The paper, titled “Enhancing the rationale of convolutional neural networks for glitch classification in gravitational wave detectors: a visual explanation”, has been published in Machine Learning: Science and Technology.

The paper, titled “Enhancing the rationale of convolutional neural networks for glitch classification in gravitational wave detectors: a visual explanation”, has been published in Machine Learning: Science and Technology.

Naoki Koyama, Yusuke Sakai, Seiya Sasaoka, Diego Dominguez, Kentaro Somiya, Yuto Omae, Yoshikazu Terada, Marco Meyer-Conde, Hirotaka Takahashi, “Enhancing the rationale of convolutional neural networks for glitch classification in gravitational wave detectors: a visual explanation”, Machine Learning: Science and Technology, Vol. 5, No 3, 035028 (2024).
doi:10.1088/2632-2153/ad6391

東京都市大学
デザイン・データ科学部 デザイン・データ科学科
総合研究所 宇宙科学研究センター

重力波物理学・天文学/
データサイエンス研究室

〒224-8551 神奈川県横浜市都筑区牛久保西3-3-1

Gravitational Wave Physics and Astronomy /
Data Science Group

Department of Design and Data Science,
Research Center for Space Science, Advanced Research Laboratories,
Tokyo City University

3-3-1 Ushikubo-Nishi, Tsuzuki-Ku, Yokohama, Kanagawa 224-8551, Japan

Copyright © Gravitational Wave Physics
and Astronomy / Data Science Group
トップへ戻るボタン