The paper, titled “Unsupervised Learning Architecture of Classifying Transient Noise for Interferometric Gravitational-Wave Detectors”, has been published in Scientific Reports.

The paper, titled “Unsupervised Learning Architecture of Classifying Transient Noise for Interferometric Gravitational-Wave Detectors”, has been published in Scientific Reports.

Yusuke Sakai, Yousuke Itoh, Piljong Jung, Keiko Kokeyama, Chihiro Kozakai, Katsuko T. Nakahira, Shoichi Oshino, Yutaka Shikano, Hirotaka Takahashi, Takashi Uchiyama, Gen Ueshima, Tatsuki Washimi, Takahiro Yamamoto, Takaaki Yokozawa, “Unsupervised Learning Architecture of Classifying Transient Noise for Interferometric Gravitational-Wave Detectors”, Scientific Reports, 12, Article number: 9935 (2022).
doi:10.1038/s41598-022-13329-4

東京都市大学
デザイン・データ科学部 デザイン・データ科学科
総合研究所 宇宙科学研究センター

重力波物理学・天文学/
データサイエンス研究室

〒224-8551 神奈川県横浜市都筑区牛久保西3-3-1

Gravitational Wave Physics and Astronomy /
Data Science Group

Department of Design and Data Science,
Research Center for Space Science, Advanced Research Laboratories,
Tokyo City University

3-3-1 Ushikubo-Nishi, Tsuzuki-Ku, Yokohama, Kanagawa 224-8551, Japan

Copyright © Gravitational Wave Physics
and Astronomy / Data Science Group
トップへ戻るボタン