper and lower ramification
cofiltrations” of the Kisin module M.

Remark 4.8. The way we have proved Theorem 1.1 is based on switching
from the upper to the lower ramification subgroups via duality. The author
wonders if we can prove the theorem in an “upper” way, namely by con-
structing a natural isomorphism between the sets of geometric connected
components of tubular neighborhoods of G(M) and H(M) using the similar-
ity of their affine algebras, even though they are in different characteristics.
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