Neural Network Consoleによるディープラーニング

動画視聴

動画視聴 ニューラルネットワークコンソール(NNC)を開発したソニーの小林さんの講義動画 です。 - ディープラーニングとは?1(38:32) ・人工知能の歴史とディープラーニング

- ディープラーニングとは?2(27:19)

- SONYにおけるAIへの取り組み
- ディープラーニングを用いたAI開発のポイント

→ 講義ではニューラルネットワークコンソールを使って分析演習を実施

Neural Network Consoleに触れてみる

第8回講義内容

ディープラーニングで解く問題:手書き文字の「4」と「9」を見分ける

すでに準備されている手書き文字画像の 「4」と「9」の見分ける問題

 シンプルなモデルを使ってNeural Network
 Consoleの使い方を一通り(データの学習から 予測)までやってみる.

Neural Network Consoleクラウド版にサインイン

Chromeブラウザを起動し、Neural Network ConsoleのWebからクラウドにサインイン。

Neural Network Consoleクラウド版にサインイン

Chromeブラウザを起動し、Neural Network ConsoleのWebからクラウドにサインイン。

7

Neural Network Consoleクラウド版にサインイン

「ダッシュボード」が表示される

	Neural Network Console	最近のプロジェクト	(i)Information	`
「プロジェクト」 をクリック 🖒	ダッシュボード プロジェクト データセット			
	ジョブ履歴 	最近のジョブ		
	サンプルプロジェクト 公開プロジェクト 公開API			
	サービス設定			

サンプルプロジェクトを選択

サンプルとして用意された画像認識のプロジェクトを選択

サンプルプロジェクトを開く

プロジェクト名を指定し開く。

	+ New Project \triangle Upload Project Date uploaded \vee ALL \vee Q Search						
Neural Network Console	🗋 Name	Modified	Acti				
Dashboard	tutorial.basics.01_logistic_r	regression SAMPLE					
Project							
Dataset	tutorial 選択したサンプルス	プロジェクトを元に新しいプロジェクトを作成し トタをユカレアイださい、1~255文字N内でN下					
Job History	の文字は使用できま (¥, /, :, *, ?, ", <	, >, , ;)					
Sample Project Public Project	tutorial tutorial.basics.0 tutorial	D1_logistic_regression Cancel OK SAMPLE					
Service Settings	tutor 1. 半角 ジェク し"Ok	英数字でプロ 小名を入力 〈"をクリック					

	+ New Project 🛧 Upload Project D	ate uploaded \vee ALL \vee Q Search
Neural Network Console	🗆 Name	Modified
Dashboard	tutorial.basics.01_logistic_regression 보 0.14MB	n Saving
Project		
Dataset Job History	2. 作成されたプロ	Iジェ
Sample Project	クトをクリック	MPLE
Public Project	tutorial.basics.06_auto_encoder	SAMPLE
Service Settings	tutorial.basics.10_deep_mlp	SAMPLE

ネットワーク編集画面の確認

ネットワークの編集画面が表示されることを確認。

슈 EDIT TRAININ	IG EVALUATION	tutorial.basics.01_logistic_regression	ල Dataset	လ္လွ်ို CONFIG	e e	↑ ⊕	
Components Q Search		Θ 100% θ	Action V	Controller	Run		
 ✓ IO Input ✓ Loss SquaredError HuberLoss AbsoluteError 	A Affine W b 1 S Sigmoid 1			 Profile Train Evaluate Standard 	Structure	Search	
Layer Property	BinaryCrossEntropy T.Dataset : y			 CPU 10 H NVIDIA® Tes CPUの無料利用枠にのご利用は有料です 	Free la® K80 GPU la® V100 GPU la® V100 GPU la® V100 GPU la® V100 GPU+ は残り 10 時間です す。	x 1 x 1 x 4 x 8 x 8 x 8 x 8 x 8	

今回利用する学習モデルの構成

Input Dataset : x Affine А Sigmoid BinaryCrossEntropy T.Dataset : y

6構造自動探索

評価

推論

レイヤー説明:Input

ネットワーク全体の入力層にあたるレイヤーである。 パラメータとして入力データのサイズを入力する必要がある。 指定したデータサイズと入力データのサイズが合わない場合、学習時にエラーが発生する。

データサイズの例

			表デー	\$			RGB画像	白黒画像
入力	ナイズ :	100				入力サ	イズ: (3, 256, 128)	入力サイズ: (1, 28, 28)
		個人属情	生情報 10	10カラム	 予測値			
ID	性別	年齡	居住地	収入	 購入 頻度			
00001	男性	20代	東京	700万	高	256	25 M	28
00002	男性	30代	埼玉	600万	低	200		
00003	女性	20代	東京	300万	中			28
00004	女性	10代	東京	NA	中			
00005	男性	20代	千葉	400万	高		128	

ネットワーク

作成

学習

ータセット

進備

セットアップ

レイヤー説明:Affine

入力層の全ての値を用いた線形変換を行うレイヤーである。 Outputのサイズを任意に指定でき、レイヤーのサイズを自在に調整できる。 Outputの各セルはInputの全ての値が入力値として利用される。

演習補足資料

y = Wx + b

6構造自動探索

評価

推論

1次元→1次元の例

Input

2次元→2次元の例

ータセット

進備

セットアップ

ネットワーク

作成

学習

14

データセット設定画面の確認

設定されているサンプルデータセットの確認。

☆ EDIT	TRAINING	EVALUATION	I	tutorial.basics.01_logistic_regression	C DATASET	දිරි CONFIG		画 不	⇔
Training ② mnist.sma	all_mnist_4or9_	training	C Link Dataset mnist.sm	all_mnist_4or9_training		**			$\stackrel{\downarrow }{\downarrow }$
Num Data Num Column	1500 2		🗹 Main 🔽 Shuffle	✓ Image Normalization(1.0/255.0)	1. DATASET クリック	2	« <	1 / 150	> >>
Shuffle Cache Normalize	true true true	Main	Index	x:image			y:9		
Validation Commist.sma Num Data Num Column	all_mnist_4or9_ 500 2	test	1	1,28,28			0		
Shuffle Cache Normalize	false true true		2	1,28,28			1		
			3	1,28,28			0		

データセットの説明

0~9の手書き文字画像から数字を判別する。ハンズオンでは4と9のみをピックアップしている。 アメリカ国勢調査局が収集した手書き文字データから、数字を抽出したデータ(MNIST)である。

MNISTデータセット(手書き数字認識)

学習の実行

"Run"をクリックするとクラウド上の計算用インスタンスが起動し学習を開始。

순 EDIT TRAININ	G EVALUATION	tutorial.basics.01_logistic_regression ODATASET	45 CONFIG 🖱 🖻 不 🕀
Components Q Search ∨ IO Input ∨ Loss SquaredError HuberLoss AbsoluteError	G EVALUATION Main X + P P & D D V Input Dataset : x A Affine V I S Sigmoid 1	tutorial.basics.01_logistic_regression ⊙ DATASET ○ DATASET ○ DATASET	② CONFIG □ ● ● ● ● ● Controller O Profi I. "Run"を D リックし学 習を実行 Standard ABCI
Layer Property	T.Dataset : y T		 CPU 10 H Free x1 NVIDIA® Tesla® K80 GPU x1 NVIDIA® Tesla® V100 GPU x1 NVIDIA® Tesla® V100 GPU x4 NVIDIA® Tesla® V100 GPU x8 NVIDIA® Tesla® V100 GPU x8 NVIDIA® Tesla® V100 GPU x8 CPUの無料利用枠は残り 10 時間です。GPU のご利用は有料です。

学習結果の表示と評価の実行

学習結果が表示されることを確認し、評価を行うため再度"Run"をクリック。

結果の確認

演習

個々の画像の識別結果や作成されたモデルの識別精度の結果を確認。

	y: 正解データ(「 y': 予測(0~10	4」なら0)数値)	、「9」なら1)		2. 混同行列((latrix)をクリッ 詳細を研	Confusion クし結果の	
Elapsed 00:00:00:	Remaining Total 10:: 00:00:00:10 CPU x 1		Data 500/500	Elapsed Remaining 00:00:00:10 :::	0 0.10 CPU x 1		Data 500/50
 Output Res Classificati 	sult ○ Confusion Matrix y - γ' ≎ ○ Ο ion Result y - y' ≎ ○ Classification Matrix	thers ≎ < y-y': Recall	 < 1 / 50 > > C Likelihood Graph 	 Output Result Output Result Classification Result y - y' ↓ 	sion Matrix y - y' \Rightarrow O C	tthers ≎ x y-y': Recall ≎	O Likelihood Graph
y' î				Accuracy	?.???		
Index	x:image	y:9	у'	Avg.Precision	?.???		
1		0	0.04871734	Avg.Recall	?.???		
	1. 個々の通	『像		Avg.F-Measures	?.???		
	の識別結果 確認	きの		適合率	再現率 Recall	y'=0	y'=1
2		0		Precision		0.9522	0.9558
		Ľ	んな手書き文字	F-Measures	Ļ	0.9541	0.9539
	7	(⁻ ⁻ ⁻	間違えやすいの、	y:9=0	0.956	239	11
	P		ht_2	y:9=1	0.952	12	238

CNNの実装

Convolution層とAffine-ReLU層を「Input」と「Affine」の間に挿入してCNNを実装してみる.

②[ASB]のセットをマウスでドラッグして 「Input」と「Affine」の間に隙間を作る

⑤ネットワークができたら、編集で「実行」→評価で「実行」 → 混同行列[Confusion Matrix]で精度を確認

ഹ

CNNのパラメタの変更

Convolution層とAffine-ReLU層の組み合わせとConvolutionのパラメータ(OutMaps, KernelShape)及び、 Affineのサイズを変更し、試行錯誤することができる。

