
ON LOWER RAMIFICATION SUBGROUPS AND

CANONICAL SUBGROUPS

SHIN HATTORI

Abstract. Let p be a rational prime, k be a perfect field of character-
istic p and K be a finite totally ramified extension of the fraction field
of the Witt ring of k. Let G be a finite flat commutative group scheme
over OK killed by some p-power. In this paper, we prove a description of
ramification subgroups of G via the Breuil-Kisin classification, general-
izing the author’s previous result on the case where G is killed by p ≥ 3.
As an application, we also prove that the higher canonical subgroup
of a level n truncated Barsotti-Tate group G over OK coincides with
lower ramification subgroups of G if the Hodge height of G is less than
(p− 1)/pn, and the existence of a family of higher canonical subgroups
improving a previous result of the author.

1. Introduction

Let p be a rational prime, k be a perfect field of characteristic p and
W = W (k) be the Witt ring of k. The natural Frobenius endomorphism of
the ring W lifting the p-th power Frobenius of k is denoted by φ. Let K be
a finite extension of K0 = Frac(W ) with integer ring OK , uniformizer π and
absolute ramification index e. We fix an algebraic closure K̄ ofK and extend
the valuation vp of K satisfying vp(p) = 1 to K̄. Let ÔK̄ be the completion
of the integer ring OK̄ . We also fix a system {πn}n≥0 of p-power roots of π in
K̄ satisfying π0 = π and πp

n+1 = πn and put K∞ = ∪nK(πn). The absolute
Galois groups of K and K∞ are denoted by GK and GK∞ , respectively.

For any positive rational number i, put m⩾i
K = {x ∈ OK | vp(x) ≥ i} and

OK,i = OK/m⩾i
K . For any valuation ring V of height one, we define m⩾i

V and
Vi similarly. We also put Si = Spec(OK,i), SL,i = Spec(OL,i) for any finite
extension L/K and S̄i = Spec(OK̄,i).

Breuil conjectured a classification of finite flat (commutative) group schemes
over OK killed by some p-power via φ-modules over the formal power series
ring S = W [[u]] and obtained such a classification for the case where groups
are killed by p ≥ 3 ([4]). It is often referred to as the Breuil-Kisin classifi-
cation, since Kisin showed the conjecture for p ≥ 3 ([16]) and for the case
where p = 2 and groups are connected ([17]). The conjecture was proved for
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any p independently by Kim ([15]), Lau ([18]) and Liu ([20]). In particular,

we have an exact category Mod1,φ/S∞
of such φ-modules over S killed by some

p-power (for the definition, see Section 2) and an anti-equivalence of exact
categories M∗(−) from the category of finite flat group schemes over OK

killed by some p-power to the category Mod1,φ/S∞
. Moreover, we can recover

the GK∞-module G(OK̄) via this classification: Let R be the valuation ring
defined as the projective limit of p-th power maps

R = lim←−(OK̄,1 ← OK̄,1 ← · · · )

and π be the element of the ring R defined by π = (π0, π1, . . .). We normalize
the valuation vR by vR(π) = 1/e and define Ri similarly to OK,i, using vR
in place of vp. For any positive integer n, let Wn(R) be the Witt ring of
length n of R, which is considered as an S-algebra by the map u 7→ [π].
The ring Wn(R) admits a natural GK-action. Then, by the Breuil-Kisin
classification, we also have an isomorphism of GK∞-modules

εG : G(OK̄)→ T ∗
S(M

∗(G)) = HomS,φ(M
∗(G),Wn(R)).

On the other hand, for any positive rational number i, we have a finite
flat closed subgroup scheme Gi of G over OK , the i-th lower ramification
subgroup of G, whose index is adapted to the valuation vp. Namely, it
is defined as the unique finite flat closed subgroup scheme of G over OK

satisfying

Gi(OK̄) = Ker(G(OK̄)→ G(OK̄,i)).

The lower ramification subgroups, which are named as such because of their
similarity to the lower numbering ramification groups in algebraic number
theory, have similar properties to the upper ramification subgroups ([1, Sub-
section 2.3]) such as the functoriality and the compatibility with base exten-
sion. While this upper variant is used to construct canonical subgroups of
Abelian varieties ([1]), the lower ramification subgroups have been also stud-
ied and used to construct canonical subgroups ([12], [13], [21]), as explained
later.

If G is killed by p ≥ 3, then [11, Theorem 1.1] shows that the isomorphism
εG induces an isomorphism

Gi(OK̄) ≃ Ker(T ∗
S(M

∗(G))→ HomS,φ(M
∗(G), Ri))

for any i. This description of the lower ramification subgroups of G via
the Breuil-Kisin classification is used in [12] to deduce various properties of
canonical subgroups. In this paper, we prove the following theorem, which
generalizes this description.

Theorem 1.1. Let i be a positive rational number satisfying i ≤ 1 and
WDP

n (R)i be the divided power envelope of the natural surjection

Wn(R)→ OK̄,i, (r0, . . . , rn−1) 7→ pr0(r0) mod m⩾i
K̄
.
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Let In,i be the kernel of the map Wn(R)
φ→ WDP

n (R)i induced by the Frobe-
nius map

φ : (r0, . . . , rn−1) 7→ (rp0, . . . , r
p
n−1).

Let G be a finite flat group scheme over OK killed by pn and M = M∗(G) be
the corresponding object of the category Mod1,φ/S∞

. Then the natural isomor-

phism

εG : G(OK̄)→ T ∗
S(M) = HomS,φ(M,Wn(R))

induces an isomorphism

Gi(OK̄) ≃ HomS,φ(M, In,i).

For the case of n = 1, Theorem 1.1 can be interpreted as a correspondence
of both upper and lower ramification between G and a finite flat group
scheme H(M∗(G)) over k[[u]] (Corollary 3.3), generalizing [11, Theorem 1.1].
Indeed, by a theorem of Tian and Fargues ([22, Theorem 1.6], [8, Proposition
6]), [11, Theorem 3.3] and the compatibility of the Breuil-Kisin classification
with Cartier duality, Theorem 1.1 for n = 1 also implies the assertion of the
corollary on upper ramification subgroups. However, the author does not
know if a description of upper ramification subgroups via the Breuil-Kisin
classification for n > 1 can be obtained from Theorem 1.1, since we do not
have a comparison result between upper and lower ramification subgroups
similar to the theorem of Tian and Fargues for n > 1.

In [11], the proof of Theorem 1.1 for the case where G is killed by p ≥
3 is reduced to showing a congruence of the defining equations of G and
H(M∗(G)) with respect to the identification k[[u]]/(ue) ≃ OK,1 sending u to
π. This congruence is a consequence of an explicit description of the affine
algebra of G in terms of M∗(G) due to Breuil ([3, Proposition 3.1.2]), which
is known only for the case where G is killed by p ≥ 3. Here, instead, we
study a relationship between the groups

G(OK̄,i) and HomS,φ(M
∗(G),Wn(R)/In,i)

by using the faithfulness of the crystalline Dieudonné functor ([6]), from
which Theorem 1.1 follows easily.

As an application of Theorem 1.1 and an explicit description of the ideal
In,i (Lemma 4.3), we also prove the coincidence with canonical subgroups
with lower ramification subgroups, and the existence of a family of canonical
subgroups improving a previous result of the author ([13, Corollary 1.2]).
Before stating the results, we briefly explain a background of this applica-
tion.

Let K/Qp be an extension of complete discrete valuation fields, X be
an admissible formal scheme over Spf(OK) and G be a truncated Barsotti-
Tate group of level n over X. Consider their Raynaud generic fibers X
and G. For any point x ∈ X, the fiber Gx is a truncated Barsotti-Tate
group of level n over the ring of integers of a finite extension of K. If Gx

is ordinary, then the unit component G0
x satisfies G0

x(OK̄) ≃ (Z/pnZ)dimGx
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and its special fiber is equal to the Frobenius kernel of the special fiber of
Gx. We refer to a finite flat closed subgroup scheme of Gx as a canonical
subgroup if it has these properties. What we want to construct here is a
family of canonical subgroups for G: namely, an admissible open subgroup
C of G over a strict neighborhood U of the ordinary locus Xord ⊆ X for
G such that for any x ∈ U , the fiber Cx is the generic fiber of a canonical
subgroup of Gx. The existence of a family of canonical subgroups is one
of the key ingredients in the theory of p-adic Siegel modular forms, and for
such arithmetic applications, we also need a precise understanding of Cx.
This leads us to construct such a family by first constructing and studying
a canonical subgroup of Gx fiberwise, and then patching them into a family.

For each fiber Gx, the method of lifting the conjugate Hodge filtration to
the Breuil-Kisin module ([12], [13]) gives a sharp result on the existence of a
canonical subgroup of Gx, which is stronger than other methods such as the
one using the Hodge-Tate map. Namely, it shows that a canonical subgroup
Cn of Gx exists if the Hodge height of Gx is less than 1/(pn−2(p + 1)) and
Cn has various properties needed for arithmetic applications.

To obtain a family of canonical subgroups (from any of such fiberwise con-
structions), we typically need to show the coincidence of canonical subgroups
with a specific series of subgroups of Gx which can be patched into a family
when varying x, and this step often requires us to restrict to a smaller admis-
sible open subset than the locus of x such that a canonical subgroup of Gx

exists. We have at least three series of such subgroups: Harder-Narasimhan
filtrations, upper ramification subgroups and lower ramification subgroups,
where the former two were mainly used in preceding works (for example [1],
[8], [12], [13], [22], [23]).

For n = 1, the canonical subgroup C1 constructed in [12] and [13] was
shown to coincide with both upper and lower ramification subgroups, and
this again gives a sharp result, namely the existence of a family of canonical
subgroups over the locus of Hodge height less than p/(p+ 1). For n ≥ 2, it
was also shown that Cn coincides with upper ramification subgroups under
a condition on the Hodge height, and this yields a family over the locus
of Hodge height less than 1/(2pn−1) ([12], [13]). A weaker result can be
obtained also by the Harder-Narasimhan method ([8]).

In this paper, to obtain a stronger existence theorem of a family of canon-
ical subgroups, we also prove the coincidence of the canonical subgroup con-
structed in ([12], [13]) with lower ramification subgroups, as follows.

Theorem 1.2. Let K/Qp be an extension of complete discrete valuation
fields. Let G be a truncated Barsotti-Tate group of level n, height h and
dimension d over OK with 0 < d < h and Hodge height w < (p − 1)/pn.
Then the level n canonical subgroup Cn of G ([13, Theorem 1.1]) satisfies the
equalities Cn = Gin = Gi′n for

in = 1/(pn−1(p− 1))− w/(p− 1), i′n = 1/(pn(p− 1)).
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Note that by our assumption and [13, Theorem 1.1], we have an isomor-
phism of groups Cn(OK̄) ≃ (Z/pnZ)d. The fact that the lower ramification
subgroup Gin(OK̄) is isomorphic to (Z/pnZ)d for w < (p−1)/pn was proved
by Rabinoff ([21, Theorem 1.9]) for the case where K/Qp is an extension
of (not necessarily discrete) complete valuation fields of height one, by a
different method. Theorem 1.2 reproves this result of Rabinoff for the case
where the base field K is a complete discrete valuation field, and also shows
that the subgroup considered by Rabinoff coincides with Cn. In particular,
we show that his subgroup has standard properties as a canonical subgroup
as in [13, Theorem 1.1], such as the coincidence with a lift of the Frobenius
kernel.

Using Theorem 1.2, we also prove the following theorem on a family con-
struction of canonical subgroups, which is stronger than [13, Corollary 1.2]
for n ≥ 2.

Theorem 1.3. Let K/Qp be an extension of complete discrete valuation
fields. Let X be an admissible formal scheme over Spf(OK) and G be a
truncated Barsotti-Tate group of level n over X of constant height h and
dimension d with 0 < d < h. We let X and G denote the Raynaud generic
fibers of the formal schemes X and G, respectively. Put rn = (p− 1)/pn and
let X(rn) be the admissible open subset of X defined by

X(rn)(K̄) = {x ∈ X(K̄) | Hdg(Gx) < rn}.

Then there exists an admissible open subgroup Cn of G|X(rn) over X(rn)
such that, etale locally on X(rn), the rigid-analytic group Cn is isomorphic
to the constant group (Z/pnZ)d and, for any finite extension L/K and x ∈
X(L), the fiber (Cn)x coincides with the generic fiber of the level n canonical
subgroup of Gx.

2. The Breuil-Kisin classification

In this section, we briefly recall the classification of finite flat group
schemes and Barsotti-Tate groups over OK due to Kisin ([16], for p ≥ 3
and [17] for p = 2 and connected group schemes) and Kim, Lau and Liu
([15], [18], [20] for p = 2). We basically follow the presentation of [15].

We let the continuous φ-semilinear endomorphism of S defined by u 7→ up

be denoted also by φ. Put Sn = S/pnS. Let E(u) ∈ W [u] be the (monic)
Eisenstein polynomial of the uniformizer π. Then a Kisin module (of E-
height ≤ 1) is anS-module endowed with a φ-semilinear map φM : M→M,
which we also write abusively as φ, such that the cokernel of the map

1⊗ φ : φ∗M = S⊗φ,S M→M

is killed by E(u). The Kisin modules form an exact category in an obvious
manner, and its full subcategory consisting of M such that M is free of finite
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rank over S (resp. free of finite rank over S1 resp. finitely generated, p-

power torsion and u-torsion free) is denoted by Mod1,φ/S (resp. Mod1,φ/S1
resp.

Mod1,φ/S∞
).

We also have categories of Breuil modules Mod1,φ/S , Mod1,φ/S1
and Mod1,φ/S∞

defined as follows (for more precise definitions, see for example [11, Sub-
section 2.1], where the definitions are valid also for p = 2). Let S be the
p-adic completion of the divided power envelope of W [u] with respect to the
ideal (E(u)) and put Sn = S/pnS. The ring S has a natural divided power
ideal Fil1S, a continuous φ-semilinear endomorphism defined by u 7→ up

which is also denoted by φ and a differential operator N : S → S defined by
N(u) = −u. We can also define a φ-semilinear map φ1 = p−1φ : Fil1S → S.
Then a Breuil module (of Hodge-Tate weights in [0, 1]) is an S-module en-
dowed with an S-submodule Fil1M containing (Fil1S)M and a φ-semilinear
map φ1,M : Fil1M → M satisfying some conditions. We also define
φM : M → M by φM(x) = φ1(E(u))−1φ1,M(E(u)x). We drop the sub-
scriptM if there is no risk of confusion. The Breuil modules also form an
exact category. Its full subcategory Mod1,φ/S (resp. Mod1,φ/S1

) is defined to

be the one consisting of M such that M is free of finite rank over S and
M/Fil1M is p-torsion free (resp. M is free of finite rank over S1). The cat-

egory Mod1,φ/S∞
is defined as the smallest full subcategory containing Mod1,φ/S1

and closed under extensions. Then the functor M 7→ S ⊗φ,S M induces
exact functors

Mod1,φ/S → Mod1,φ/S , Mod1,φ/S1
→ Mod1,φ/S1

, Mod1,φ/S∞
→ Mod1,φ/S∞

which are all denoted byMS(−), by putting

Fil1MS(M) = Ker(S ⊗φ,S M
1⊗φ→ S/Fil1S ⊗S M).

Put π = (π0, π1, . . .) ∈ R as before and consider the Witt ring W (R) as
an S-algebra by the map u 7→ [π]. The p-adic period ring Acrys is defined as
the p-adic completion of the divided power envelope of W (R) with respect to
the ideal E(u)W (R) and the ring Acrys[1/p] is denoted by B+

crys. For any r =

(r0, r1, . . .) ∈ R with rl ∈ OK̄,1, choose a lift r̂l of rl in OK̄ and put r(m) =

liml→∞ r̂p
l

l+m ∈ ÔK̄ . Consider the surjection θn : Wn(R) → OK̄,n sending

(r0, r1, . . . , rn−1) to
∑n−1

l=0 plr
(l)
l . Then the quotient Acrys/p

nAcrys can be

identified with the divided power envelope WDP
n (R) of the surjection θn

compatible with the canonical divided power structure on the ideal pWn(R).

For any objectsM ∈ Mod1,φ/S andM∈ Mod1,φ/S , we have the associated GK∞-

modules

T ∗
S(M) = HomS,φ(M,W (R)), T ∗

crys(M) = HomS,φ,Fil1(M, Acrys),

which are related by the injection

T ∗
S(M)→ T ∗

crys(MS(M))
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defined by f 7→ 1⊗ (φ ◦ f). Similarly, for any object M ∈ Mod1,φ/S∞
, we have

the associated GK∞-module

T ∗
S(M) = HomS,φ(M,Qp/Zp ⊗Zp W (R)).

Let D be an admissible filtered φ-module over K such that griDK = 0
unless i = 0, 1. Put SK0 = S ⊗W K0 and D = SK0 ⊗K0 D. The SK0-module
D is endowed with a natural Frobenius map φD : D → D induced by the
Frobenius of D, a derivation ND = N ⊗ 1 : D → D and an SK0-submodule
Fil1D defined as the inverse image of Fil1DK by the map D → D/(Fil1S)D =
DK . Then a strongly divisible lattice in D is an S-submoduleM of D which
satisfies the following:

• M is a free S-module of finite rank and D =M[1/p].
• M is stable under φD and ND.
• φD(Fil

1M) ⊆ pM, where Fil1M =M∩ Fil1D.
We put V ∗

crys(D) = HomSK0
,φ,Fil1(D, B+

crys). If M is a strongly divisible

lattice in D, then the natural GK∞-actions on T ∗
crys(M) and V ∗

crys(D) =
T ∗
crys(M)[1/p] extend to GK-actions and we have a natural isomorphism of

GK-modules

V ∗
crys(D)→ V ∗

crys(D) = HomK0,φ,Fil(D,B+
crys)

([4, Proposition 2.2.5] and [19, Lemma 5.2.1]).
Let (BT/OK) (resp. (p-Gr/OK)) be the exact category of Barsotti-Tate

groups (resp. finite flat group schemes killed by some p-power) over OK .
For any Barsotti-Tate group Γ over OK , we let Tp(Γ) denote its p-adic Tate
module, Vp(Γ) = Qp ⊗Zp Tp(Γ) and D∗(Γ) be the filtered φ-module over K
associated to Vp(Γ). We also let D∗(−) denote the contravariant crystalline
Dieudonné functor ([2]) and consider its module of sections

D∗(Γ)(S → OK) = lim←−
n

D∗(Γ)(Sn → OK,n)

on the divided power thickening S → OK defined by u 7→ π. Note that the
S-module D∗(Γ)(S → OK) can be considered as an object of the category

Mod1,φ/S and also as a strongly divisible lattice in D∗(Γ) = SK0 ⊗K0 D
∗(Γ)

([7, Section 6]). For any finite flat group scheme G over OK killed by some

p-power, we define an object D∗(G)(S → OK) of the category Mod1,φ/S∞
similarly. Then we have the following classification theorem due to Kisin
and Kim, whose first assertion implies the second one by an argument of
taking a resolution.

Theorem 2.1. (1) ([16, Theorem (2.2.7)] for p ≥ 3, [15, Theorem 4.1
and Proposition 4.2] for p = 2) There exists an anti-equivalence of
exact categories

M∗(−) : (BT/OK)→ Mod1,φ/S
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with a natural isomorphism of GK∞-modules

εΓ : Tp(Γ)→ T ∗
S(M

∗(Γ)).

Moreover, the S-moduleMS(M
∗(Γ)) can be considered as a strongly

divisible lattice in D∗(Γ) and we also have a natural isomorphism of
strongly divisible lattices in D∗(Γ)

µΓ :MS(M
∗(Γ))→ D∗(Γ)(S → OK).

(2) ([16, Theorem (2.3.5)] for p ≥ 3, [15, Corollary 4.3] for p = 2) There
exists an anti-equivalence of exact categories

M∗(−) : (p-Gr/OK)→ Mod1,φ/S∞

with a natural isomorphism of GK∞-modules

εG : G(OK̄)→ T ∗
S(M

∗(G)).

Moreover, we also have a natural isomorphism of the category Mod1,φ/S∞

µG :MS(M
∗(G))→ D∗(G)(S → OK).

On the other hand, for any object M of the category Mod1,φ/S or Mod1,φ/S∞
,

we can define a dual object M∨ which is compatible with Cartier duality
of Barsotti-Tate groups or finite flat group schemes. In particular, for any
object M of the category Mod1,φ/S∞

killed by pn, we have a commutative

diagram of GK∞-modules

G(OK̄)× G∨(OK̄) //

≀εG
��

≀δG
��

Z/pnZ(1)

��
T ∗
S(M

∗(G))× T ∗
S(M

∗(G)∨) // Wn(R),

where the upper horizontal arrow is the pairing of Cartier duality, the lower
horizontal arrow is a natural perfect pairing, δG is the composite

G∨(OK̄)
εG∨
≃ T ∗

S(M
∗(G∨)) ≃ T ∗

S(M
∗(G)∨)

and the right vertical arrow is an injection (see [15, Subsection 5.1], and also
[11, Proposition 4.4]).

Let Γ be a Barsotti-Tate group over OK . We consider any element g of
Tp(Γ) as a homomorphism g : Qp/Zp → Γ × Spec(ÔK̄). By evaluating the

map D∗(g) : D∗(Γ× Spec(ÔK̄))→ D∗(Qp/Zp) on the natural divided power

thickening Acrys → ÔK̄ , we obtain a homomorphism of GK∞-modules

Tp(Γ)→ HomS,φ,Fil(D∗(Γ)(Acrys → ÔK̄),D∗(Qp/Zp)(Acrys → ÔK̄))

= T ∗
crys(D∗(Γ)(S → OK)).

This map is an injection, and an isomorphism after inverting p ([7, Theorem
7]). Then we have the following compatibility of this map with the Breuil-
Kisin classification.
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Lemma 2.2. Let Γ be a Barsotti-Tate group over OK . Then the following
diagram is commutative:

Tp(Γ)
∼
εΓ

//
� _

��

TS(M
∗(Γ))� _

��
T ∗
crys(D∗(Γ)(S → OK))

∼
T ∗
crys(µΓ)

// T ∗
crys(MS(M

∗(Γ))).

Proof. Put D = D∗(Γ) and M = M∗(Γ). Consider the diagram

Tp(Γ) //

((QQ
QQQ

QQQ
QQQ

QQQ
T ∗
crys(D∗(Γ)(S → OK))

∼ //

��

T ∗
crys(MS(M))

uujjjj
jjjj

jjjj
jjj

T ∗
S(M)oo

rrffffff
ffffff

ffffff
ffffff

ffffff
fff

V ∗
crys(D),

where the left and the middle triangles are commutative by [15, Theorem
5.6.2] and Theorem 2.1 (1), respectively. The commutativity of the right
one is remarked in [15, footnote 11]. We briefly reproduce a proof of this
remark for the convenience of the reader. We follow the notation of [16]. In
particular, let O = O[0,1) be the ring of rigid-analytic functions on the open
unit disc over K0 and M = O ⊗S M be the associated φ-module over the
ring O. We also put D0 = (O[lu] ⊗K0 D)N=0 = O ⊗K0 D. Then the map
T ∗
S(M)→ V ∗

crys(D) is defined as the composite

HomS,φ(M,W (R))→ HomO,φ(M,B+
crys)

(1⊗φ)∗→ HomO,φ(φ
∗M,B+

crys)

(1⊗ξ)∗→ HomO,φ,Fil(D0, B
+
crys)→ HomK0,φ,Fil(D,B+

crys).

Here the map ξ : D → M is the unique φ-compatible section and the map
1⊗ ξ : D0 = O ⊗K0 D →M factors through the injection

1⊗ φ : φ∗M = O ⊗φ,O M →M

([16, Lemma 1.2.6]). Put DS(M) =MS(M)[1/p] = SK0 ⊗O φ∗M . Then we
have K0 ⊗SK0

DS(M) = K0 ⊗φ,K0 D and the composite

s0 : K0 ⊗φ,K0 D
1⊗φ→ D

ξ→ φ∗M → DS(M)

is the unique φ-compatible section. Using this, we can check that the map

K0⊗φ,K0D
1⊗φ→ D is an isomorphism of filtered φ-modules, where we consider

on the left-hand side the induced filtration by the isomorphism

DS(M)/(Fil1S)DS(M)→ K ⊗φ,K0 D,

and hence we can also check the above remark easily. Since the map εΓ
is defined by identifying the images of Tp(Γ) and T ∗

S(M) in V ∗
crys(D), the

lemma follows. □
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3. lower ramification subgroups

In this section, we prove Theorem 1.1. We begin with the following
lemma, which gives upper bounds of the lower ramification of finite flat
group schemes. For any valuation ring V of height one with valuation v and
any N -tuple x = (x1, . . . , xN ) in V , we put v(x) = minl=1,...,N v(xl).

Lemma 3.1. (1) Let K/Qp be an extension of complete discrete valua-
tion fields and G be a finite flat group scheme over OK killed by some
p-power. Then we have Gi = 0 for any i > 1/(p− 1).

(2) Let K be an extension of complete discrete valuation fields over Qp

or k((u)) with valuation v and G be a finite flat generically etale
group scheme over OK killed by some p-power. Then we have the
following.
(a) Gi = (G0)i for any i > 0.
(b) Gi = 0 for any i > deg(G)/(p− 1).
Here Gi and deg(G) are defined using v. Namely, we extend v to a
separable closure Ksep of K, write as ωG ≃ ⊕lOK/(al) and put

Gi(OKsep) = Ker(G(OKsep)→ G(OKsep,i)), deg(G) =
∑
l

v(al).

Proof. For the assertion (1), we may replace K by its finite extension and
assume G∨(OK̄) = G∨(OK) for an algebraic closure K̄ of K. By Cartier
duality, there exists a generic isomorphism G → G′ = ⊕lµpnl for some nl.
Then G′i = 0 for any i > 1/(p − 1) and the assertion follows from the
commutative diagram

G(OK̄) ∼
//

��

G′(OK̄)

��
G(OK̄,i)

// G′(OK̄,i).

Let us consider the assertion (2). For any i > 0, we have a commutative
diagram

0 // G0(OKsep) // G(OKsep) //

��

Get(OKsep) //

��

0

G(OKsep,i) // Get(OKsep,i),

where the upper row is the connected-etale sequence. Then the right vertical
arrow is an isomorphism and the part (a) follows.

For the part (b), suppose i > deg(G)/(p − 1). By the part (a), we may
assume that G is connected. By [23, Proposition 1.5], we have a presentation
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of the affine algebra OG of G
OG ≃ OK[[X1, . . . , Xd]]/(f1, . . . , fd),

(f1, . . . , fd) ≡ (X1, . . . , Xd)U mod deg p

with some U ∈ Md(OK) satisfying the equality v(det(U)) = deg(G), where
X1 = · · · = Xd = 0 gives the zero section. Let Û be the matrix satisfying
UÛ = det(U)Id, where Id is the identity matrix. For any element x =

(x1, . . . , xd) of G(OKsep), multiplying by Û implies the inequality

v(x) + v(det(U)) ≥ pv(x).

Thus we obtain the inequality v(x) ≤ deg(G)/(p − 1) unless x = 0 and the
assertion follows. □

For any positive rational number i ≤ 1, we let WDP
n (R)i denote the di-

vided power envelope of the composite

θn,i : Wn(R)
θn→ OK̄,n → OK̄,i, (r0, . . . , rn−1) 7→ pr0(r0) mod m⩾i

K̄

compatible with the canonical divided power structure on the ideal pWn(R).

Note that, by fixing a generator pi of the principal ideal m⩾i
R , we have an

isomorphism of R-algebras

(1) Wn(R)[Y1, Y2, . . .]/([p
i]p − pY1, Y

p
1 − pY2, Y

p
2 − pY3, . . .)→WDP

n (R)i

sending Yl to δl([pi]), where we put δ(x) = (p − 1)!γp(x) with the p-th
divided power γp. The surjection θn,i defines a divided power thickening
WDP

n (R)i → OK̄,i over the thickening S → OK , which is denoted by An,i.
Put

In,i = Ker(Wn(R)
φ→WDP

n (R)i).

From the definition, we see the inclusion In,i ⊆ In,i′ for any i > i′.
We show Theorem 1.1 by relating both sides of the isomorphism in its

statement via Breuil modules using the lemma below.

Lemma 3.2. Let i ≤ 1 be a positive rational number and G be a finite flat
group scheme over OK,i killed by pn. Then the map

G(OK̄,i) = HomOK̄,i
(Z/pnZ,G × S̄i)→ Hom(D∗(G)(An,i),D∗(Z/pnZ)(An,i))

= Hom(D∗(G)(An,i),W
DP
n (R)i)

defined by g 7→ D∗(g)(An,i) is an injection.

Proof. Suppose that a homomorphism g : Z/pnZ→ G×S̄i satisfies D∗(g)(An,i) =
0. We can take a finite extension L/K such that the map g is defined over
Spec(OL,i). Then we have the commutative diagram

HomOL,i
(Z/pnZ,G ×SL,i) //

��

Hom(D∗(G ×SL,i)(An,i),D∗(Z/pnZ)(An,i))

≀
��

HomOK̄,i
(Z/pnZ,G × S̄i) // Hom(D∗(G × S̄i)(An,i),D∗(Z/pnZ)(An,i))
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and thus we may assume L = K.
Put Σ = Spec(Zp) and Σn = Spec(Z/pnZ). Consider the big fppf crys-

talline site CRYS(Si/Σ) and its topos (Si/Σ)CRYS ([2]). Note that the
local ring OK,i is a Noetherian complete intersection ring and, for any finite
extension L/K, the ring OL,i is faithfully flat and of relative complete in-
tersection over OK,i. Thus, by [6, Proposition 1.2 and Lemma 4.1], we see
that the composite

HomOK,i
(Z/pnZ,G)→ Hom(Si/Σ)CRYS

(D∗(G),D∗(Z/pnZ))
→ Hom(S̄i/Σ)CRYS

(D∗(G),D∗(Z/pnZ))

is an injection.
Consider the natural morphism of topoi

inCRYS : (S̄i/Σn)CRYS → (S̄i/Σ)CRYS.

Since the crystal D∗(Z/pnZ) is isomorphic to the quotient OS̄i/Σ
/pnOS̄i/Σ

of the structure sheaf OS̄i/Σ
([2, Exemples 4.2.16]) and this is equal to

inCRYS∗(OS̄i/Σn
) ([2, (4.2.17.4)]), the natural map

i∗nCRYS :Hom(S̄i/Σ)CRYS
(D∗(G),D∗(Z/pnZ))

→ Hom(S̄i/Σn)CRYS
(i∗nCRYS(D∗(G)), i∗nCRYS(D∗(Z/pnZ)))

is an isomorphism.
Finally, we claim that the thickening An,i defines the final object of the

big crystalline site CRYS(S̄i/Σn). This follows as the proof of [9, Théorème
1.2.1]. Indeed, it suffices to show that for any OK̄,i-algebra OU , any Z/pnZ-
algebra OT and any surjection OT → OU defined by a divided power ideal
JT , the composite

Wn(R)
θn,i→ OK̄,i → OU

uniquely factors through OT . For this, we define the map f : Wn(R)→ OT

as follows: For any element r = (r0, . . . , rn−1) of the ring Wn(R), choose a

lift p̂rn(rl) in OT of the element prn(rl) for any l = 0, . . . , n− 1 and put

f(r) =
n−1∑
l=0

pl(p̂rn(rl))
pn−l

.

This is independent of the choice of lifts and gives a ring homomorphism
satisfying the condition. Conversely, suppose that a homomorphism f ′ :
Wn(R)→ OT satisfies the condition. Then, for any element r = (r0, . . . , rn−1)

of the ringWn(R), we have f ′(r) =
∑n−1

l=0 plf ′([rl]
1/pn)p

n−l
and f ′([rl]

1/pn) mod
JT = prn(rl). Thus the uniqueness follows. Hence the evaluation map on
the thickening An,i

Hom(S̄i/Σn)CRYS
(i∗nCRYS(D∗(G)), i∗nCRYS(D∗(Z/pnZ)))

→ Hom(D∗(G)(An,i),W
DP
n (R)i)

is an injection. This concludes the proof of the lemma. □
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Proof of Theorem 1.1. Take a resolution of G by Barsotti-Tate groups over
OK

0→ G → Γ1 → Γ2 → 0

and consider the associated exact sequence of Kisin modules

0→ N2 → N1 →M→ 0.

PutM =MS(M) and Nl =MS(Nl) for l = 1, 2. By Lemma 2.2 and the
definition of the anti-equivalence M∗(−), we have a diagram

Tp(Γ1)

εΓ1

,,� � //

��

T ∗
crys(N1)

��

T ∗
S(N1)? _oo

��
Tp(Γ2)

εΓ2

,,� � //

πG

��

T ∗
crys(N2)

πM
��

T ∗
S(N2)? _oo

πM

��
G(OK̄)

εG

,,//

��

HomS,φ(M,WDP
n (R))

��

T ∗
S(M)oo

��
G(OK̄,i)

� � // HomS,φ(M,WDP
n (R)i) HomS,φ(M,Wn(R)/In,i)? _oo

where the left horizontal arrows are induced by g 7→ D∗(g) and the right
horizontal arrows are the maps sending f to 1 ⊗ (φ ◦ f). The middle left
vertical arrow πG : Tp(Γ2) → G(OK̄) is defined as follows: For g ∈ Tp(Γ2),

the element png is contained in the image of Tp(Γ1) = lim←−l
Γ1[p

l](OK̄) and

put png = h = (hn)n>0. Then the element hn ∈ Γ1[p
n](OK̄) is contained

in the subgroup G(OK̄) and the map πG is defined by g 7→ hn. We define
the map πM : T ∗

crys(N2) → HomS,φ(M,WDP
n (R)) similarly: For any map

f : N2 → Acrys, the map pnf induces a map N1 → Acrys. Its composite
with the natural map Acrys → WDP

n (R) factors throughM and defines the
map πM(f) : M → WDP

n (R). The map πM is defined in the same way.
From these definitions, we see that the diagram is commutative. Note that
the bottom left horizontal arrow is an injection by Lemma 3.2, and that the
bottom right horizontal arrow is also an injection by the definition of the
ideal In,i.

Thus, for any element g ∈ G(OK̄), its image in G(OK̄,i) is zero if and only
if the image of εG(g) ∈ T ∗

S(M) in HomS,φ(M,Wn(R)/In,i) is zero. Hence
the theorem follows. □

The special case of n = 1 of Theorem 1.1 can be interpreted as a corre-
spondence of ramification for finite flat group schemes over OK and k[[u]]
generalizing [11, Theorem 1.1], as follows. Recall that we have an anti-

equivalence H(−) from the category Mod1,φ/S1
to an exact category of finite

flat generically etale group schemes over k[[u]] whose Verschiebung is zero
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([10, Théorème 7.4]). This gives the equality T ∗
S(M) = H(M)(R) for any

object M of the category Mod1,φ/S1
. We normalize the indices of the upper

and the lower ramification subgroups of finite flat generically etale group
schemes G over OK and H over k[[u]] to be adapted to vp and vR, respec-
tively. In particular, we define the i-th lower ramification subgroup of H
by

Hi(R) = Ker(H(R)→ H(Ri)).

Note that the field Frac(R) can be identified with the completion of an
algebraic closure of k((u)).

Corollary 3.3. Let p be a rational prime and K/Qp be an extension of
complete discrete valuation fields with perfect residue field k. Let G be a
finite flat group scheme over OK killed by p and consider the associated object
M∗(G) of the category Mod1,φ/S1

. Then the map εG : G(OK̄) ≃ H(M∗(G))(R)

induces the isomorphisms of GK∞-modules

Gi(OK̄) ≃ H(M∗(G))i(R), Gj(OK̄) ≃ H(M∗(G))j(R)

for any positive rational numbers i and j.

Proof. By Cartier duality, a theorem of Tian and Fargues ([22, Theorem
1.6] or [8, Proposition 6]) and [11, Theorem 3.3], it is enough to show the
assertion of Corollary 3.3 on lower ramification subgroups. Moreover, since
the i-th lower ramification subgroups of G and H(M∗(G)) vanish for any
i > 1/(p − 1) ([11, Corollary 3.5 and Remark 3.6]), we may assume i ≤ 1.

Then the equality I1,i = m⩾i
R and Theorem 1.1 imply Corollary 3.3. □

4. Description of the ideal In,i

In this section, we give an explicit description of the ideal In,i. We identify
the rings of both sides of the isomorphism (1).

Proposition 4.1. Let n1, . . . , nl be integers satisfying 0 ≤ nj ≤ p − 1 for
any j and r be an element of Wn(R). If the element rY n1

1 · · ·Y
nl
l is zero in

the ring WDP
n (R)i, then [pi]p|r in the ring Wn(R). In particular, we have

the inclusion In,i ⊆ ([pi]).

Proof. By substituting Yj = 0 for j > l, we reduce ourselves to showing that
the equality in the ring Wn(R)[Y1, . . . , Yl]

(2) rY n1
1 · · ·Y

nl
l = ([pi]p−pY1)f0+(Y p

1 −pY2)f1+· · ·+(Y p
l−1−pYl)fl−1+Y p

l fl

with f0, . . . , fl in this ring implies [pi]p|r. By replacing fj ’s, we may assume
the inequality

(3) degj′(fj) < p (j′ = j + 1, . . . , l),

where degj′ means the degree with respect to Yj′ .

For any l-tuplem = (m1, . . . ,ml), write Y
m = Y m1

1 · · ·Y ml
l and let cj,m be

the coefficient of Y m in fj . Put n = (n1, . . . , nl) and ej = (0, . . . , 0, 1, 0, . . . , 0)
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with 1 on the j-th entry. We consider a lexicographic order on the module
Zl: we say m < m′ if there exists j with 1 ≤ j ≤ l such that mj < m′

j and

mj′ = m′
j′ for any j < j′ ≤ l. Taking the terms of scalar multiples of the

monomial Y n in the equation (2), we have the equality

rY n = [pi]pc0,nY
n +

l−1∑
j=0

(−pYj+1)cj,n−ej+1Y
n−ej+1 .

Now we claim that

(4) cj,n−ej+1 = 0 (j = 0, . . . , l − 1).

Suppose the contrary. Choose j such that 0 ≤ j ≤ l − 1 and cj,n−ej+1 ̸= 0.

Consider the term cj,n−ej+1Y
n−ej+1 in fj . The right-hand side of the equality

(2) contains the term cj,n−ej+1Y
n+pej−ej+1 for j ≥ 1 and [pi]pc0,n−e1Y

n−e1

for j = 0. Note that, for j′ ≤ j − 2, the j-th entry of the l-tuple n+ pej −
ej+1−ej′+1 is equal to nj+p and thus fj′ does not contain any scalar multiple

of Y n+pej−ej+1−ej′+1 by the assumption (3). Since n + pej − ej+1 < n and
n− e1 < n, the equation (2) implies the equation

cj,n−ej+1Y
n+pej−ej+1

= −
l−1∑

j′=j−1

(−pYj′+1)cj′,n+pej−ej+1−ej′+1
Y n+pej−ej+1−ej′+1

for j ≥ 1 and

[pi]pc0,n−e1Y
n−e1 = −

l−1∑
j′=0

(−pYj′+1)cj′,n−e1−ej′+1
Y n−e1−ej′+1

for j = 0.
We let Eq(1) denote this equation. Put m(1) = n+ pej − ej+1 for j ≥ 1

and m(1) = n− e1 for j = 0. Repeating this by arbitrarily choosing a term
with nonzero coefficient cj′,m′ on the right-hand side of the equation Eq(s),
we obtain a series of equations Eq(1),Eq(2), . . . and a sequence of l-tuples
of non-negative integers m(1),m(2), . . . such that Eq(s) is an equation of
monomials of degree m(s) for any s ≥ 1. Note that if there is no such term
on the right-hand side of the equation Eq(s), the procedure stops. On the
other hand, if the equation Eq(s) is either of the types

cY m(s) =

{
− · · · − (Y p

j )cj,m(s)−pejY
m(s)−pej − · · · (1 ≤ j ≤ l − 1)

−[pi]pc0,m(s)Y
m(s) − · · · (j = 0)

with some c ∈ Wn(R) such that the indicated term is chosen and that
cj,m(s)−pej (resp. c0,m(s)) is contained in the ideal pn−1Wn(R), then the

equation Eq(s+1) is empty and the procedure also stops. In the latter case,
we putm(s+1) = m(s)−pej+ej+1 for 1 ≤ j ≤ l−1 andm(s+1) = m(s)+e1
for j = 0.
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Lemma 4.2. The sequence m(s) is strictly decreasing with respect to the
lexicographic order on Zl defined as above.

Proof. Note the inequalities n > m(1) > m(2). Suppose that we have
m(1) > m(2) > · · · > m(t) ≤ m(t+ 1) for some t ≥ 2. Then the term Y p

l fl
in the equality (2) does not affect the equation Eq(s) for 1 ≤ s ≤ t. Thus,
by the construction, one of the following four cases holds for each 1 ≤ s ≤ t:

(Cj) m(s+ 1) = m(s) + pej − ej+1 for some 1 ≤ j ≤ l − 1,
(C ′

j) m(s+ 1) = m(s)− pej + ej+1 for some 1 ≤ j ≤ l − 1,

(C0) m(s+ 1) = m(s)− e1,
(C ′

0) m(s+ 1) = m(s) + e1.

Moreover, (Cj) and (C ′
j) do not occur consecutively for any j satisfying 0 ≤

j ≤ l−1. Note the inequality m(s) > m(s+1) for (Cj) and m(s) < m(s+1)
for (C ′

j).

First we claim that (C ′
0) does not hold for s = t. Suppose the contrary.

Then (Cj) holds for s = t−1 with some j satisfying 1 ≤ j ≤ l−1. Hence the
j-th entry m(t)j of the l-tuple m(t) is no less than p. The equation Eq(t)

cj,m(t−1)−ej+1
Y m(t) = −[pi]pc0,m(t)Y

m(t) − · · ·

implies degj(f0) ≥ p. This contradicts the assumption (3).
Hence (C ′

j) holds for s = t with some 1 ≤ j ≤ l − 1. From this we

see the inequality m(t)j ≥ p. Since nj < p, there exists an integer t′ with
1 ≤ t′ ≤ t − 2 such that (Cj) holds for s = t′ and that it does not hold for
any s satisfying t′ < s ≤ t.

Next we claim the equality m(s)j = m(t′)j + p for any s satisfying t′ <
s ≤ t. Suppose the contrary and take the smallest integer t′′ with t′ < t′′ < t
such that (Cj−1) holds for s = t′′. Then m(s)j = m(t′)j + p for t′ < s ≤ t′′

and m(t′′+1)j = m(t′)j +p−1. By assumption, we also have the inequality
m(t′′ + 1)j ≥ m(t)j ≥ p. On the other hand, the equation Eq(t′′) is

cY m(t′′) = − · · · − (−pYj)cj−1,m(t′′)−ejY
m(t′′)−ej − · · ·

with some c ∈Wn(R). Hence we obtain

degj(fj−1) ≥ m(t′′)j − 1 = m(t′)j + p− 1 ≥ p,

which contradicts the assumption (3).
Now let j0 be the non-negative integer such that (Cj0) holds for s = t−1.

Then j0 ̸= j, j − 1 by the constancy of m(s)j which we have just proved.
The equation Eq(t− 1) is

cY m(t−1) = − · · · − (−pYj0+1)cj0,m(t−1)−ej0+1
Y m(t−1)−ej0+1 − · · ·

with some c ∈Wn(R) and thus degj(fj0) ≥ m(t− 1)j = m(t′)j + p ≥ p. By
the assumption (3), we obtain the inequality j0 > j. In particular, we have
j0 ≥ 1 and m(t) = m(t− 1) + pej0 − ej0+1. Therefore the equation Eq(t) is

c′Y m(t) = − · · · − (Y p
j )cj,m(t)−pejY

m(t)−pej − · · ·
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with some c′ ∈ Wn(R) and degj0(fj) ≥ m(t)j0 ≥ p. This contradicts the
assumption (3) and the lemma follows. □

By Lemma 4.2, the case (C ′
j) does not occur in the procedure for any

non-negative integer j. In particular, if there is no term with non-zero cj′,m′

on the right-hand side of the equation Eq(s) for some s, then the equation
is

[pi]pϵcj′′,m′′Y m(s) = 0,

where cj′′,m′′Y m′′
is the chosen term on the right-hand side of the equation

Eq(s − 1) and ϵ ∈ {0, 1}. Note that this occurs for s satisfying m(s) =
(0, . . . , 0), since in this case (C0) holds for s − 1. Therefore, Lemma 4.2
implies that, for any choice of terms as above, we end up with an equation
of this type for a sufficiently large s. Since the element [pi]p is a non-zero
divisor in the ring Wn(R), we see the equality cj′′,m′′ = 0. This contradicts
the choice of terms and the equality (4) follows.

Hence we obtain the equality

rY n = [pi]pc0,nY
n

and thus [pi]p|r. This concludes the proof of Proposition 4.1. □
Lemma 4.3. Put n(s) = vp((ps)!) for any non-negative integer s. Then an
element r = (r0, . . . , rn−1) of the ring Wn(R) is contained in the ideal In,i if
and only if the condition

(5) [pi]s|(r0, . . . , rn−1−n(s−1), 0, . . . , 0)

holds for any s ≥ 1.

Proof. Let r be an element of the ideal In,i and show the condition (5)
for r by induction on s. The case of s = 1 follows from Proposition
4.1. Suppose that the condition (5) holds for some s ≥ 1. Let r′ =
(r′0, . . . , r

′
n−1−n(s−1), 0, . . . , 0) be the element of Wn(R) such that

(r0, . . . , rn−1−n(s−1), 0, . . . , 0) = [pi]sr′.

We write the p-adic expansion of the integer s as

s = n1 + pn2 + · · ·+ pl−1nl

with 0 ≤ nj ≤ p− 1. Then we have the equality in the ring WDP
n (R)i

φ(r) = pn(s)φ(r′)Y n1
1 · · ·Y

nl
l

and Proposition 4.1 implies that [pi] divides pn(s)r′. Hence the element [pi]

divides (r′0, . . . , r
′
n−1−n(s), 0, . . . , 0) and thus

[pi]s+1|(r0, . . . , rn−1−n(s), 0, . . . , 0).

Conversely, suppose that an element r of the ring Wn(R) satisfies the con-
dition (5) for any s ≥ 1. Since we have the inequality n(s) ≥ n for some s, a
similar argument as above shows the equality φ(r) = 0 in the ring WDP

n (R)i.
This concludes the proof of the lemma. □



18 SHIN HATTORI

Remark 4.4. Lemma 4.3 enables us to compute the ideal In,i. For example,

I2,i = (m⩾2i
R ,m⩾pi

R ) ⊆W2(R) and

I3,i =

{
(m⩾2i

R ,m⩾4i
R ,m⩾4i

R ) (p = 2),

(m⩾3i
R ,m⩾2pi

R ,m⩾p2i
R ) (p ≥ 3).

Finally we prove a relationship between the ideals In−1,pi and In,i, which
will be used in Section 5.

Lemma 4.5. For any r = (r0, . . . , rn−2) ∈ In−1,pi and rn−1 ∈ R, we have

r̂ = (r0, . . . , rn−2, p
ipn−1

rn−1) ∈ In,i.

Proof. By Lemma 4.3, we have

[ppi]s|(r0, . . . , rn−2−n(s−1), 0, . . . , 0)

in the ring Wn−1(R) for any s ≥ 1 satisfying n(s− 1) < n− 1. Let us show
that the element r̂ = (r̂0, . . . , r̂n−1) satisfies the condition

[pi]s|(r̂0, . . . , r̂n−1−n(s−1), 0, . . . , 0)

in the ring Wn(R) for any s ≥ 1 satisfying n(s− 1) < n. The case of s = 1
follows from the definition of r̂. Suppose s ≥ 2. Since n(s − 2) + 1 ≤
n(s − 1), we have n − 1 − n(s − 1) ≤ n − 2 − n(s − 2) and [ppi]s−1 divides
(r̂0, . . . , r̂n−1−n(s−1)). Then the inequality p(s−1) ≥ s implies the condition.
This concludes the proof of the lemma. □

5. Application to canonical subgroups

In this section, we prove Theorem 1.2 and Theorem 1.3. First we consider
Theorem 1.2. LetK/Qp be an extension of complete discrete valuation fields.
Let G be a truncated Barsotti-Tate group of level n, height h and dimension
d over OK with 0 < d < h and Hodge height w < (p− 1)/pn. Let Cn be the
level n canonical subgroup of G as in [13, Theorem 1.1]. By a base change
argument and the uniqueness of Cn ([13, Proposition 3.8]), we may assume
that the residue field k is perfect. Recall that we normalized the valuation
vR on the ring R as vR(π) = 1/e in Section 1.

Let M = M∗(G) be the corresponding object of the category Mod1,φ/S∞
.

Then, by [13, Remark 3.4], we can show as in the proof of [12, Lemma 3.3]
that the object M/pM has a basis ē1, . . . , ēh such that

φ(ē1, . . . , ēh) = (ē1, . . . , ēh)

(
P1 P2

ueP3 ueP4

)
,

where the matrices Pi have entries in the ring k[[u]] with P1 ∈Mh−d(k[[u]]),

vR(det(P1)) = w and

(
P1 P2

P3 P4

)
∈ GLh(k[[u]]). Let P̂1 be the element of

Mh−d(k[[u]]) such that P1P̂1 = uewIh−d. Let B be the unique solution in
Md,h−d(k[[u]]) of the equation

B = P3P̂1 − uep(1−w)−ewBP2φ(B)P̂1 + uep(1−w)P4φ(B)P̂1
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and put D = P1+uep(1−w)P2φ(B), which also satisfies vR(det(D)) = w (see
the proof of [12, Lemma 3.3]). Moreover, put

(ē′1, . . . , ē
′
h−d) = (ē1, . . . , ēh)

(
Ih−d

ue(1−w)B

)
.

The elements ē′1, . . . , ē
′
h−d, ēh−d+1, . . . , ēh form a basis of the S1-module

M/pM satisfying

φ(ē′1, . . . , ē
′
h−d, ēh−d+1, . . . , ēh) = (ē′1, . . . , ē

′
h−d, ēh−d+1, . . . , ēh)

(
D P2

0 ue(1−w)P ′
4

)
for some matrix P ′

4 ∈Md(k[[u]]). Then we have the following description of
the level one canonical subgroup C1 of G[p].

Lemma 5.1. Let f be an element of the module HomS,φ(M/pM, R) defined
by

(ē1, . . . , ēh) 7→ (x, y)

with an (h − d)-tuple x and a d-tuple y in R. Then f corresponds to an
element of C1(OK̄) by the isomorphism

εG[p] : G[p](OK̄) ≃ HomS,φ(M/pM, R)

if and only if vR(x+ ue(1−w)yB) > w/(p− 1).

Proof. Let L be the S1-submodule of M/pM generated by ē′1, . . . , ē
′
h−d.

Then L defines a subobject of M/pM in the category Mod1,φ/S1
. Put N =

(M/pM)/L. Note that [13, Lemma 3.2] also holds for our G[p] and its sub-
group scheme corresponding to N, by [13, Remark 3.4]. By [13, Lemma
3.2 and Theorem 3.5 (1)], the level one canonical subgroup C1 is the closed
subgroup scheme of G[p] corresponding to the object N. We have the com-
mutative diagram

0 // C1(OK̄) //

εC1≀
��

G[p](OK̄) //

εG[p]≀
��

(G[p]/C1)(OK̄) //

εG[p]/C1≀
��

0

0 // HomS,φ(N, R) // HomS,φ(M/pM, R)
ι∗ // HomS,φ(L, R) // 0,

where the rows are exact and the vertical arrows are isomorphisms. The
element f corresponds to an element of C1(OK̄) if and only if ι∗(f) = 0.
The map ι∗(f) : L→ R is defined by

(ē′1, . . . , ē
′
h−d) 7→ x+ ue(1−w)yB,

which we consider as an element of H(L)(R). Since deg(H(L)) = w, the
lemma follows from [12, Lemma 2.4]. □

Recall that we put

in = 1/(pn−1(p− 1))− w/(p− 1), i′n = 1/(pn(p− 1)).
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Lemma 5.2. If w < (p− 1)/pn, then we have C1 = G[p]im = G[p]i′m for any
integer m satisfying 1 ≤ m ≤ n.

Proof. By [13, Theorem 1.1 (c)], the equality C1 = G[p]i1 holds. From the
inequality

i′n < in ≤ i′n−1 < · · · < i2 ≤ i′1 < i1,

we have the inclusions

C1 ⊆ G[p]i′1 ⊆ G[p]i2 ⊆ · · · ⊆ G[p]in ⊆ G[p]i′n .

Let us show the reverse inclusion. Let N be the quotient of M/pM in the

category Mod1,φ/S1
corresponding to the closed subgroup scheme C1 ⊆ G. By

Theorem 3.3, it is enough to show the inclusion

HomS,φ(M/pM,m
⩾i′n
R ) ⊆ HomS,φ(N, R).

Consider a φ-compatible homomorphism of S-modules M/pM→ R defined
by

(ē1, . . . , ēh) 7→ (x, y) = pi
′
n(a, b)

with an (h− d)-tuple a and a d-tuple b in R. Then we have the equality

ppi
′
n(ap, bp) = pi

′
n(a, b)

(
Ih−d 0
0 ueId

)(
P1 P2

P3 P4

)
,

where ap = (ap1, . . . , a
p
h−d) and similarly for bp. Multiplying

(
P1 P2

P3 P4

)−1

∈

GLh(k[[u]]), we obtain the equality

(a, ueb) = p1/p
n
(ap, bp)

(
P1 P2

P3 P4

)−1

and we can write a = p1/p
n
a′. The (h− d)-tuple a′ satisfies the equality

a′ = p1/p
n−1−w(a′)pP̂1 − p(p

n−1)/pn−wbP3P̂1.

Hence vR(a
′) ≥ min{1/pn−1, (pn − 1)/pn} − w and

vR(x) ≥ min{1/(pn−2(p− 1))− w, 1 + 1/(pn(p− 1))− w} > w/(p− 1).

Since 1− w > w/(p− 1), we obtain the inequality

vR(x+ ue(1−w)yB) > w/(p− 1).

Then Lemma 5.1 implies the reverse inclusion and the lemma follows. □
To show Theorem 1.2, we proceed by induction on n. The case of n = 1

follows from Lemma 5.2. Put n ≥ 2 and suppose that the theorem holds
for any truncated Barsotti-Tate groups of level n − 1 over OK . Consider
a truncated Barsotti-Tate group G of level n over OK with Hodge height
w < (p − 1)/pn as in Theorem 1.2. In particular, we have the equalities
Cn−1 = G[pn−1]in−1 = G[pn−1]i′n−1

and thus the inclusions Cn−1 ⊆ Gin ⊆ Gi′n
also hold.
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Lemma 5.3. For any positive rational number i satisfying i ≤ 1/(p − 1),
the multiplication by p induces the map Gi(OK̄)→ G[pn−1]pi(OK̄).

Proof. By Lemma 3.1 (2), we may assume that G is connected. By [14,
Théorème 4.4 (e)], there exists a p-divisible formal Lie group Γ over OK such
that G is isomorphic to Γ[pn]. By [21, Lemma 11.3], we can choose formal
parametersX1, . . . , Xd of the formal Lie group Γ such that the multiplication
by p of Γ is written as

[p](X) ≡ pX+ (Xp
1 , . . . , X

p
d)U + pf(X) mod deg p2,

where X = (X1, . . . , Xd), f(X) = (f1(X), . . . , fd(X)) such that every fl
contains no monomial of degree less than p and U ∈ Md(OK). Let x =
(x1, . . . , xd) be a d-tuple in OK̄ satisfying [pn](x) = 0 and vp(x) ≥ i. Since
1 + i ≥ pi, we have the inequalities 1 + vp(x) ≥ pi and pvp(x) ≥ pi. Hence
vp([p](x)) ≥ pi and the lemma follows. □
Lemma 5.4. We have the inclusion Gi′n ⊆ Cn.

Proof. By Lemma 5.2 and Lemma 5.3, the multiplication by pn−1 induces
a homomorphism Gi′n(OK̄) → G[p]i′1(OK̄) = C1(OK̄). Hence we have the

inclusion Gi′n ⊆ p−(n−1)C1. Consider the natural map G → G/C1. By [13,
Theorem 1.1], the subgroup scheme C1 ×S1−w coincides with the kernel of

the Frobenius of G×S1−w. Put Ḡ = G×S1−w and similarly for G/C1. Note
the inequality pi′n = i′n−1 < 1− w. Then we have a commutative diagram

G(OK̄) //

��

(G/C1)(OK̄)

��

Ḡ(OK̄,1−w)
// G/C1(OK̄,1−w)

� � //

��

Ḡ(p)(OK̄,1−w)

��
G/C1(OK̄,pi′n

) �
� // Ḡ(p)(OK̄,pi′n

),

where the composite of the middle row is the Frobenius map and the right
horizontal arrows are injections. From this diagram, we see that the map
G → G/C1 induces a map

Gi′n(OK̄)→ (G/C1)i′n−1
(OK̄).

This implies the inclusion Gi′n/C1 ⊆ (p−(n−1)C1/C1)i′n−1
. Note that the group

scheme p−(n−1)C1/C1 is a truncated Barsotti-Tate group of level n−1, height
h and dimension d with Hodge height pw and that the subgroup scheme
Cn/C1 is its level n − 1 canonical subgroup (see the proof of [12, Theorem
1.1] and [13, Theorem 1.1]). From the induction hypothesis, we see that the
equality

(p−(n−1)C1/C1)i′n−1
= Cn/C1

holds. This implies the inclusion Gi′n ⊆ Cn and the lemma follows. □
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Proposition 5.5. The image of the map Gin(OK̄) → G[pn−1]pin(OK̄) in-
duced by the multiplication by p contains the subgroup G[pn−1]in−1(OK̄).

Proof. By Theorem 1.1 and Lemma 5.3, we have a commutative diagram

Gin(OK̄) ∼
//

×p
��

HomS,φ(M, In,in)

pr

��
G[pn−1]pin(OK̄) ∼

// HomS,φ(M, In−1,pin)

G[pn−1]in−1(OK̄)
?�

OO

∼
// HomS,φ(M, In−1,in−1),

?�

OO

where the horizontal arrows are isomorphisms and the map pr is induced
by the natural projection Wn(R) → Wn−1(R). It suffices to show that the
image of the map pr contains the subgroup HomS,φ(M, In−1,in−1).

Let e1, . . . , eh be a basis of theSn-moduleM lifting ē1, . . . , ēh and e′1, . . . , e
′
h−d

be lifts of ē′1, . . . , ē
′
h−d in M, respectively. Then e′1, . . . , e

′
h−d, eh−d+1, . . . , eh

also form a basis of the Sn-module M. Take a φ-compatible homomorphism
of S-modules M→ In−1,in−1 defined by

(e′1, . . . , e
′
h−d, eh−d+1, . . . , eh) 7→ (x, y),

where x = (x1, . . . , xh−d) and y are an (h − d)-tuple and a d-tuple in the
ideal In−1,in−1 , respectively. Put x̂l = (xl, 0) ∈ Wn(R), x̂ = (x̂1, . . . , x̂h−d)
and similarly for ŷ. Let A be the matrix in Mh(Sn) satisfying

φ(e′1, . . . , e
′
h−d, eh−d+1, . . . , eh) = (e′1, . . . , e

′
h−d, eh−d+1, . . . , eh)A.

Define an (h− d)-tuple ξ = (ξ1, . . . , ξh−d) and a d-tuple η in R by

pn−1([ξ], [η]) = φ(x̂, ŷ)− (x̂, ŷ)A,

where we put [ξ] = ([ξ1], . . . , [ξh−d]) and similarly for [η]. By Proposition

4.1, the elements x̂ and ŷ are divisible by [pin−1 ] and thus we can write

(ξ, η) = pin−1(ξ′, η′).

Since in−1 = pin+w ≥ pin, Lemma 4.5 implies that, for any h-tuple z in R,
the element (x̂, ŷ) + pn−1[pinz] is contained in the ideal In,in . It is enough
to show that there exists an h-tuple z in R satisfying

φ((x̂, ŷ) + pn−1[pinz]) = ((x̂, ŷ) + pn−1[pinz])A.

Put z = (ζ, ω) with an (h−d)-tuple ζ and a d-tuple ω. Then this is equivalent
to the equation

(ξ, η) + ppin(ζp, ωp) = pin(ζ, ω)

(
D P2

0 ue(1−w)P ′
4

)
.

We claim that the equation for the first entry

ξ + ppinζp = pinζD
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has a solution ζ = p(p−1)inζ ′ with an (h − d)-tuple ζ ′ in R. Indeed, let

D̂ ∈ Mh−d(k[[u]]) be the matrix satisfying DD̂ = uewIh−d. Then this is
equivalent to the equation

ζ ′ = ξ′D̂ + pp(p−1)in−w(ζ ′)pD̂.

Since p(p− 1)in > w, we can find a solution ζ ′ of the equation by recursion.
For the second entry, we have the equation

ppin+wη′ + ppinωp = pin(ζP2 + p1−wωP ′
4).

This is equivalent to the equation

ωp = p1−w−(p−1)inωP ′
4 + ζ ′P2 − pwη′.

Note the inequality 1− w ≥ (p− 1)in. Write this equation as

(ωp
1 , . . . , ω

p
d) + (ω1, . . . , ωd)C + (c′1, . . . , c

′
d) = 0

with some C = (ci,j) ∈Md(R) and c′i ∈ R. Then the R-algebra

R[ω1, . . . , ωd]/(ω
p
1 +

d∑
j=1

cj,1ωj + c′1, . . . , ω
p
d +

d∑
j=1

cj,dωj + c′d)

is free of rank pd over R. Since Frac(R) is algebraically closed and R is
integrally closed, this R-algebra admits at least one R-valued point. Hence
we can find at least one solution ω of the equation. This concludes the proof
of the proposition. □

Consider the exact sequence

0→ G[p]in(OK̄)→ Gin(OK̄)
×p→ G[pn−1]pin(OK̄).

Proposition 5.5 implies that the image of the rightmost arrow contains the
subgroup

G[pn−1]in−1(OK̄) ⊆ G[pn−1]pin(OK̄),

which coincides with Cn−1(OK̄) by induction hypothesis and thus is of order

p(n−1)d. By Lemma 5.2, the subgroup G[p]in(OK̄) also coincides with C1(OK̄)
and this is of order pd. Hence the group Gin(OK̄) is of order no less than
pnd. Since Lemma 5.4 implies the inclusions

Gin(OK̄) ⊆ Gi′n(OK̄) ⊆ Cn(OK̄),

Theorem 1.2 follows by comparing orders. □
To prove Theorem 1.3, we need the following lemma, which is a “lower”

variant of [12, Lemma 4.5].

Lemma 5.6. Let K/Qp be an extension of complete discrete valuation fields
and i be a positive rational number. Let X be an admissible formal scheme
over Spf(OK) and X be its Raynaud generic fiber. Let G be a finite lo-
cally free formal group scheme over X with Raynaud generic fiber G. Then
there exists an admissible open subgroup Gi of G over X such that the open
immersion Gi → G is quasi-compact and that for any finite extension L/K
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and x ∈ X(L), the fiber (Gi)x coincides with the lower ramification subgroup
(Gx)i × Spec(L) of the finite flat group scheme Gx = G ×X,x Spf(OL) over
OL.

Proof. Let I be the augmentation ideal sheaf of the formal group scheme
G. Write i = m/n with positive integers m,n and put J = pmOG + I n.
Let B be the admissible blow-up of G along the ideal J and Gm,n be the
formal open subscheme of B where pm generates the ideal JOB. Since the
Raynaud generic fiber of Gm,n is the admissible open subset of G whose set
of K̄-valued points is given by

{x ∈ G(K̄) | vp(I (x)) ≥ i},
it is independent of the choice of m,n and we write it as Gi. Using the
universality of dilatations as in the proof of [1, Proposition 8.2.2], we can
show that Gi is an admissible open subgroup of the rigid-analytic group G.
For any affinoid open subset U = Sp(A) of G, put I = Γ(U,I ). Then the
intersection U∩Gi is the affinoid Sp(A⟨In/pm⟩) and thus the open immersion
Gi → G is quasi-compact. This concludes the proof of the lemma. □
Proof of Theorem 1.3. Set Cn to be the admissible open subgroup Gi′n of
G as in Lemma 5.6 with i′n = 1/(pn(p − 1)). Then, by this lemma and
Theorem 1.2, each fiber (Cn)x coincides with the generic fiber of the level
n canonical subgroup of Gx and its group of K̄-valued points is isomorphic
to the group (Z/pnZ)d. Moreover, Cn is etale, quasi-compact and separated
over X(rn). Thus [5, Theorem A.1.2] implies that Cn is finite over X(rn)
and the theorem follows by a similar argument to the proof of [12, Corollary
1.2]. □
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