

第4章 量子ビットとしての量子ドット

- 1. 量子情報,量子計算の初歩
- 2. 量子ビットとしての量子ドット 電荷量子ビット

スピン量子ビット

3. 量子デコヒーレンスをどう表すか

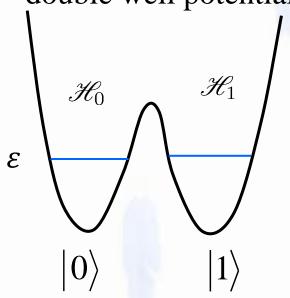
量子ビット (qubit) とは?

Bit: 0 or 1

Boolean algebra

Quantum bit (qubit) = two level (two state) system $|0\rangle$, $|1\rangle$ and superposition

An example: double well potential

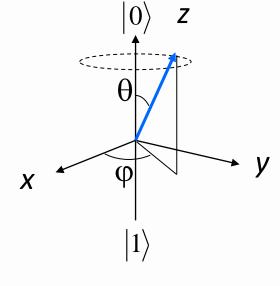


0,1の井戸中の状態を |0), |1) とする

$$\begin{cases} \mathcal{H}_0 |0\rangle = \epsilon |0\rangle \\ \mathcal{H}_1 |1\rangle = \epsilon |1\rangle \end{cases}$$

Spin 1/2 の系に対応させること ができる

$$|\psi\rangle = \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\varphi/2} \\ \sin\frac{\theta}{2}e^{i\varphi/2} \end{pmatrix}$$



Tunnel matrix T をオンにすると,

固有状態は変化し、状態を遷移させることができる

$$\begin{cases} \mathcal{H}_0 |0\rangle = \epsilon |0\rangle \\ \mathcal{H}_1 |1\rangle = \epsilon |1\rangle \end{cases}$$

Tunnel matrix T をオンにする

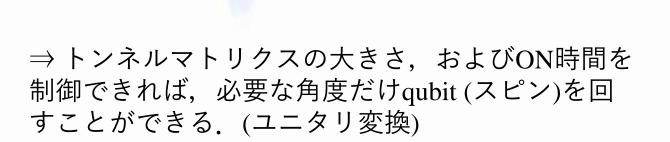
$$\mathcal{T} |0\rangle = -\kappa |1\rangle$$

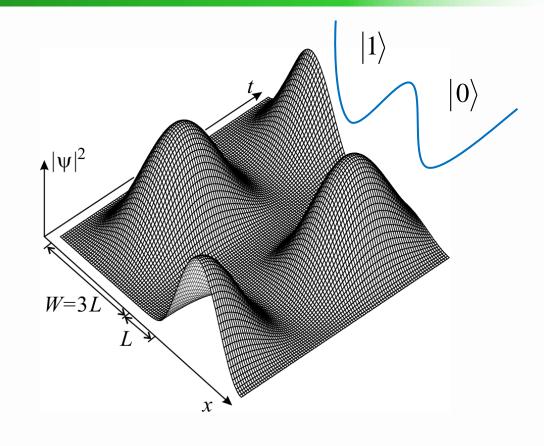
$$\mathcal{T} |1\rangle = -\kappa |0\rangle$$

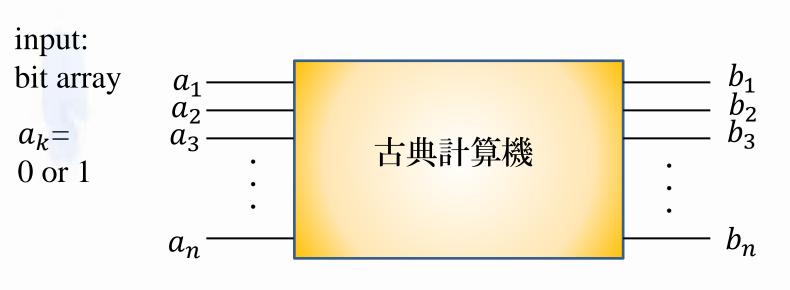
固有状態
$$|\psi\rangle_{\pm} = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$$
 へと変化

初期状態
$$\phi(0) = |0\rangle = \frac{1}{\sqrt{2}}(|\psi\rangle_+ + |\psi\rangle_-)$$

量子コヒーレンス振動
$$\phi(t) = \left[|0\rangle \cos \frac{\kappa t}{h} + |1\rangle \sin \frac{\kappa t}{h} \right]$$







output: bit array

output: qubit array

$$\psi_k = q_k |0\rangle + p_k |1\rangle$$

 ψ_n

アナログ計算機になっただけ?

 ϕ_n

|量子もつれ (エンタングルメント)

$$|\psi\rangle = |A\rangle + |B\rangle$$

$$|A\rangle |B\rangle$$

$$|A\rangle|1\rangle$$

$$|B\rangle|2\rangle |2\rangle$$

直積
$$|\Psi\rangle = |\psi\rangle \otimes |\varphi\rangle = |A\rangle |1\rangle + |A\rangle |2\rangle + |B\rangle |1\rangle + |B\rangle |2\rangle$$

Maximally entangled state $|\Phi\rangle = |A\rangle|1\rangle + |B\rangle|2\rangle$

Quantification of Entanglement?

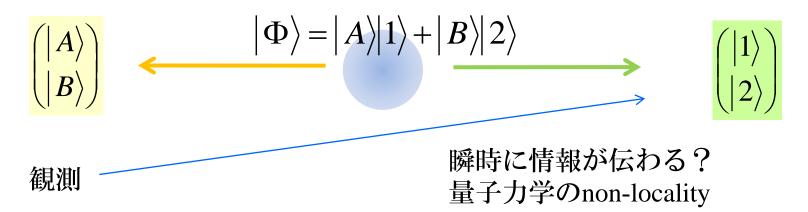
MAY 15, 1935

PHYSICAL REVIEW

VOLUME 4.7

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

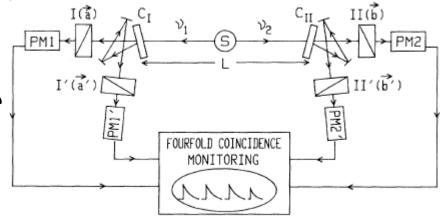


Experimental Test of Bell's Inequalities Using Time-Varying Analyzers

Alain Aspect, Jean Dalibard, and Gérard Roger Institut d'Optique Théorique et Appliquée, F-91406 Orsay Cédex, France

(Received 27 September 1982)

量子的相関の存在 ただし情報は瞬時には伝わらない



Quantum entanglement and effective Hamiltonian

Maximally entangled state:
$$|\xi\rangle = \frac{1}{\sqrt{2}}(|1\rangle\,|p\rangle + |2\rangle\,|q\rangle)$$

Another maximally entangled state:
$$|\zeta\rangle = \frac{1}{\sqrt{2}}(|1\rangle\,|q\rangle + |2\rangle\,|p\rangle)$$

Let us consider the case the basis is limited to $\{|\xi\rangle,|\zeta\rangle\}$

Consider a Hamiltonian working on
$$\{|1\rangle,|2\rangle\}$$
 $\mathscr{H}_{\mathbf{n}}=\begin{pmatrix}h_{11}&h_{12}\\h_{21}&h_{22}\end{pmatrix}$
$$\langle\xi|\mathscr{H}_{\mathbf{n}}|\xi\rangle=h_{11}+h_{22},\quad \langle\xi|\mathscr{H}_{\mathbf{n}}|\zeta\rangle=h_{12}+h_{21},$$

$$\langle\zeta|\mathscr{H}_{\mathbf{n}}|\zeta\rangle=h_{11}+h_{22}$$

Consider a Hamiltonian working on
$$\{|p\rangle,|q\rangle\}$$
 $\mathscr{H}_{\mathrm{a}}=\begin{pmatrix}h_{11}&h_{12}\\h_{21}&h_{22}\end{pmatrix}$

Though \mathcal{H}_n and \mathcal{H}_a are completely different, as long as we limit the basis to $\{|\xi\rangle, |\zeta\rangle\}$ we cannot distinguish \mathcal{H}_n and \mathcal{H}_a .

Quantum measurement and entanglement

$$N_{\min} = \frac{3k_{\rm B}TV}{2\pi g^{2}\mu_{\rm B}^{2}S(S+1)Q_{0}} \left(\frac{\Delta H_{0}}{H_{0}}\right) \sqrt{\frac{k_{\rm B}T_{\rm d}FB}{P_{0}}}$$

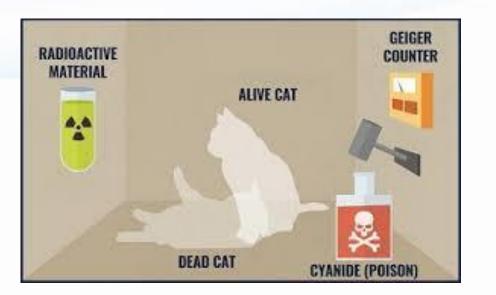
In inductive measurement the EPR needs $N_{min} \sim 10^{10}$

How you make this to one?

What is measurement?

System to be measured: $\{|\uparrow\rangle, |\downarrow\rangle\}$

Degree of freedom which human can distinguish: $\{|A\rangle\,,|B\rangle\}$



Measurement is to create a maximally entangled state between them.

$$\Psi = \frac{1}{\sqrt{2}} [|\uparrow\rangle |A\rangle + |\downarrow\rangle |B\rangle]$$

Schrödinger's cat problem is a problem of measurement.

$$|\text{Alive cat}\rangle |\gamma-\rangle + |\text{Dead cat}\rangle |\gamma+\rangle$$

エンタングルメント・エントロピー

2つの系がどの程度エンタングルしているか? 指標の一つ:エンタングルメント・エントロピー

Two systems:
$$\mathscr{H}_A, \ \mathscr{H}_B \quad |A\rangle = \sum_{i=1}^{d_A} b_i \, |\eta_i\rangle \,, \ |B\rangle = \sum_{j=1}^{d_B} c_j \, |\xi_j\rangle$$

General states: $|\psi_{AB}\rangle = \sum_{i,j} c_{ij} |\eta_i\rangle |\xi_j\rangle$

Schmidt decomposition 適当な基底変換 $\{|\eta_j\rangle\}, \{|\xi_j\rangle\} \rightarrow \{|u_i\rangle\}, \{|v_i\rangle\}$

$$|\psi_{AB}\rangle = \sum_{k=1}^{d} d_k |u_k\rangle |v_k\rangle, \quad \sum_{k=1}^{d} |d_k|^2 = 1 \ (d = \min(d_A, d_B))$$

密度行列 (density matrix, density operator) $\rho_A = \sum_k |d_k|^2 |u_k\rangle \langle u_k| \,, \quad \rho_B = \sum_k |d_k|^2 |v_k\rangle \langle v_k|$

Entanglement entropy:
$$S(\rho_A) = S(\rho_B) \equiv -\sum_{k=1}^{\infty} |d_k|^2 \log_2(|d_k|^2)$$

量子計算: (入力) qubit列 \Rightarrow (出力) qubit列

N次元量子ゲート: 2^N 次元ユニタリー変換

入力:
$$\prod_{i=1}^N |0_i\rangle$$
 各 qubit $|0_i\rangle \to \frac{|0_i\rangle + |1_i\rangle}{\sqrt{2}}$ というユニタリー変換を考える

 $|\mathscr{F}_N(a)\rangle$: aを2進数N桁表記して、各桁をket表記に入れて積を取った状態

例)
$$a=100101$$
 $\rightarrow |\mathscr{F}_6(a)\rangle = |1\rangle |0\rangle |0\rangle |1\rangle |0\rangle |1\rangle$ $(i の表記を省略)$

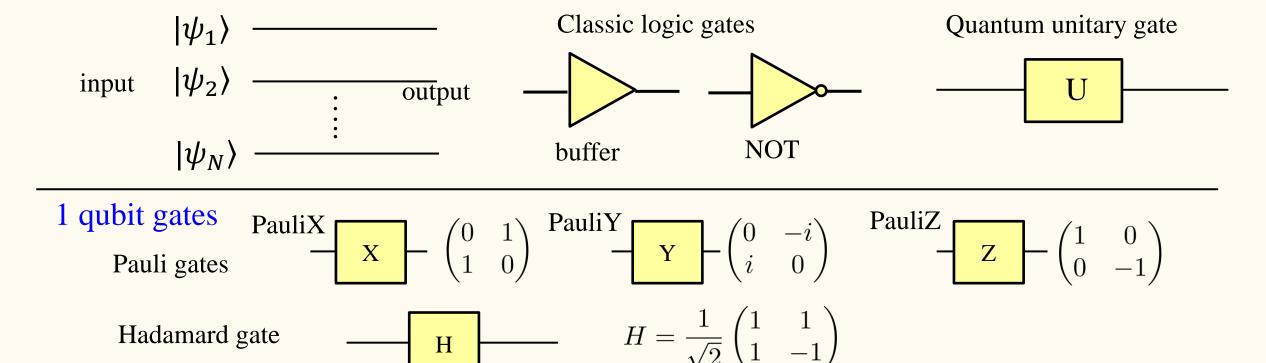
$$\prod_{i=1}^N \left(\frac{|0_i\rangle + |1_i\rangle}{\sqrt{2}} \right) = \frac{1}{\sqrt{2^N}} \sum_{a=0}^{2^N-1} |\mathscr{F}_N(a)\rangle$$
 と書くことができる

$$a = \sum_{i=0}^{N-1} j_i \times 2^{N-i-1} \quad j_i = 0 \text{ or } 1 \quad \text{if } |\mathscr{F}_N(a)\rangle \to |\mathscr{G}_N(a)\rangle = (-1)^a \prod_{i=1}^N |j_i\rangle$$

この演算は、一見 2^{N-1} 回の演算を要しそうであるが、実際には

$$\frac{|0_N\rangle + |1_N\rangle}{\sqrt{2}} \rightarrow \frac{|0_N\rangle - |1_N\rangle}{\sqrt{2}}$$
 という一回の演算で済む

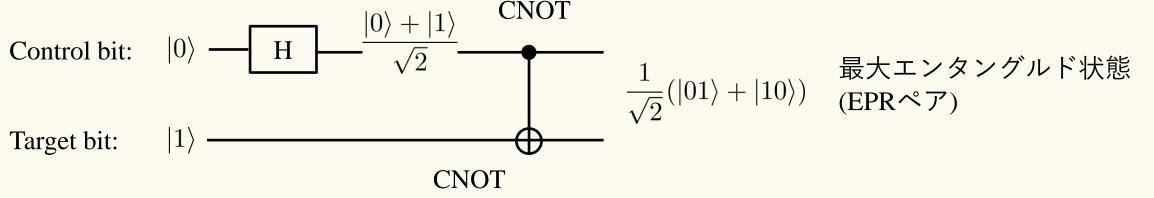
量子演算の回路表現



2 qubit gate

Controlled NOT (CNOT)





再度CNOTを通す
$$\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$$

$$\frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) = \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes |1\rangle$$
 直積に戻すことができる

量子ゲート操作により、エンタングルをON/OFFできる 任意のユニタリー変換 ⇒ ユニバーサル量子ゲート

量子テューリングマシン

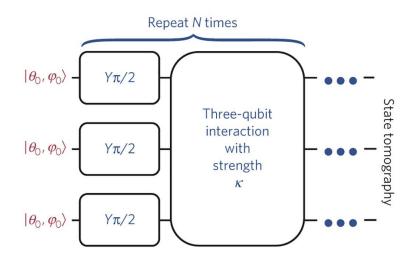
- 1. ユニタリー変換すなわち量子ゲートにより量子ビット間にエンタングルメントを作り出す
- 同じく量子ゲートによって量子ビットを操作するが,上の操作の結果,これは量子並列計算 として働く
- 3. 再び量子ゲート操作によってエンタングルメントを解き、各量子ビットを読み出す(観測)

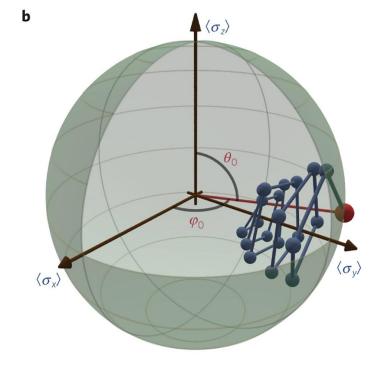
Neill et al., Nat. Phys. 12, 1037 (2016).

$$\mathcal{H}(t) = \frac{\pi}{2\tau} J_y + \frac{\kappa}{2j} J_z^2 \sum_{n=1}^{N} \delta(t - n\tau)$$

$$J_z = \frac{\hbar}{2} \sum_i \sigma_z^{(i)}$$

右のような量子ゲート操作をN回繰り返す



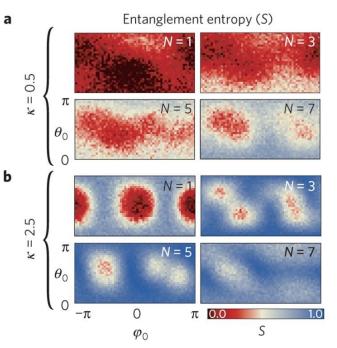


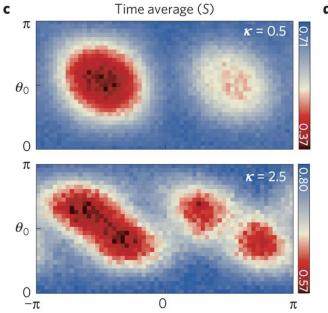
$$S = -\mathrm{Tr}\rho_{\mathrm{sq}}\log_2\rho_{\mathrm{sq}}$$

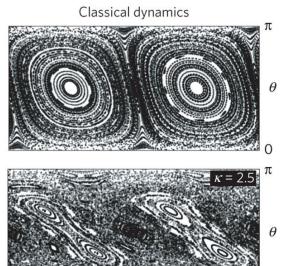
しての量子

八 シ ρ_{sq} 単一量子ビット密度行列

3体問題との関係?







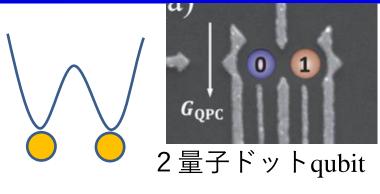
量子ドットを量子ビットとして使う

量子ビットとしての量子ドット

電荷量子ビット

不純物量子ビット 電荷 電子スピン 核スピン ww-∭r

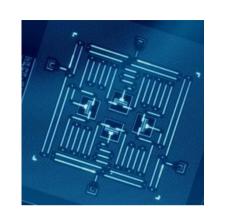
量子ドット



単一ドット電荷qubit (?)

cf. 超伝導量子ビット 「 (Cooper対) 電荷量子ビット

磁束量子ビット



transmon qubit

スピン量子ビットの難しさ

スピン:磁気双極子

通常のESR検出(inductiveな手法) 最小スピン数 (伊達「電子スピン共鳴」)

$$N_{\min} = \frac{3k_{\rm B}TV}{2\pi g^2 \mu_{\rm B}^2 S(S+1)Q_0} \left(\frac{\Delta H_0}{H_0}\right) \sqrt{\frac{k_{\rm B} T_{\rm d} F B}{P_0}}$$

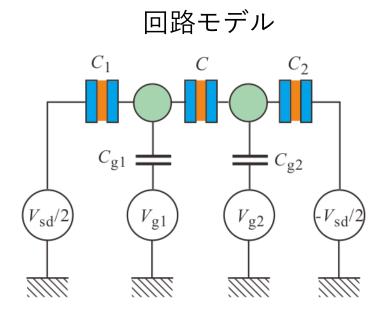
V: 空洞共振器体積, Q_0 : Q值, T_d : 検出器実効温度,

F: 雑音指数,B: 増幅器帯域幅, P_0 : マイクロ波電力

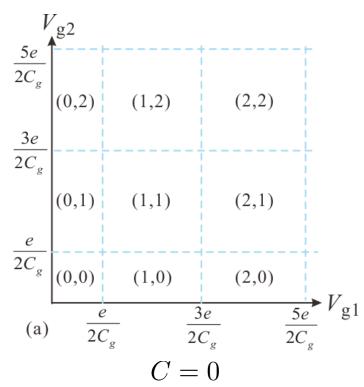
通常の実験条件: $N_{\rm min}\sim 10^{10}$

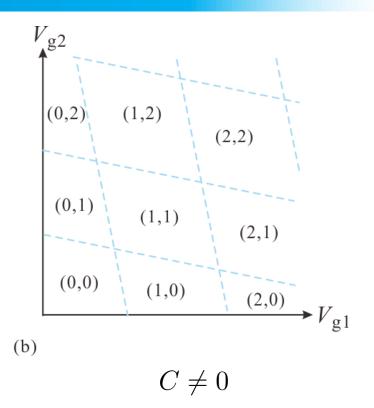
どのようにして、これを1にするか?

他自由度とスピン自由度との量子エンタングルメント



$$V_{sd} = 0$$
 $C_1 = C_2 \equiv C_{sd}$ $C_{g1} = C_{g2} = C_g$

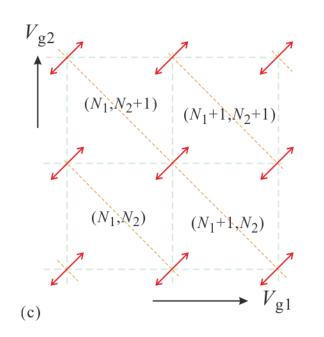


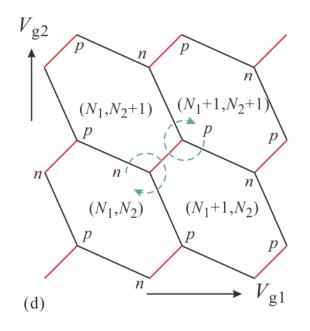


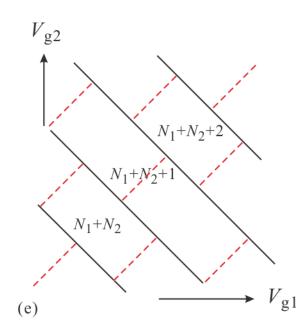
$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \frac{1}{C_t^2 - C^2} \begin{pmatrix} C_t & C \\ C & C_t \end{pmatrix} \begin{pmatrix} -N_1 e + C_g V_{g1} \\ -N_2 e + C_g V_{g2} \end{pmatrix} \quad (C_t \equiv C_{sd} + C_g + C)$$

接合1を通して電子がドット1にトンネルした場合に2つのゲート電源が行う仕事

$$w_1 = \frac{eC_{\rm g}}{C_t^2} (C_t V_{\rm g1} + C V_{\rm g2})$$







Cの影響 $\rightarrow C$ に比例する項, N_1, N_2 に関係する項

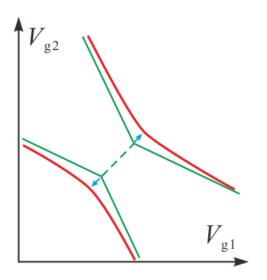
エンタルピー
$$H_C = \frac{C}{2C_t^2} \left\{ -e(N_1 + N_2) + C_g(V_{g1} + V_{g2}) \right\}^2$$

$$H_C$$
極小: $V_{\rm g1} + V_{\rm g2} = (e/C_{\rm g})(N_1 + N_2)$ 安定領域を広げる (赤矢印)

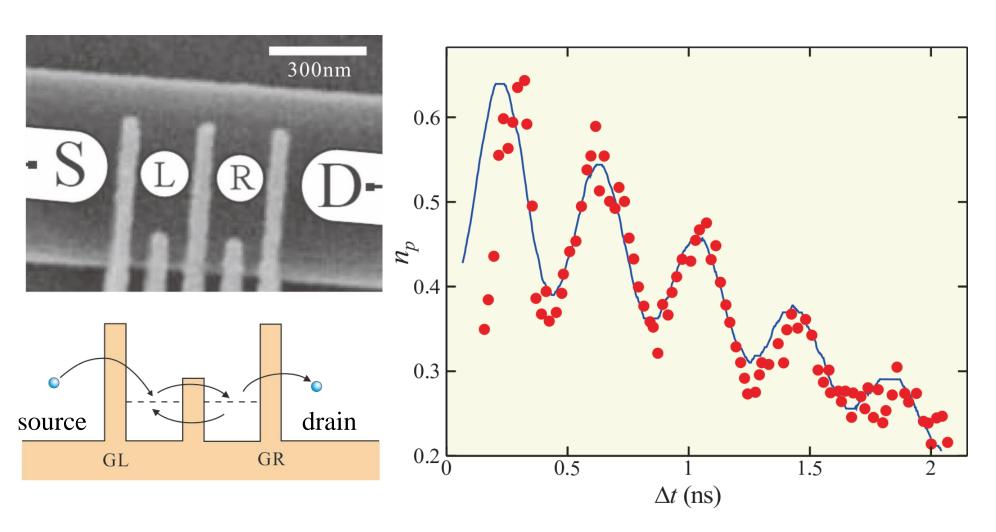
六角格子安定度ダイアグラム (stability diagram)



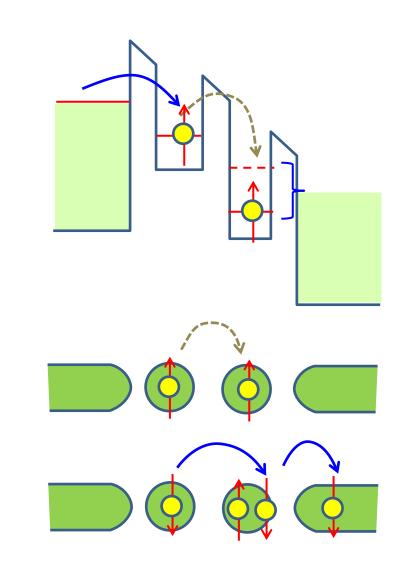
2量子ドット電荷量子ビット

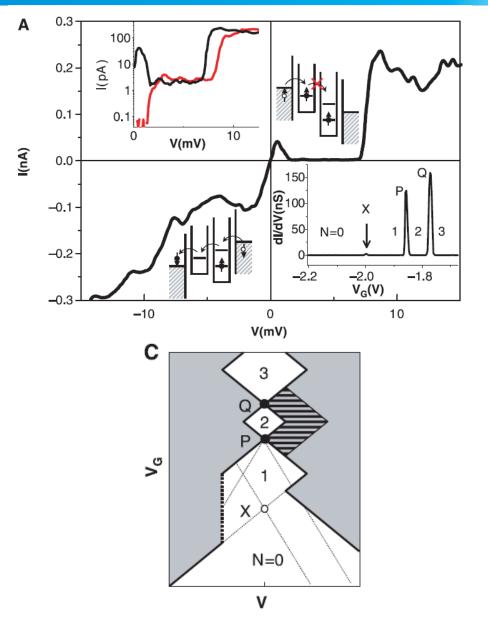


安定度ダイアグラム



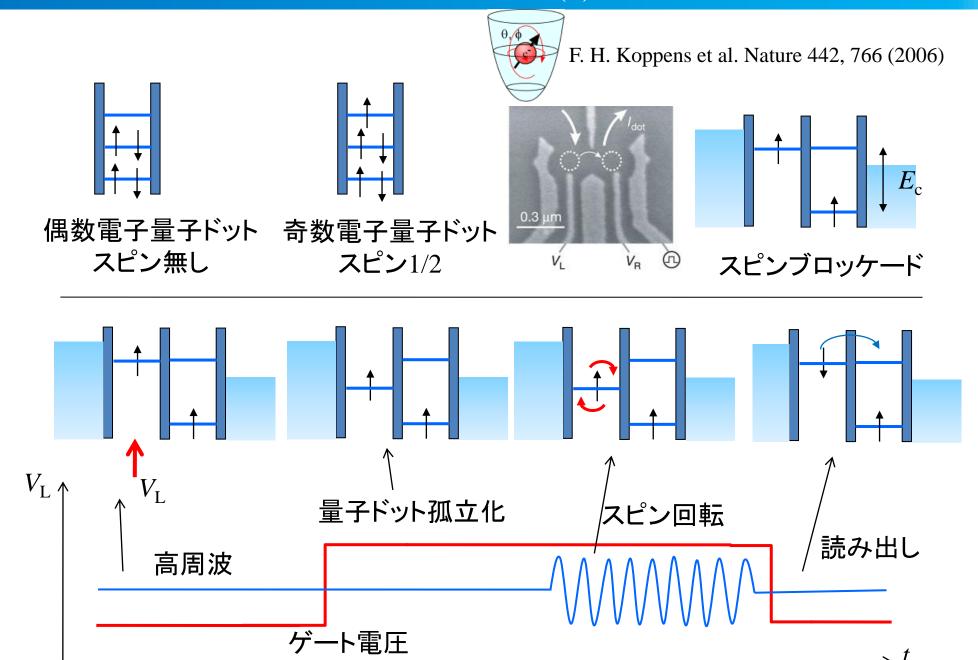
Hayashi et al., PRL 91, 226804 (2003).



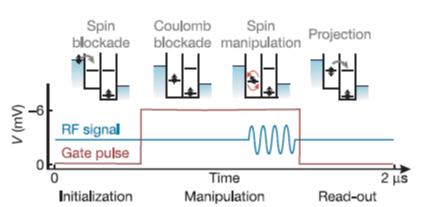


K. Ono et al., Science **297**, 1313 (2002)

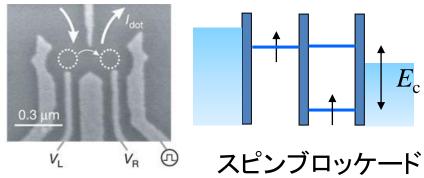
スピンブロッケードを使ったスピン量子ビット(1)

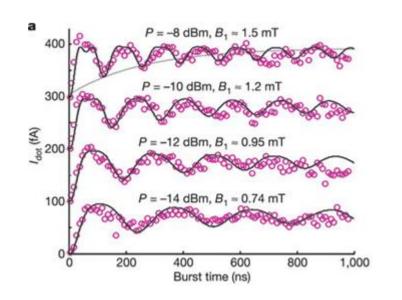


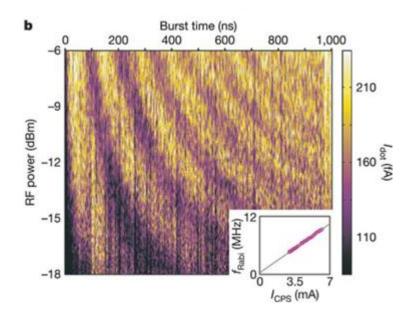
スピンブロッケードを使ったスピン量子ビット(2)



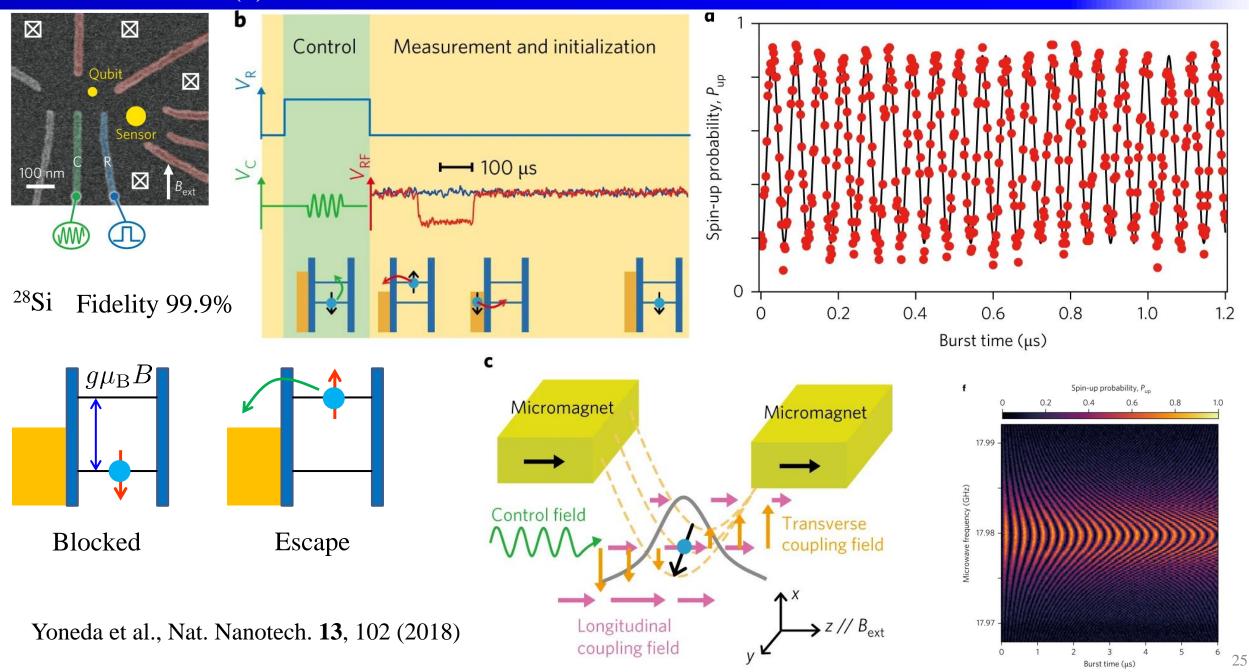
F. H. Koppens et al. Nature 442, 766 (2006)



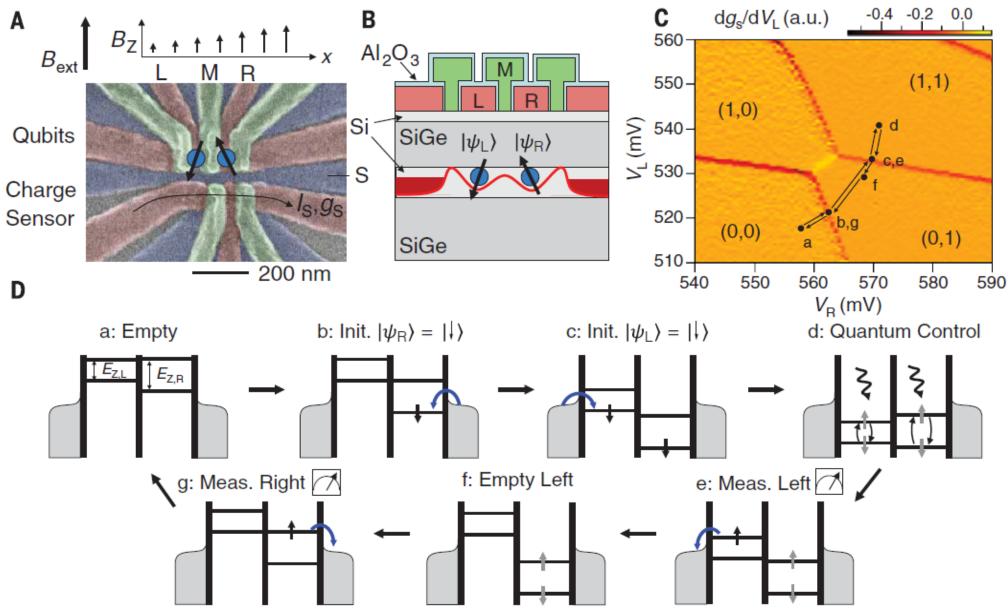




Zeeman blockade (?) を使った単一量子ドットスピン量子ビット

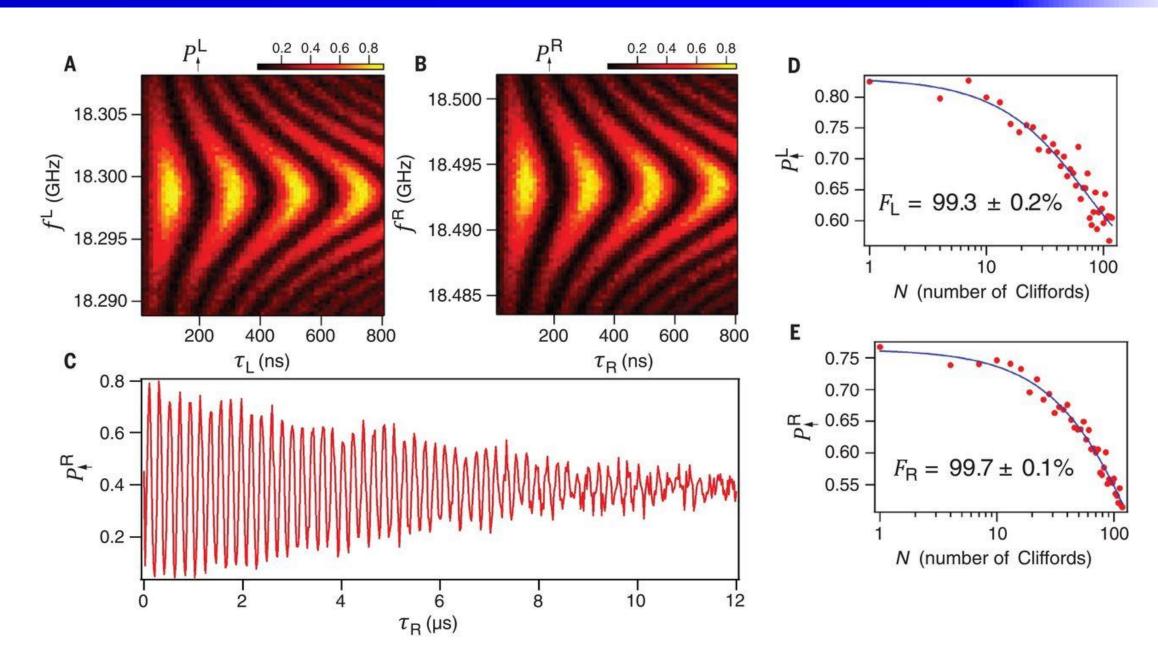


スピン量子ビット CNOT ゲート

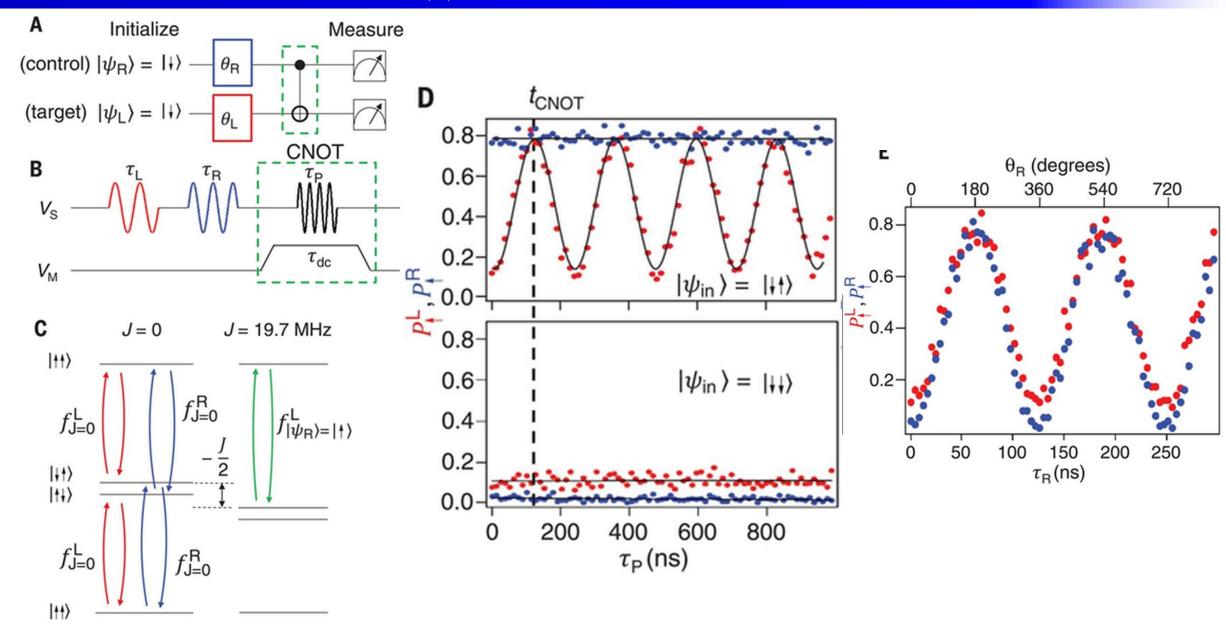


Zajac et al. Science 359, 439 (2018).

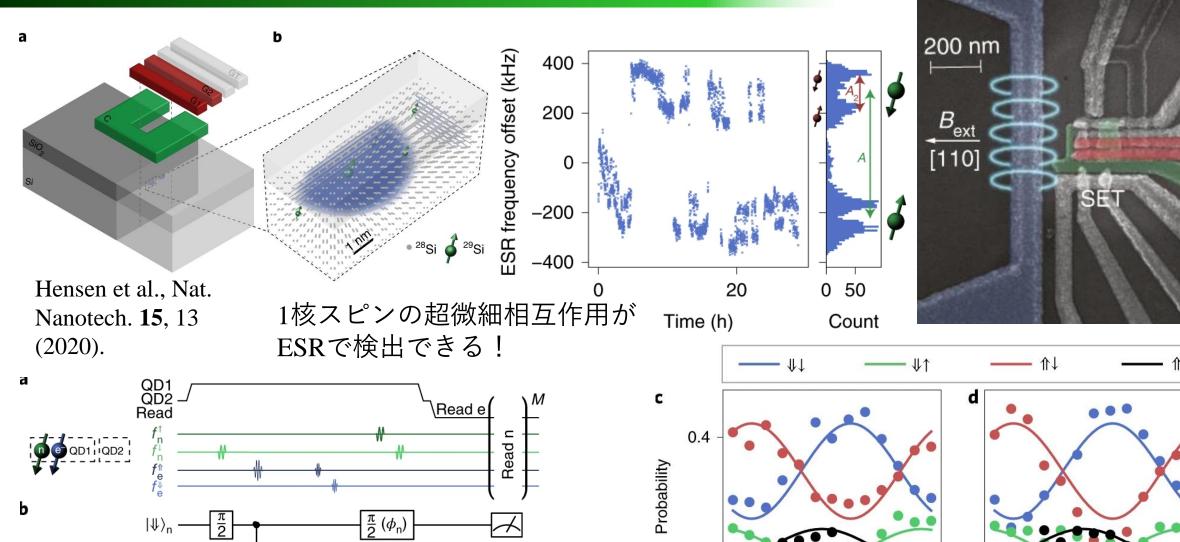
スピン量子ビット CNOT ゲート(2)



スピン量子ビット CNOT ゲート (3)



量子ドット核スピン-電子スピン量子ビット



0.1

180

 $\phi_{\rm n}$ (deg)

360

RES

180

 $\phi_{\rm e}$ (deg)

G2

G1

C

0.4

360

Probability

MW

核スピン-電子スピンエンタングルメント

 $|\Phi^{+}\rangle$ Initialization

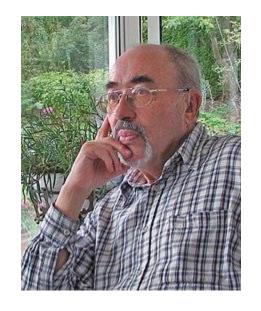
 $\frac{\pi}{2} (\phi_{\rm e})$

Projection

Readout

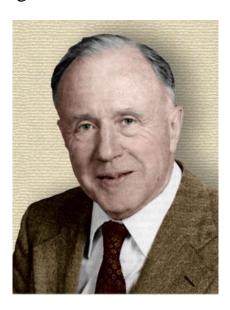
量子ビットと量子デコヒーレンス

https://blogs.scientificamerican.com/cross-check/do-our-questions-create-the-world/



H. Dieter Zeh (1932-2018)

W. H. Zurek (1951-)



J. A. Wheeler (1911-2008)



Length limit quantum coherence (Coherence length)

Monochromaticity: Thermal length

Energy width: $\Delta E = k_{\rm B}T$

Diffusion length: $l = \sqrt{D\tau}$

Phase width:

$$2\pi\Delta f \tau = 2\pi \frac{\Delta E \tau}{h} = 2\pi \frac{k_{\rm B} T \tau}{h} \qquad \rightarrow 2\pi: \quad \tau_{\rm c} = \frac{h}{k_{\rm B} T}$$

$$ightarrow 2\pi: \quad au_{
m c} = rac{n}{k_{
m B}T}$$

Thermal diffusion length

$$l_{\mathrm{th}} = \sqrt{\frac{hD}{k_{\mathrm{B}}T}}$$

Ballistic thermal length

$$l_{
m th} = rac{h v_{
m F}}{k_{
m B} T}$$

(Some) inelastic scattering time: $\tau_{\rm inel}$

Ballistic transport:

 $l_{\rm inel} = v_{\rm F} \tau_{\rm inel}$

Diffusive transport:

 $l_{\rm inel} = \sqrt{D\tau_{\rm inel}}$

量子ドット内のデコヒーレンス(量子情報喪失)

問題の発端:重い原子核(再び!)の性質の記述には古典的なランジュバン方程式が使われており、成功を収めている.

⇒ いつの間に古典化したのか? H.-Dieter Zeh, Foundations of Physics 1, 69 (1970)

電荷量子ビット ← 電荷(電場)ノイズ

スピン量子ビット:スピン緩和

スピン緩和時間: $T_1, T_2(T_2^*)$

 T1 (エネルギー緩和)
 B

 T2 (位相緩和)
 時間経過

 は
 時間経過

回転位相の異なる状態の「重ね合わせ」状態は2次元ヒルベルト空間で表すことができない.

←複素係数で足し上げると結局ある方向を向い たスピンになってしまう.

混合状態 (mixed state)

波動関数量子力学 状態 $|\psi\rangle$ 状態の時間発展

 $i\hbar \frac{\partial |\psi\rangle}{\partial t} = \hat{\mathscr{H}} |\psi\rangle$

物理量 \hat{A} の期待値

Schrödinger 方程式

 $\langle \psi | \hat{A} | \psi \rangle$

これを含む体系を、密度行列 $\hat{
ho}\equiv|\psi\rangle\langle\psi|$ を使って構成できる

密度行列量子力学

状態
$$|\psi\rangle \to \hat{\rho} = |\psi\rangle\langle\psi|$$

時間発展 $\frac{\partial \hat{\rho}}{\partial t} = \frac{1}{i\hbar} [\hat{\mathcal{H}}, \hat{\rho}]$ (von Neumann or quantum Liouville equation)

物理量 \hat{A} の期待値 $\langle \hat{A} \rangle = \operatorname{Tr}(\hat{\rho}\hat{A})$ ($|\psi\rangle$ について測定して a_n が得られる確率 $\langle a_n|\hat{\rho}|a_n\rangle$

Hilbert空間ベクトルで表せない状態にも拡張できる

基底 $\{|\phi_i\rangle\}$ に対して $\hat{\rho}_m = \sum_i p_i |\phi_i\rangle \langle \phi_i|$ $(0 \le p_i \le 1, \sum_i p_i = 1)$

 $|\phi_i\rangle$ の間の干渉項が存在しない:混合状態 (mixed state)

Summary

- 1. 量子情報,量子計算の初歩
- 2. 量子ビットとしての量子ドット

電荷量子ビット

スピン量子ビット

3. 量子デコヒーレンスをどう表すか