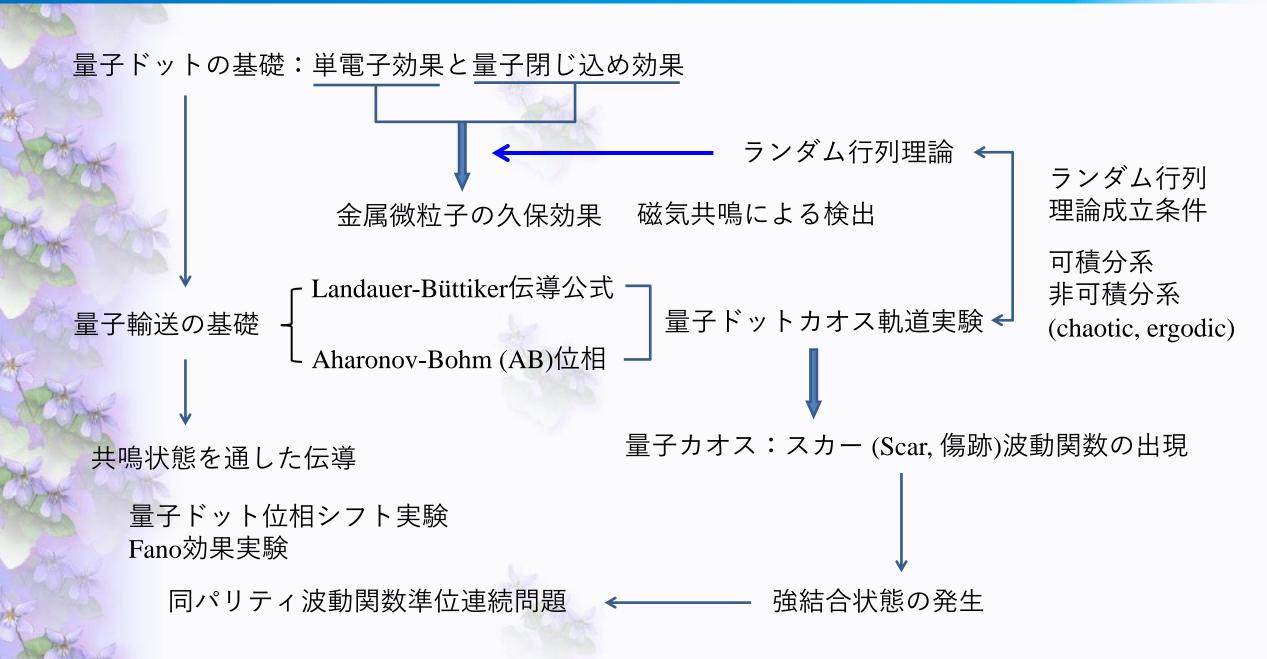


Review (ほぼ一体問題)



Review-2 (多体問題)

量子情報処理と量子ビット

量子エンタングルメント 測定とエンタングルメント 量子系の量子回路表現 量子ゲート操作によるカオスの発生

量子ビットとしての量子ドット・

2量子ドット系 電荷量子ビット

スピンブロッケードスピン量子ビット

1量子ドット スピン量子ビット

量子ビットと量子デコヒーレンス

純粋状態と混合状態,密度行列量子力学 ボソン(調和振動子)環境中の量子ビット 記憶効果による非マルコフ過程化

古典⇔量子の相転移 → 超伝導絶縁体転移(?)

Qubit in a fermion bath

So far

Quantum coherence in qubit

How about the fermions traversing the qubit?

What is "measurement"?

$$|\psi\rangle = |\psi_A\rangle + |\psi_B\rangle$$

そもそもなぜ、量子ドットで個数を 数えた電子が干渉できるのか?

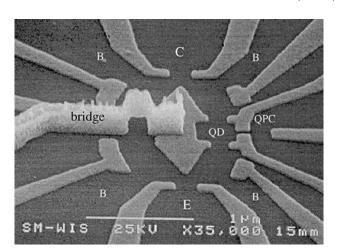
$$|\Psi\rangle = |\psi_A\rangle |A\rangle + |\psi_B\rangle |B\rangle$$

"Collapse" of wavefunction into ψ_A (or ψ_B).

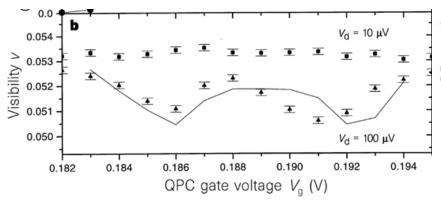
State entangled with macroscopically distinguishable states $|A\rangle$ and $|B\rangle$

電気伝導する電子のコヒーレンス:干渉計の干渉成分振幅 (visibility)で判断できるのではないか?

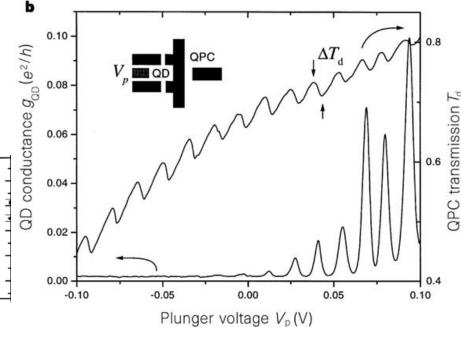
Buks et al. Nature **391**, 871 (`98)



QPC charge detector

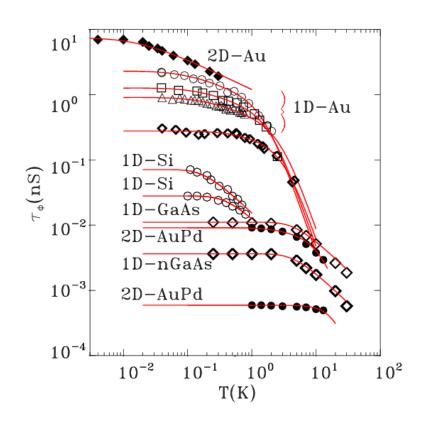


Onloo Onloo

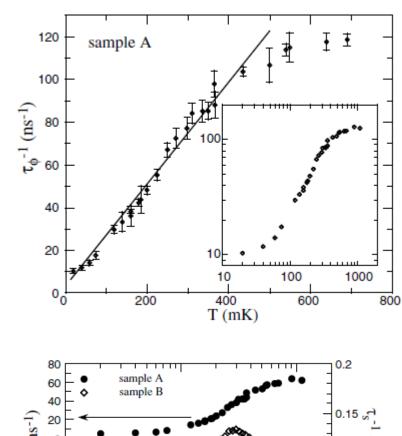


ノイズを検出しないとデコヒーレンスが生じない?

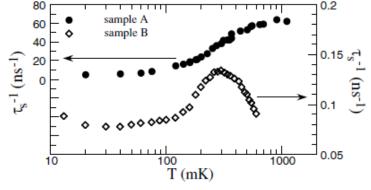
Quantum decoherence at low temperatures



Mohanty et al. PRL **78**, 3366 (1997).

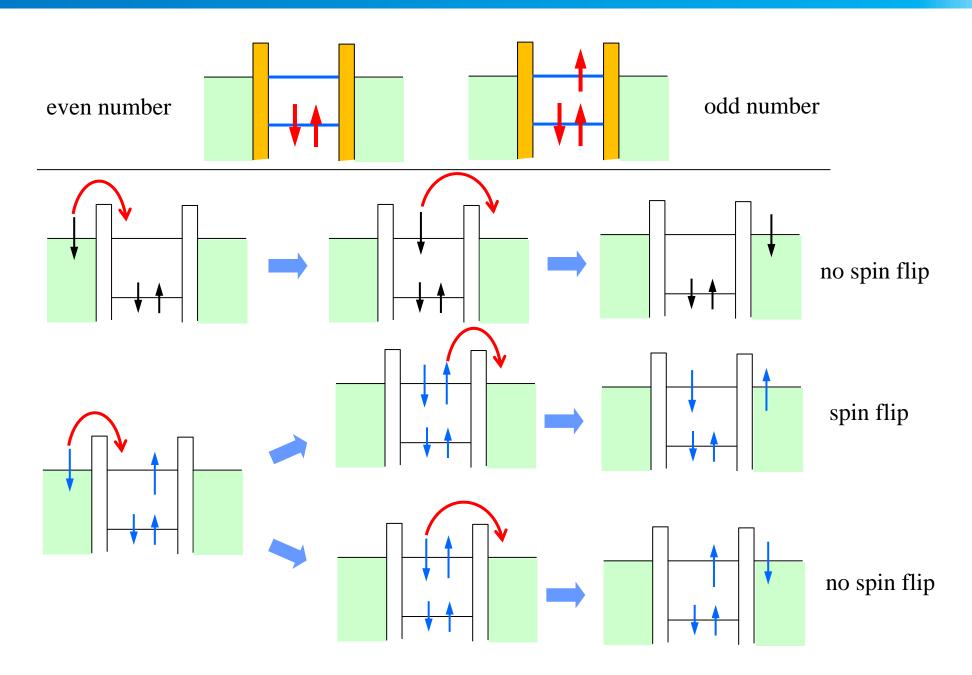


なぜ磁性不純物で decohere するのか?

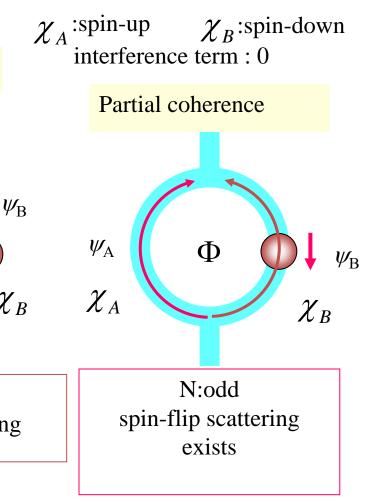


Shopfer et al. PRL**90**,056801(03).

ドットスピンの有無でdecoherenceがON/OFFする?



スピン反転と部分的コヒーレンス



$$\frac{1}{\sqrt{2}}(|s\uparrow\rangle\,|d\downarrow\rangle-|s\downarrow\rangle\,|d\uparrow\rangle) \quad \, スピン散乱により経路自由度とドットスピンがエンタングルする$$

Theoretical approach (1) (ざっと見るだけ)

H. Akera, PRB**59**, 9802 (1999).

$$H = H_d + H_L + H_t$$

$$\det H_d = \sum_{n\sigma} \epsilon_{n\sigma} c_{n\sigma}^{\dagger} c_{n\sigma} + H_{\text{int}} \qquad H_L = \sum_{lk\sigma} \epsilon_{lk\sigma} c_{lk\sigma}^{\dagger} c_{lk\sigma} \qquad H_t = \sum_{lkn\sigma} (V_{lkn} c_{lk\sigma}^{\dagger} c_{n\sigma} + h.c.)$$
Initial Intermediate Final
$$|i\rangle = |ek\sigma, L; N, SS_z\rangle \qquad |m\rangle = |L; N+1, \tilde{S}\tilde{S}_z\rangle \qquad |f\rangle = |ck'\sigma', L; SS_z'\rangle$$

$$\tilde{S}_z = S_z + \sigma/2 \qquad S_z' + \sigma'/2 = S_z + \sigma/2$$

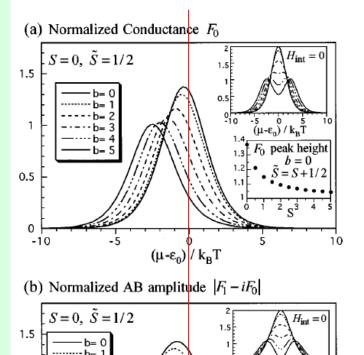
$$\lim_{l=e} \tilde{S}_z + \frac{1}{\hbar} |\langle i|\hat{T}|f\rangle|^2 \delta(E_i - E_f)$$

$$I = -e \sum_{k\sigma S_z} \sum_{k'\sigma'S_z'} [P_{i,f} f_{ek\sigma} (1 - f_{ck'\sigma'}) g_{NS_z} - P_{f,i} f_{ck'\sigma'} (1 - f_{ek\sigma}) g_{NS_z'}]$$

The retarded Green function is calculated on the non-crossing approximation.

-10

H. Akera, PRB59, 9802 (1999).



 $(\mu - \varepsilon_0) / k_B T$

 $(\mu - \varepsilon_0) / k_B T$

Koenig & Gefen PRL86, 3855('01), PRB65,04316('02).

Keldysh Green function approach

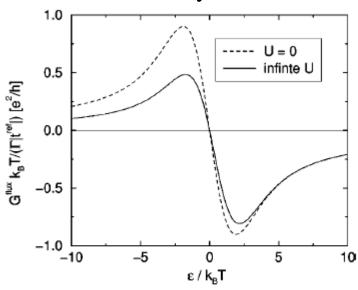


FIG. 5. Interference signal for AB interferometer with a single QD. Asymmetry in the magnitude of the signal appears for nonzero U. Plotted is the flux-dependent part of the conductance, normalized by $|t^{\text{ref}}|\Gamma/(k_BT)$, in units of e^2/h .

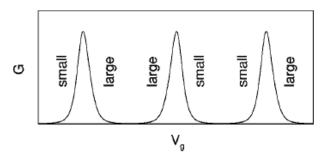


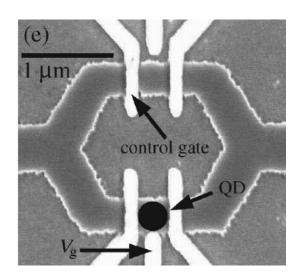
FIG. 6. Sequence of asymmetry of AB oscillations in the Coulomb blockade regime. The solid line depicts schematically the conductance oscillations vs the gate voltage $V_{\rm g}$, and shows the Coulomb peaks. Regions of small and large AB amplitudes are indicated, showing the asymmetry between two adjacent Coulomb blockade valleys ("large" corresponds to a valley with a total spin 0, while "small" corresponds to an S=1/2 valley).

量子ドットスピン自由度は「環境」とエンタングルしてデコヒーレンスを起こすと仮定

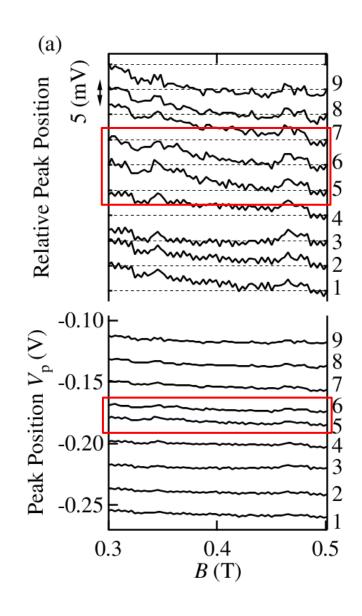
Problem: How to prepare the same transport condition but the electron spins on the dot?

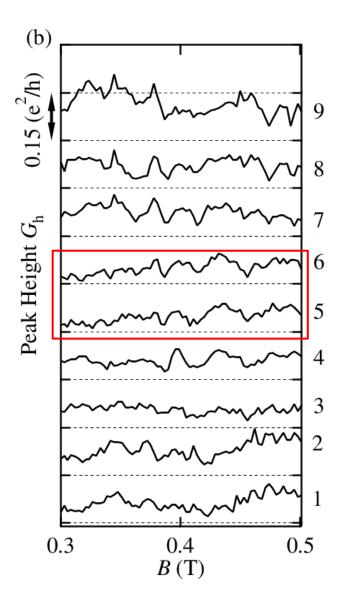
AB amplitude: strongly affected by conducting channels, tunneling probabilities, etc. They easily change with the gate voltage.

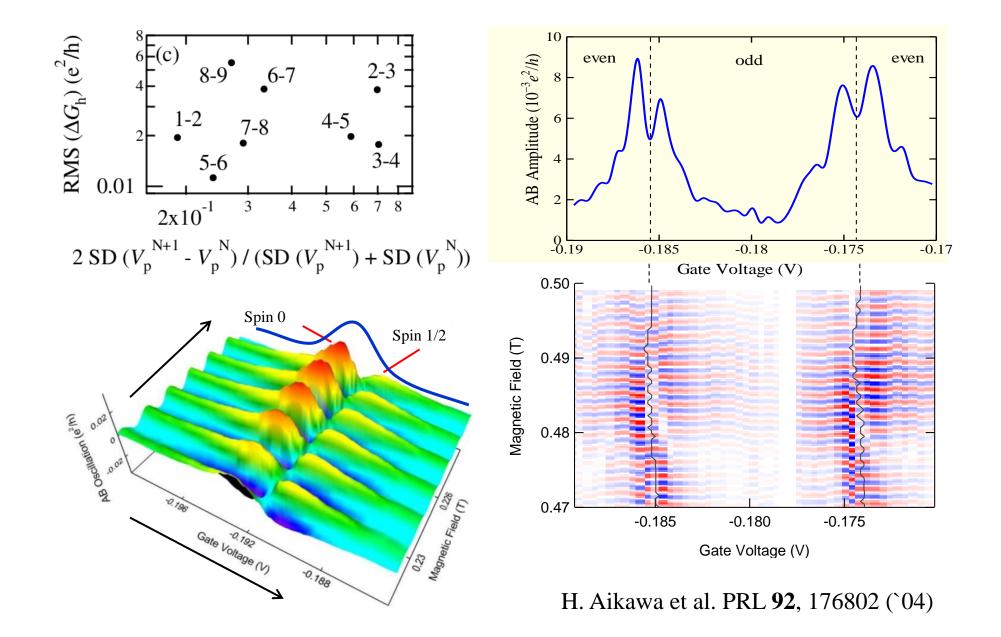
Answer: Find "spin-pair" state! the same quantum state but spin



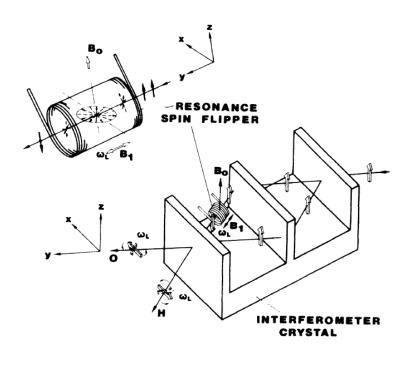
Sample configuration

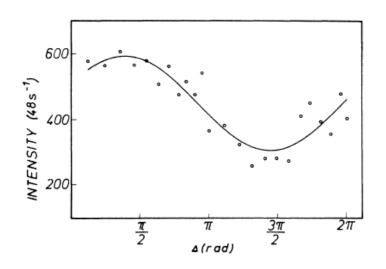






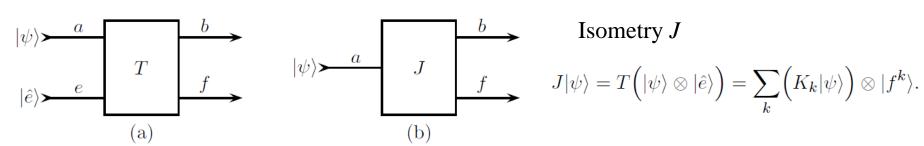
Neutron diffraction experiment





Badurek et al. PRA 34, 2600 (1986).

What is the difference?



Neutron diffraction: adiabatic, nearly perfect quantum channel

Quantum dot: noisy quantum channel が成立しない場合:近藤効果

補遺) エネルギー散逸が遅い場合の取り扱い

Caldeila-Leggett 量子Brown運動:散逸と運動速度が同程度

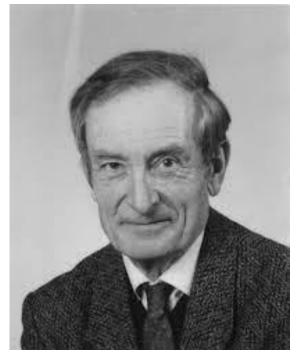
エネルギー散逸が遅い場合:Lindblad型量子マスター方程式(マルコフ的)

マルコフ的マスター方程式:系が「過去を記憶することがない」環境に接している時に成立

$$\begin{split} \dot{\rho}(t) &= L\rho(t) \\ L\rho &= -i[H,\rho] + \sum_{\alpha} (2\Gamma_{\alpha}\rho\Gamma_{\alpha}^{\dagger} - \Gamma_{\alpha}^{\dagger}\Gamma_{\alpha}\rho - \rho\Gamma_{\alpha}^{\dagger}\Gamma_{\alpha}) \qquad \Gamma_{\alpha}: 任意の演算子 \\ \text{CP map} \quad \Phi(\rho) &= 2\sum_{\alpha} \Gamma_{\alpha}\rho\Gamma_{\alpha}^{\dagger} \\ L\rho &= -i[H,\rho] + \Phi(\rho) - \frac{1}{2}(\Phi^{\dagger}(\mathbb{I})\rho + \rho\Phi^{\dagger}(\mathbb{I})) \end{split}$$

熱浴の詳細が余り問題にならない場合

量子ドットの近藤効果とコヒーレンス



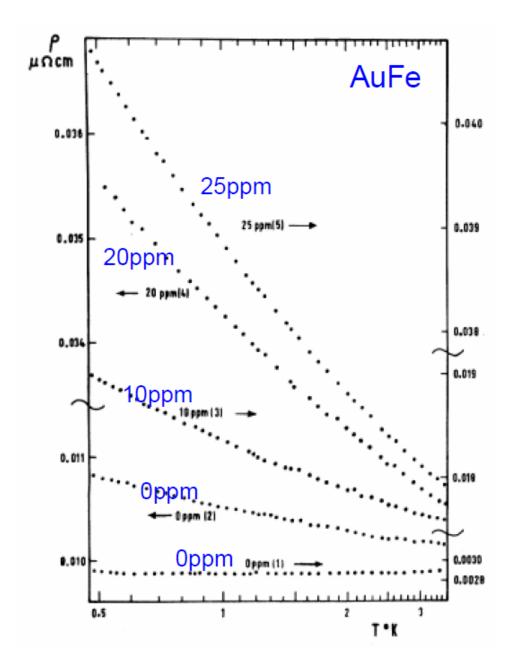
Kenneth Wilson 1936 - 2013

1982 Nobel prize

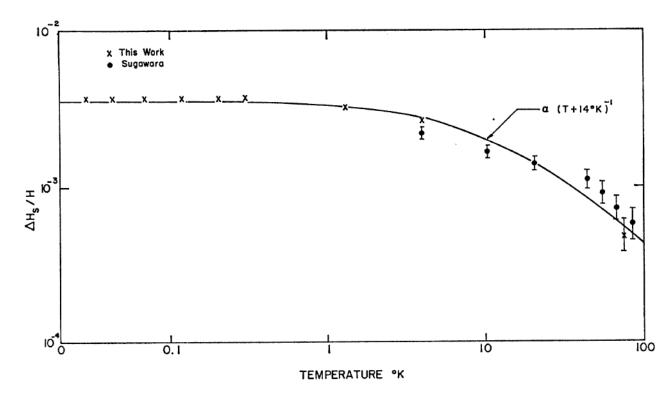
Jacques Friedel 1921 - 2014

Jun Kondo 1930 - 2022

The Kondo effect in dilute magnetic alloy

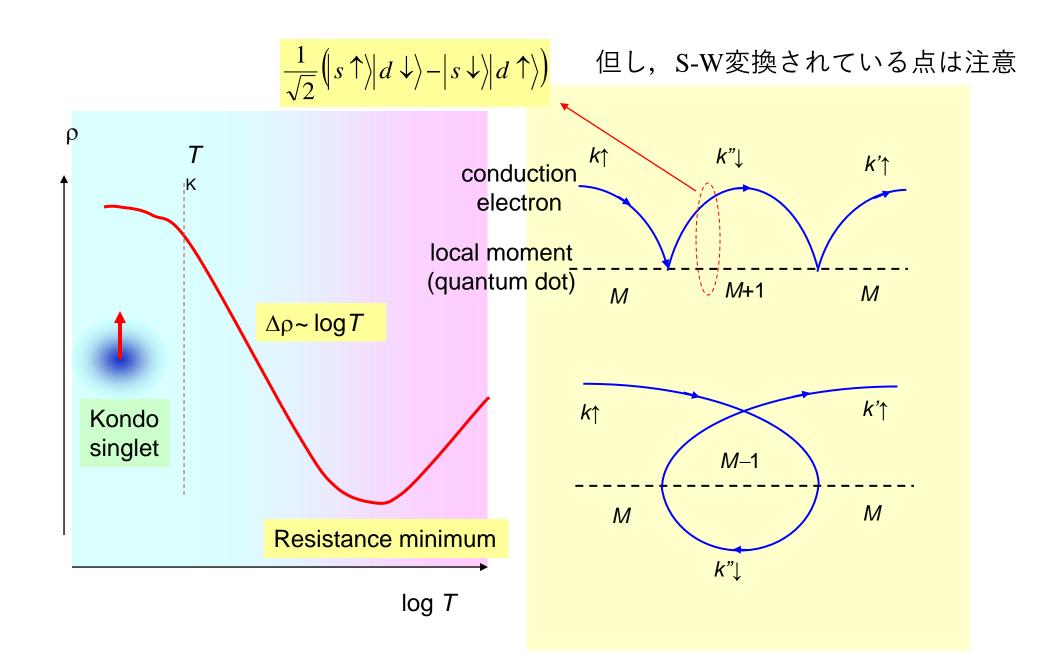


CuFe NMR line width



Heeger et al., Phys. Rev. 172, 302 (1968)

The Kondo effect in dilute magnetic alloys



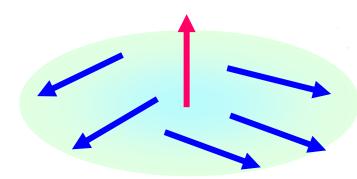
The Kondo singlet

Yosida's variational ground state A. Yoshimori, PR168 (1967)

$$\underline{\psi} = \{ \sum_{k} \left[\Gamma_{k}{}^{\alpha} a_{k\downarrow}{}^{\dagger} \alpha + \Gamma_{k}{}^{\beta} a_{k\uparrow}{}^{\dagger} \beta \right] \longrightarrow \left(s \uparrow \rangle \left| d \downarrow \rangle - \left| s \downarrow \rangle \right| d \uparrow \rangle \right)$$

$$+\sum_{k_1k_2k_3}\left[\Gamma_{k_1k_2k_3}{}^{\alpha\,\downarrow}a_{k_1\downarrow}{}^{\dagger}a_{k_2\downarrow}{}^{\dagger}a_{k_3\downarrow}\alpha+\Gamma_{k_1k_2k_3}{}^{\beta\uparrow}a_{k_1\uparrow}{}^{\dagger}a_{k_2\uparrow}{}^{\dagger}a_{k_3\uparrow}\beta\right]$$

$$+ \Gamma_{k_1k_2k_3}{}^{\alpha\dagger}a_{k_1\downarrow}{}^{\dagger}a_{k_2\uparrow}{}^{\dagger}a_{k_3\uparrow}\alpha + \Gamma_{k_1k_2k_3}{}^{\beta\downarrow}a_{k_1\uparrow}{}^{\dagger}a_{k_2\downarrow}{}^{\dagger}a_{k_3\downarrow}\beta]$$



Magnetic impurity: Screened by a Kondo cloud

Single body resonance — Quantum coherence between multiply scattered waves — Spatially localized state, discrete energy levels

Many body resonance ← multiple scattering with many electrons of the same energy (Fermi energy) with quantum entanglement in spin

Spatially localized state, energy level is the same as the Fermi energy

不純物Anderson模型

Anderson模型
$$lpha=\mathrm{L,\,R}$$
 (左右電極)

$$\mathcal{H} = \sum_{\alpha k \sigma} \epsilon_k c_{\alpha k \sigma}^{\dagger} c_{\alpha k \sigma} + \sum_{\sigma} \epsilon_{\rm d} d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow} + \sum_{\alpha k \sigma} (V_{\alpha} c_{\alpha k \sigma}^{\dagger} d_{\sigma} + \text{h.c.})$$

電極電子

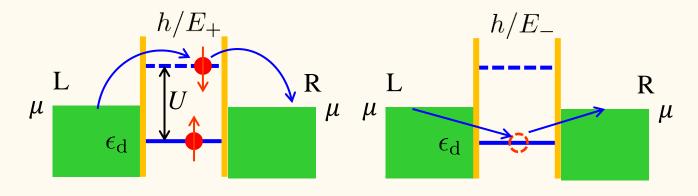
ドット電子

トンネル

$$E_{+} = \epsilon_{\rm d} + U - \mu,$$

$$E_{-} = \mu - \epsilon_{\rm d}$$

有限寿命中間状態: $E_{+} = \epsilon_{d} + U - \mu$, $E_{-} = \mu - \epsilon_{d}$ +: 電子付加. -: 電子逸出



中間状態を通したトンネル振幅:

$$\pm \frac{V_{\rm L}^* V_{\rm R}}{E_{\pm}}$$
 (co-tunneling)

ユニタリー変換

$$\gamma_{k\sigma} = (V_{\rm L}^* c_{{\rm L}k\sigma} + V_{\rm R}^* c_{{\rm R}k\sigma}) / \sqrt{|V_{\rm L}|^2 + |V_{\rm R}|^2}$$

$$\bar{\gamma}_{k\sigma} = (-V_{\rm R}c_{{\rm L}k\sigma} + V_{\rm L}c_{{\rm R}k\sigma})/\sqrt{|V_{\rm L}|^2 + |V_{\rm R}|^2}$$

 $\bar{\gamma}_{k\sigma}$ をトンネル項から落とし、電極自由度を消去

不純物Anderson模型とs-d模型 (Schrieffer-Wolf 変換) (ざっと見るだけ)

$$\mathcal{H} = \underbrace{\sum_{k\sigma} \epsilon_k \gamma_{\alpha k\sigma}^\dagger \gamma_{\alpha k\sigma} + \epsilon_{\rm d} \sum_{\sigma} d_{\sigma}^\dagger d_{\sigma} + U d_{\uparrow}^\dagger d_{\uparrow} d_{\downarrow}^\dagger d_{\downarrow}}_{\mathcal{H}_0} + V \underbrace{\sum_{k\sigma} (\gamma_{k\sigma}^\dagger d_{\sigma} + \text{h.c.})}_{k\sigma} \qquad \mathcal{H}_1 \text{ を摂動とする}$$

$$S$$
: 反エルミート演算子 $(S^{\dagger} = -S)$ $\mathcal{H} = e^{S}\mathcal{H}e^{-S} = \mathcal{H} + [S,\mathcal{H}] + \frac{1}{2}[S,[S,\mathcal{H}]] + \cdots$ $(e^{S}$ はユニタリー) $\mathcal{H}_{1} + [S,\mathcal{H}_{0}] = 0$ と S を選ぶと,最低次で $\mathcal{H} = \mathcal{H}_{0} + \frac{1}{2}[S,\mathcal{H}_{1}]$

Sの具体的な形を求める.試行形 $S = \sum_{k=0}^{\infty} (A_k + B_k d_{-\sigma}^{\dagger} d_{-\sigma}) \gamma_{k\sigma}^{\dagger} d_{\sigma} - \text{h.c.}$

$$[\mathcal{H}_{0}, S] = \sum_{k\sigma} \epsilon_{k} (A_{k} + B_{k} n_{d-\sigma}) \gamma_{k\sigma}^{\dagger} d_{\sigma} + \text{h.c.} + \sum_{k\sigma} \epsilon_{d} (-A_{k} - B_{k} n_{d-\sigma}) \gamma_{k\sigma}^{\dagger} d_{\sigma} + \text{h.c.}$$

$$+ U \sum_{k\sigma} (-A_{k} n_{d-\sigma} - B_{k} n_{d-\sigma}) \gamma_{k\sigma}^{\dagger} d_{\sigma} + \text{h.c.} \quad (n_{d\sigma} \equiv d_{\sigma}^{\dagger} d_{\sigma})$$

$$= \sum_{k\sigma} [(\epsilon_{k} - \epsilon_{d}) A_{k} + (\epsilon_{k} - \epsilon_{d} - U) n_{d-\sigma} B_{k} - A_{k} U n_{d-\sigma} B_{k} - A_{k} U n_{d-\sigma}] \gamma_{k\sigma}^{\dagger} d_{\sigma} + \text{h.c.}$$

条件より
$$A_k = \frac{V}{\epsilon_k - \epsilon_d}, \quad B_k = V \left[\frac{1}{\epsilon_k - (\epsilon_d + U)} - \frac{1}{\epsilon_k - \epsilon_d} \right]$$

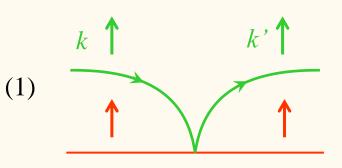
s-d 模型

以上を少し計算 $(|\varepsilon_k - \mu| \ll E_+$ と仮定)すると有効ハミルトニアン

$$\mathcal{H}_{\text{eff}} = \sum_{k\sigma} \epsilon_k \gamma_{k\sigma}^{\dagger} \gamma_{k\sigma} + \frac{V^2 E_+ E_-}{E_+ + E_-} \sum_{kk'} [\hat{S}_+ \gamma_{k'\downarrow}^{\dagger} \gamma_{k\uparrow} + \hat{S}_- \gamma_{k'\uparrow}^{\dagger} \gamma_{k\downarrow} + \hat{S}_z (\gamma_{k'\uparrow}^{\dagger} \gamma_{k\uparrow} - \gamma_{k'\downarrow}^{\dagger} \gamma_{k\downarrow})] = \mathcal{H}_0 + \mathcal{H}_J$$
 が得られる (s-d 模型). $J < 0$ $\hat{S}_- = d_+^{\dagger} d_{\uparrow}, \quad \hat{S}_+ = d_+^{\dagger} d_{\downarrow}, \quad \hat{S}_z = (d_+^{\dagger} d_{\uparrow} - d_+^{\dagger} d_{\downarrow})/2$

電気伝導への寄与 (不純物散乱)

簡単のため $|\uparrow;k\uparrow\rangle \rightarrow |\uparrow;k'\uparrow\rangle$ のみ

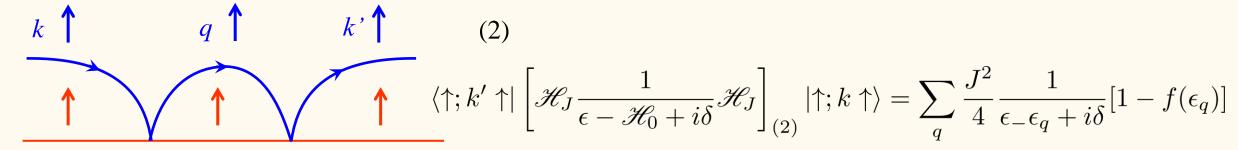


遷移確率 $(\text{Fermi 黄金則}) \quad P = \frac{2\pi}{\hbar} |\langle i|\hat{T}|f\rangle|^2 \delta(\epsilon_{\text{f}} - \epsilon_{\text{i}})$

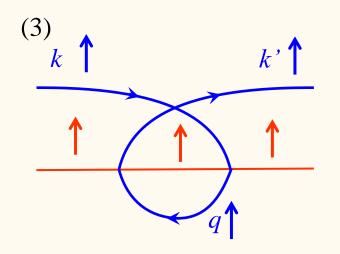
$$\hat{T} = \mathcal{H}_J + \mathcal{H}_J \frac{1}{\epsilon - \mathcal{H}_0 + i\delta} \mathcal{H}_J + \cdots$$

(2)

(1)
$$\langle \uparrow; k' \uparrow | \mathcal{H}_J | \uparrow; k \uparrow \rangle = J/2$$



電気伝導への影響

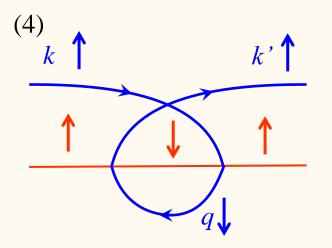


(3)
$$\langle \uparrow; k' \uparrow | \left[\mathcal{H}_J \frac{1}{\epsilon - \mathcal{H}_0 + i\delta} \mathcal{H}_J \right]_{(3)} | \uparrow; k \uparrow \rangle = \sum_q \frac{J^2}{4} \frac{-1}{\epsilon_- (2\epsilon - \epsilon_q) + i\delta} f(\epsilon_q)$$

(2)+(3)
$$\sum_{q} \frac{J^2}{4} \frac{1}{\epsilon - \epsilon_q + i\delta} = \frac{J^2}{4} \int_{-D}^{D} \frac{\rho d\epsilon'}{\epsilon - \epsilon' + i\delta} = \frac{J^2}{4} \rho \left[\ln \left| \frac{D + \epsilon}{D - \epsilon} \right| - i\pi \right]$$

D:バンド幅,ρ:状態密度

Fermi分布関数は相殺し、異常は生じない (電子-正孔対称性)

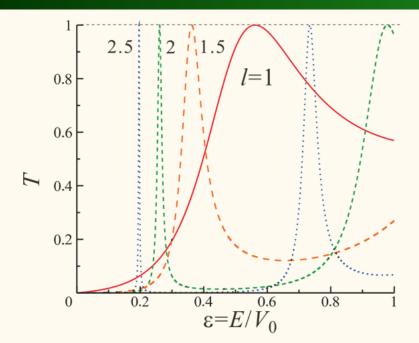


↓電子はdotから放出できない:(2)のスピン反転プロセスはない

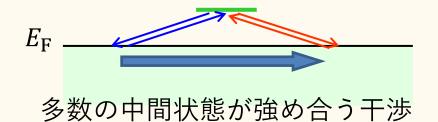
$$\sum_{q} J^{2} \frac{f(\epsilon_{q})}{\epsilon - \epsilon_{q} + i\delta} = J^{2} \int_{-D}^{D} \frac{f(\epsilon')\rho d\epsilon'}{\epsilon - \epsilon' + i\delta} \approx -J^{2}\rho \ln \frac{k_{B}T}{D} \quad |\epsilon| \ll k_{B}T$$

In T 依存性はFermi端から生じている

結局何が生じているのか?



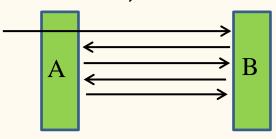
近藤雲状態



量子ビット縮退自由度により(通常はこの効果を相殺している)電子-正孔対称性が破れる

一体の共鳴状態の例 (2重量子井戸, S行列の接続)

$$\left(I - r_{
m R}^{
m (A)} r_{
m L}^{
m (B)}
ight)^{-1} = I + r_{
m R}^{
m (A)} r_{
m L}^{
m (B)} + (r_{
m R}^{
m (A)} r_{
m L}^{
m (B)})^2 + (r_{
m R}^{
m (A)} r_{
m L}^{
m (B)})^3 + \cdots$$



無限回の反射波の干渉効果

孤立している場合:Scar 波動関数

共鳴状態:透過率1

 E_{F} より下:全状態が占有, E_{F} より上:全状態が空乏

多数の電子が同じエネルギー状態にあることによる共鳴状態

多体の共鳴状態

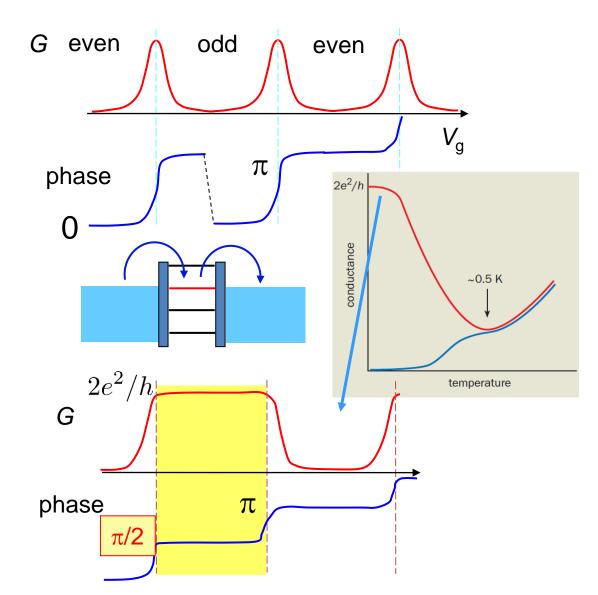
多体のScar 波動関数

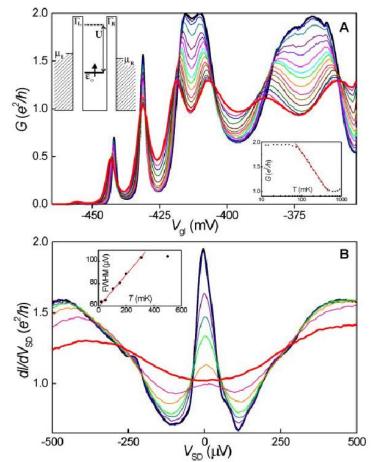
The Kondo effect in quantum dots

共鳴状態

透過率

位相シフト

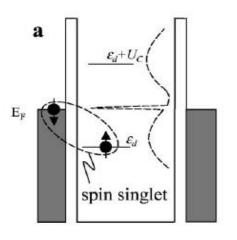


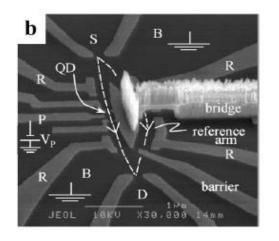


W. G. van der Wiel et al. Science **289**, 2105 (2000).

25

"Phase Sensitive" Measurement

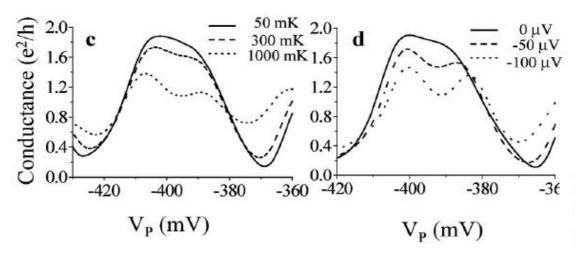




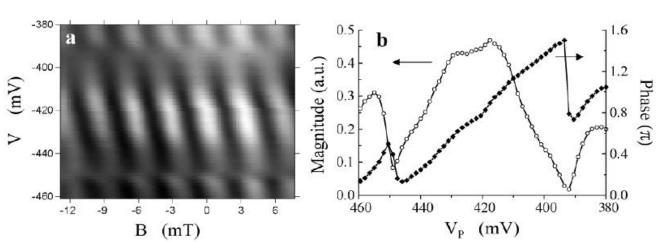
Coherence appears as the AB oscillation

No phase shift locking to $\pi/2$?

Breakdown of Anderson impurity model?



Y. Ji et al. PRL 88, 076601 (2002)

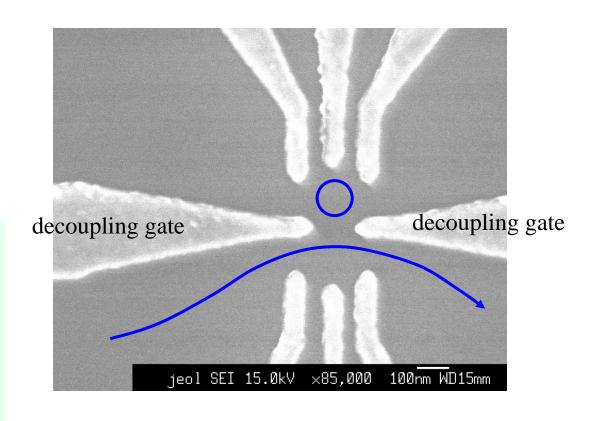


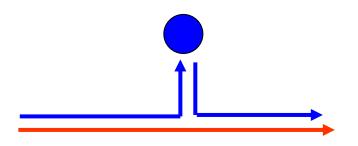
T結合型量子ドット量子細線複合系

- U = 0.3 0.7 meV
- $\Delta = 0.3 0.5 \text{meV}$
- Dot diameter ~ 50nm

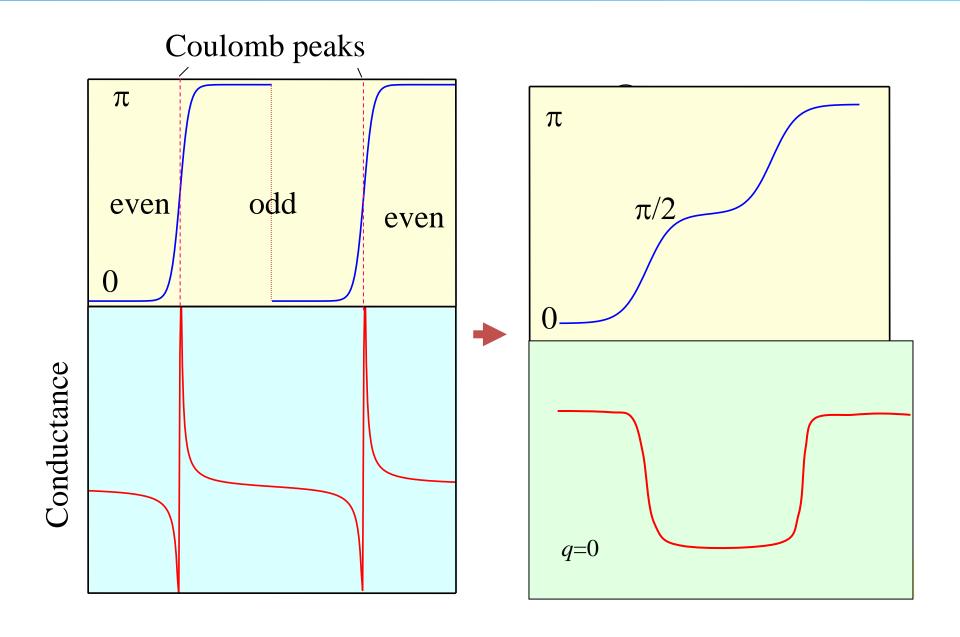
干渉計の空間的な大きさが小さく デコヒーレンスがおこりにくい.

電子の出入り口が1箇所であるため, 横型でもドットサイズを小さくできる.

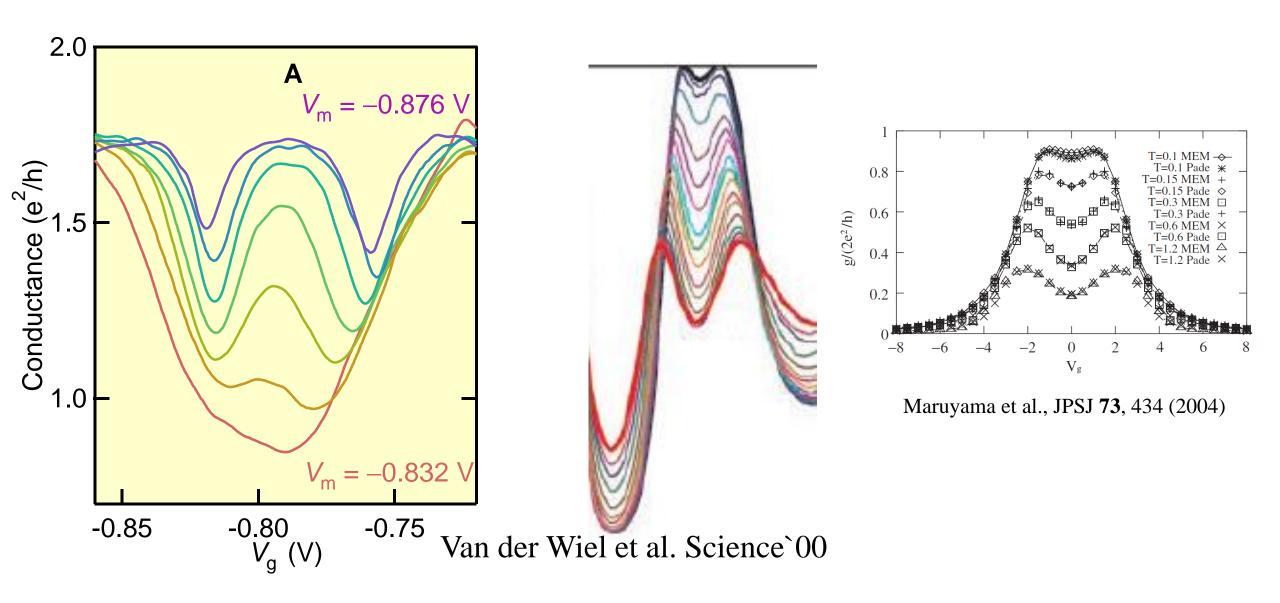




量子ドット伝導とFano-近藤効果

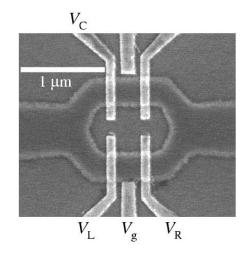


Coupling Strength Dependence of Anti-Resonance

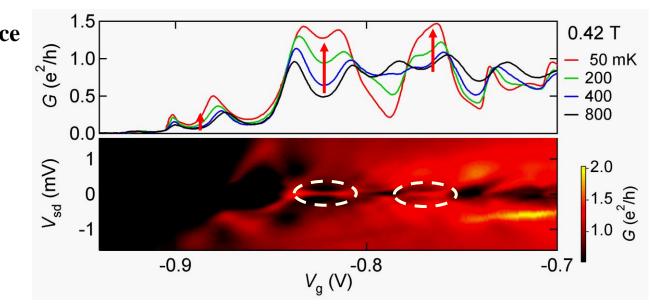


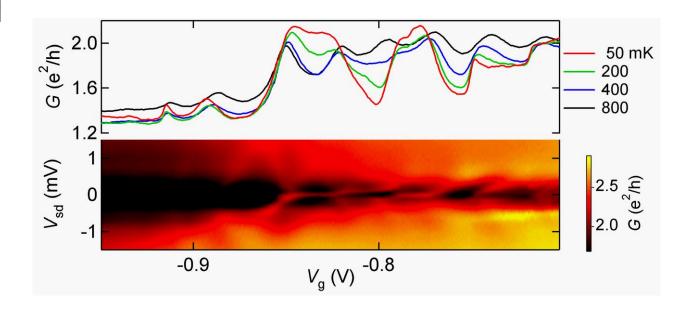
The Kondo Effect in an AB Ring + a Quantum Dot

Without reference

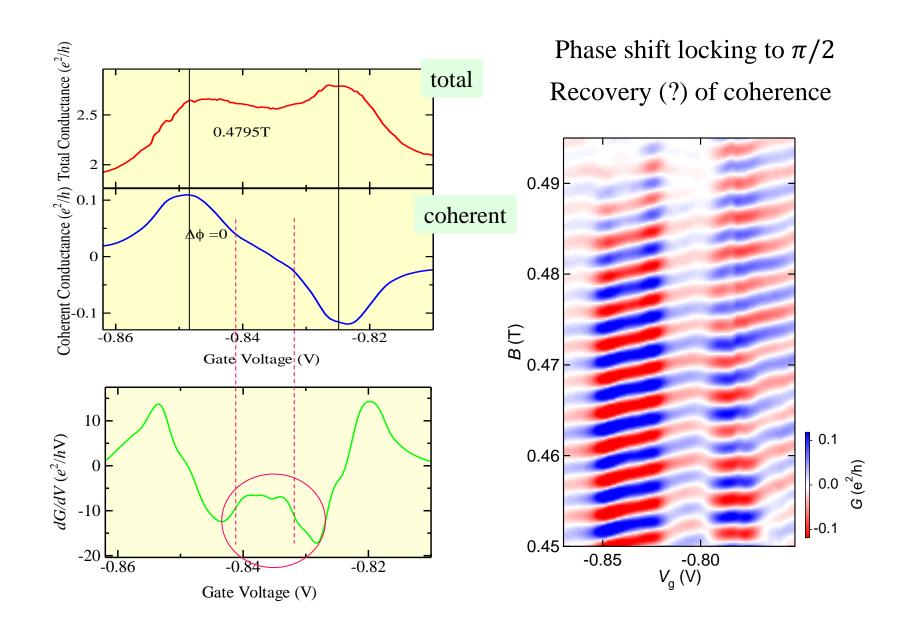


With reference





"Coherent" component and the Fano-Kondo Effect



Weak entanglement between localized spin and conduction spin?

Yosida's variational ground state

$$|\Psi_{S}\rangle = \frac{1}{\sqrt{2}}(|\phi_{\downarrow}\rangle |\chi_{\uparrow}\rangle - |\phi_{\uparrow}\rangle |\chi_{\downarrow}\rangle)$$

$$\begin{vmatrix} |\chi_{\uparrow\downarrow}\rangle| &: \text{dot state} \\ |\phi_{\downarrow}\rangle &= \frac{1}{\sqrt{N}} \sum_{k>k_{\mathrm{F}}} \Gamma_{\mathbf{k}} c_{\mathbf{k}\downarrow}^{\dagger} |F\rangle \\ |F\rangle &= \prod_{k \leq k} c_{\mathbf{k}\sigma}^{\dagger} |0\rangle \end{vmatrix}$$

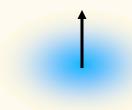
Entanglement entropy between electron spins in Kondo cloud and localized spin

Entanglement entropy between an electron spin in Kondo cloud and localized spin

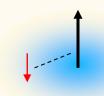
S. Oh & J. Kim, PRB73, 052407(`06)

$$S(\rho_{\rm im})=1$$

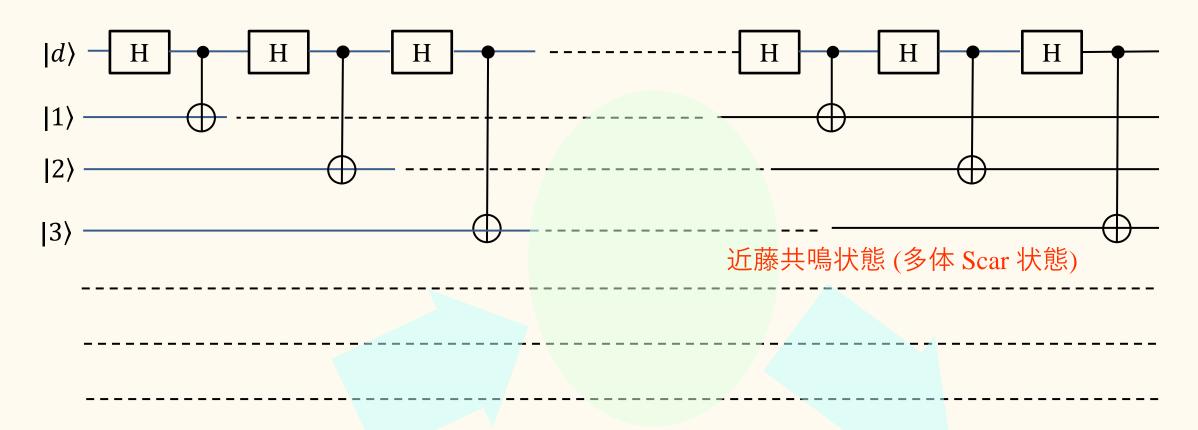
Maximally entangled



$$S(\rho) \approx O(1/N)$$

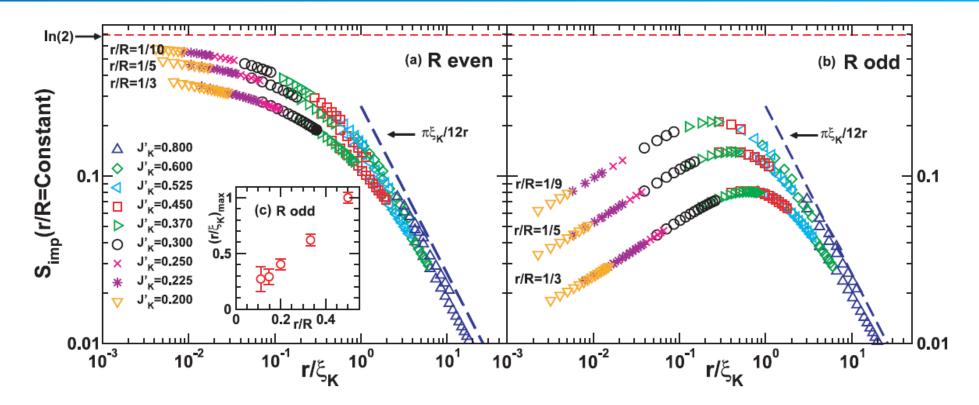


スピン散乱 → 近藤共鳴の量子情報的イメージ (全くのイメージ)



近藤共鳴状態全体から作った波束による伝導

近藤効果によるエントロピー低下



- ➤ 近藤効果により、不純物の近傍で、Entanglement entropyが低下! Sørensen et al., J. Stat. Mech. L01001 (2007).
- ▶ カノニカル変換によって、局在スピンと伝導電子スピンを完全に分離することに成功 Ashida et al., Phys. Rev. Lett. 121, 026805 (2018).

Summary

- 1. 量子デコヒーレンスの要因
- 2. スピン散乱による量子デコヒーレンス
- 3. (Lindblad 量子マスター方程式)
- 4. 近藤効果,近藤共鳴
- 5. 量子ドットの近藤効果とコヒーレンス