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In the first half of this fiscal year (FY2021), I am assigned to the lecture on ”Physics of Semiconductors.”
It’s been a long time since I gave a lecture in one semester last time (8 years), and several new themes, which I
want to introduce, have appeared. I am not very good at giving lectures like a machine-gun and want to take a
course with a comparatively small amount of content. Though, maybe it’s not enough for motivated students
who want to learn a lot. Therefore, the notes follow the lecture and cover the advanced content that would
open the eyes for more expansive fields. I would also like to introduce references for those who want to expand
their studies.

Chapter 1 General Properties of Semiconductors

1 What characterizes semiconductors?

Semiconductors refer to a form of solid that is usually classified by electrical conduction. Metal have large densi-
ties of states around the Fermi levels (that is, the Fermi surfaces exist) and are good conductors while insulators
have their Fermi levels deep inside the wide energy gaps and interrupt electric currents. Semiconductors stand
somewhere between them. They usually have comparatively narrow energy band-gaps, low but finite electric
conductance at high temperatures, become insulating with lowering the temperautres.

However, such a viewpoint is not always usuful nowadays. For example, a fine insulator with a large bandgap
of 5.5 eV at room temperature, such as diamond, is also called a semiconductor, and devices are being made
from it while materials with zero bandgap, such as graphene, are also important targets of researches in the
semicondutor field. Rather, it seems to me that the property of “structure sensitive” fits better into the recent
usage of the term “semiconductors.” This is a long-used expression, which indicates the property that the
electric conduction is sensitive to the ultra-small amount of impurities. Although, after the appearances of
heterojunctions, MOS structures, superlattices, nanostructures, etc., I think the same expression is applicable
to the sensitiveness of the transport properties on such real space structures.

In most cases, the object of such structure sensitive transportation is the electric charge, but recently the
spin current in which the magnetic moment is transported by spin has also become an important research
object. Research on spintronic devices is also active, and there is a possibility that some will eventually become
practical.

For the spin current, which is the flow of magnetic momentum, the non-magnetic metals whose spins are
canceled by the time-reversal symmetry, are like an empty space. It can be seen as a system similar to a
semiconductor, which is a charge neutral space due to the charge cancellation of the nuclei and electrons. In
fact, the inside of the metal is almost equipotential under normal experimental conditions, but a spin Hall spin
current may exist. In spintronics, these systems are also “structurally sensitive” and look like semiconductors
from the eye of semiconductor researchers. However, this is rather a unique view of myself, and usually,
semiconductors are defined as those that are structurally sensitive in electric conduction.

2 Crystal Structures

2.1 Lattice

A solid classified into crystal commonly has a spatially periodic structure of basis, which is also a certain
structure of atoms. We represent such a state of matter as a lattice. “Spatially periodic structure” can be
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represented as follows. An arbitrary point in a crystal with spatial coorinate r has an infinite number of
equivallent points r′, which is represented, in the case of three-dimensional lattice, with three constant vectors
ai (i = 1, 2, 3) and three integers li (i = 1, 2, 3) as

r′ = r +
∑

i=1,2,3

liai = r +R. (1.1)

Then the unit of the period is a certain set of atoms around r. We take an arbitrary point in the unit. Such
points form the lattice. We call such points as the lattice point.

The basis is the unit of the periodicity in the crystal and should be taken as to have the minimum number of
atoms. ai in eq.(1.1) are called primitive vectors, while R is called a lattice vector. The parallelpiped with
ai as the edges contains a single basis is called primitive cell, with which we can fill up the space without gap.
Primitive vectors often can be taken in multiple ways and usually taken as to make the symmetry of the lattice
highest. A primitive cell is defined as a polygon which contains single basis and fills up the entire space without
gap. Then there are infinite ways to define a primitive cell other than the above mentioned paralledpiped.
When a block with multiple primitive cells is taken as the unit of period and the periodic structure has a higher
symmetry, the block is more convenient for the unit. We then consider a unit cell, which may consist of single
or multiple primitive cells.

As mentioned above, a crystal is composed of a unit structure and a lattice. The example of diamond
structure, which often appears in group-IV semiconductors, is illustrated in Fig.1.1. In Fig.1.1(a) the atomic
positions are indicated by middle-sized spheres, of which colors (black and white) indicate two different atomic
sites in the crystal. The basis is composed of a black and a white atoms and a primitive cell can be taken as to
contain these two sites. A point in the primitive cell, e.g. the position of black atom, can be taken as the lattice
point. The consequent lattice is, as shown in (b), face centered cubic (fcc). Let ex,y,z be the unit vectors of
the Cartesian coodinate system, then the primitive vectors can be taken as

a1 =
a0
2
(ex + ey), a2 =

a0
2
(ey + ez), a3 =

a0
2
(ez + ex). (1.2)

The primitive cell of the parallelpiped spanned by the vectors in eq.(1.2) is drawn with solid lines in Fig.1.1(a).
On the other hand, the cubic drawn in the figure is often taken as a unit cell.

The lattices are classified by seven crystal system and additonal lattice point (no point, face-centered,
body-centered, base-centered) into 14 species of Baravais lattice.

2.2 Bravais lattice

The number of crystal structures is huge, maybe infinite, if we count, e.g. differences in molecular structures
of organic crystals. On the other hand, the number of independent lattice structures is as small as 14 as shown
in Fig.1.2. These 14 lattices are called three dimensional Bravais lattice.

The definition of the Brave lattice classification is based on the discussion of spatial symmetry. The spatial
symmetry of a manifold is defined by whether the manifold is invariant for the symmetry operations, such as
rotation, reflection, translation, etc. For detailed discussion see, e.g. Ref.[1, 2]. Here we briefly summarize how
we reach the 14 Bravais lattice.

We first classify the lattices with the relative lengths of primitive translatinal vectors a1，a2，a3 and the
angles defined by two edges θ12，θ23，θ31 (see the right-down inset of Fig.1.2). And for the rotational symmetry
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Figure 1.1: (a) Diamond structure.
The circles corespond to atomic po-
sitions, while the thin cylinders cor-
respond to covalent bonds. There is
a single atom species though the two
positions identified with colors, are
different. The sold lines indicate the
primitive cell. (b) Face-centered cu-
bic lattice of the diamond crystal of
(a). a1−3 are the primitive vectors.

E1-2



triclinic
ortho-
rhombic monoclinictetragonal hexagonal

rhombo-
hedralcubic

body-
centered

face-
centered

base-
centered

primitive

a1
a2

a3

q12

q31q23

Figure 1.2: Bravais lattices of three-dimension. The parameters for the classification are illustrated in the
right-down space.

around a primitive translational vector, the angle π/2 is a spacial value and whether the angles θij are π/2 or
not is the other condition. These conditions leads us to the classification in Tab.1. This classification is called
crystal systems. In three dimension, possible crystal systems are seven species in in Tab.1 and on the first
column in Fig.1.2.

In the classification of crystal system, the focus is on the symmetry in the positions of neighboring lattice
points. There are, however, some cases, in which we need to consider the relation between the next neighboring
lattice points. For example, we take two (simple) cubic lattices and put them so as to lattice points of one of
them are placed to the center of cubic in the other lattice. In this case if we look at the neighboring relation,
the cubic symmetry seems to be lost but the second next ones are originally in cubic symmetry and the lattice
is still classified into cubic crystal system but contains an additonal lattice point at the center of cubic. The
lattice, which contains an additional lattice point at the center of simple cubic, is called body-centered cubic
(bcc).

In this way, the additional lattice points to the simple crystal system is another condition for the classification.
The positions of such additional points are face-centerd, body-centered and base-centered. As a consequence,
we get 14 Bravais lattice shown in Fig.1.2.

Because we have ambiguity in taking “lattice”, the classification by Bravais lattice also has ambiguities. For
a simplest example, in an fcc lattice crystal, if we take the unit as a single face-centered cubic, then the lattice

θ12 θ23 θ31 a1，a2，a3
cubic π/2 π/2 π/2 a1 = a2 = a3
tetragonal π/2 π/2 a1 = a2 ̸= a3
orthorhombic π/2 a1 ̸= a2 ̸= a3
monoclinic π/2 π/2
triclinic π/2
hexagonal π/2 2π/3 a1 = a2
rhombohedral(trigonal) θ0 θ0 θ0 ̸= π/2 a1 = a2 = a3

Table 1: Conditions for Bravais lattice classification in three dimension. The difinitions of the parameters are
shown in the right-down panel in Fig.1.2.
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Figure 1.3: Examples of crystal structures. The centers of spheres indicate the positions of nuclei. (a) bcc-
structure (Li, Na, Ba etc.), (b) fcc-structure (Al, Ni, Ag, Au etc.), (c) hcp-structure (Mg, Co, Cd etc.). These
three often appear in crystals of metals. We get (a) and (b) with simply putting atoms at the lattice points of bcc
and fcc lattices in Fig.1.2. (c) is classified into simple hexagonal lattice with taking two atomic positions which
have a little darker color, as the basis. (d) is zinc-blende, which often appears in compound semiconductors. (e)
is the structure of BEDT-TTF-TCNQ, which is one of organic semiconductors. It is difficult to see the structure
in the BEDT-TTF molecults in the main panel. The inset at the left-down shows the molecule structure in the
view from the direction vertical to the molecular plane.

is simple cubic. Also, the rhombohedral lattice can viewed as a composite of three regular hexagonal prisms
with 120◦ rotations to each other.

In Bravais lattices, the abbrebiations fcc for face-centered cubic and bcc for body-centered cubic are fre-
quently used. These lattices often appear in metal crystals and the primitive cells often consist of single atoms.
Then for the crystal structures, fcc and bcc are also often used. The hexagonal close-packed structure shown in
Fig.1.3(c) is also used as a crystal structure that appears approximately well in metal crystals, and the abbre-
viation hcp is used. The abbreviations for crystal structure are bcc, fcc, and hcp, but there is no hcp “lattice”
in the sense defined here. That is, in Fig.1.3, the three atomic positions in the middle of the structure are not
equivalent to the peripheral atomic positions, and one atom cannot be taken as a unit structure 1. The basic
structure can be taken as a combination of one atomic position in the upper and lower surfaces of Fig.1.3(b)
and one atomic position in the middle, and the Brave lattice is a hexagonal lattice.

Bravais lattice is a classification that focuses on the symmetry of the lattice and is important in the discussion
of symmetry, but the fact that the symmetry of the lattice and the symmetry of the crystal are not the same
means. It is clear from the fact that the unit cell is regarded as a lattice “point” in the lattice and the details
in the unit cell are discarded. Let us take the diamond structure in Fig.1.1 again as an example. The position
of the lower left apex of the regular tetrahedron, which is a part of the ptimitive cell, is the basic cell position,
and the spatial arrangement is fcc in Fig.1.2. The gray colored parallelpiped is a primitive cell containing two
atoms. In Fig.1.1, the difference of the two atomic positions is indicated by shades of colors. In the diamond
structure, the atom species is the same for the two. In the case these are alternatively occupied by different
species of atoms, e.g. Ga and As, the crystal structure is caled zinc-blende(Fig.1.3(d)). That is, zinc-blende
structure also belongs to fcc Bravais lattice. On the other hand, two atoms in the primitive cell are of the same

1On the web, many “hexagonal close-packed lattices” are searched, but in these explanations, the term “lattice structure” was
used for ”crystal structure”, and this combination was created. Also, “closest packing” mathematically means packing the spheres
most densely. Crystals that have a mathematically perfect hcp structure are not known in real atoms because of their anisotropy.
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Figure 1.4: (a) Reciprocal lattice of
fcc-lattice. The structure is classified
to bcc. (b) A way to “cut” the recip-
rocal space to obtain Brillouin zone.
Namely, cut at G/2 with the plane
perpendicular to G, where G is a re-
ciprocal lattice vector. (c) The first
Brillouin zone obtained with the cut-
tings described in (b). The points in-
dicated as Γ，X，L, · · · are the points
with high symmetries.

species in the diamond structure, though of the different species in the zinc-blende structure. The former is
symmetric for the inversion operation at the midpoint along the axis connecting the two positions while the
latter is asymmetric.

Another expample is in Fig.1.3(e), which shows an organic molecular crystal called (BEDT-TTF)2TCNQ.
The atomic positions take a complecated form though the basis is single molecule and the lattice is triclinic.
It is easy to understand the basis has strong anisotropy due to the atomic structure of the molecule and the
symmetry of the crystal and that of the lattice is different. The symmetries of crystals are classified by the
symmetry operations to 230 space groups.

2.3 Reciprocal lattice, Brillouin zone

Because the lattices of crystals have discrete translational symmetry, a potential U(r)(r is spatial coordinate)
caused by the lattice can be expanded in the Fourier seriese as

U(r) =
∑
G

UGe
iGr. (1.3)

From the periodicity in (1.1), U(r +R) = U(r). Then we obtain the condition for G as

G ·R = 2πn (n : integer), ∵ eiG·R = 1. (1.4)

The vectors G which fulfill the condition (1.4) are called reciprocal lattice vector. Just like the real-space
lattice, if we define primitive reciprocal lattice vectors as

ai · bj = 2πδij (i, j = 1, 2, 3), (1.5)

then we can write down bj (j = 1, 2, 3) with |A| ≡ a1 · (a2 × a3) as

b1 =
2πa2 × a3

|A|
, b2 =

2πa3 × a1

|A|
, b3 =

2πa1 × a2

|A|
. (1.6)

A reciprocal lattice vector can be represented as G =
∑

i=1,2,3 hibi (hi : integer). Generally a function with
the periodicity of a lattice can be Fourier expanded with the reciprocal lattice. It is legitimate to say a lattice
and the corresponding reciprocal lattice are in the relation of Fourier transformation 2 .

As we considered primitive cells in spatial lattices, we can define the units of periodic repetition in reciprocal
spaces. That is the Brillouin zone. A general way to obtain Brillouin zones is described in Fig.1.4(b). Let
us see how to obtain the first Brillouin zone around the origin. The procesure is simply to cut the reciprocal
space with planes containing the points G/2 and perpendicular to G, where G are the reciprocal lattice vectors
starting from the origin. The minimum space (polyhedron) around the origin surrounded by such surfaces is

2As an analytic expression, it is enough to remember that the Fourier transform of a regular series of δ-functions is, again, a
regular series of δ-functions. This is a very general principle. An example is the optical frequency comb.
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the first Brillouin zone. This way of “cutting at G/2” will have meaning in considering the band structure,
which will be discussed in the next chapter.

The example of fcc-lattice is shown in Fig.1.4. First, the primitive reciprocal lattice vectors are obtained
from eq.(1.6). Then we find the reciprocal lattice for the fcc-lattice is bcc-lattice as shown in Fig.1.4(a). Next
we apply the method in (b). The reciprocal lattice vectors pointing the nearest neighbor reciprocal lattice
points are the primitive reciprocal lattice vectors ±b1，±b2，±b3. There are equivalent eight planes which
cut the vectors vertically at the midpoints. The polyhedron covered with these planes is a regular octahedron.
However, the planes which cut the vectors pointing the next nearest neighbor reciprocal lattice points at the
midpoints, also cut the octahedron around the vertices. The procesure thus results in the first Brillouin zone
shown in Fig.1.4(c), where Γ，X，L, · · · indicate the points with high symmetry. The points are often used in
the display of band structure.

2.4 Crystals often used as semiconductors

II III IV V VI

4Be
2s2

5B
2s22p

6C
2s22p2

7N
2s22p3

8O
2s22p4

12Mg
3s2

13Al
3s23p

14Si
3s23p2

15P
3s23p3

16S
3s23p4

30Zn
3d10

4s2

31Ga
3d10

4s24p

32Ge
3d10

4s24p2

33As
3d10

4s24p3

34Se
3d10

4s24p4

48Cd
4d10

5s2

49In
4d10

5s25p

50Sn
4d10

5s25p2

51Sb
4d10

5s25p3

52Te
4d10

5s25p4

Which materials shold be called “semiconductors” is a difficult
problem, and some scholars propose the classification of “every
material that is not metal”. In fact, diamond, which was a typical
insulator a while ago, has recently completely established itself
as a semiconductor. Here, let’s have a quick look at the simple
and clear “crystals” of the spatial periodic structure, and those
that are often used as semiconductors in the industry.

As specific examples, we take materials consist of compara-
tively small numbers of elements from Group II to Group VI in
the periodic table. In the right table, we show the part of the
periodic table under consideration with the electronic orbital oc-
cupation. We can guess from the table that the semiconductors
composed of these elements takes similar lattice structures. Here we mainly introduce crystal structures.

2.4.1 Group IV semiconductors

Elementary semiconductors of C, Si, Ge take diamond structure (Bravais lattice is fcc). The bonds in
these crystals are dominated by covalent binding of sp3 hybrid orbitals. Silicon (Si) is of course the king of
semiconductors in the industry. Tin (Sn) are metals in many phases but the form called α-Sn (gray tin) is a
semiconductor with diamond crystal structure.

Creation of low dimensional electron system is a big charm of semiconductor physics, and it is also very
important in the semiconductor industry. In the case of Si, a metal-oxide-semiconductor (MOS) structure has
long been used to create two-dimensional electron systems. Since the oxide layer generally takes an amorphous
structure, the interfacial scattering probability of two-dimensional electrons is high, and it is difficult to obtain
an electron system with high mobility. On the other hand, a two-dimensional electron system with high mobility
has been realized by a method of forming a bf heterojunction using mixed crystals of Si-Ge.

semiconductor lattice constant Å energy gap (RT eV) electron mass m0 hole mass
C 3.56683 5.47 0.25 0.2
Ge 5.64613 0.66 1.64, 0.082 0.04, 0.28
Si 5.43102 1.12 0.98, 0.19 0.16, 0.49
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2.4.2 III-V compound semiconductors

As

Ga

[100]

[010]

[001]

Semiconductors made by combining group III elements and group
V elements on a one-to-one basis, group III and group IV atoms
occupy the lattice points of the diamond structure alternately, that
is, zinc blende structure. Al, Ga, In are often used as group III, and
As, P, Sb, etc. are often used as group V. Many kinds of compound
semiconductors are formed by these combinations, and more kinds of
semiconductors can be synthesized by further mixing different kinds
of elements to form bf mixed crystal. Strictly speaking, these are no
longer crystals because they have lost the spatially regular structure,
but most of the concepts in the crystals work well by considering
some blunting due to lattice disorder.

In reality, these compound semiconductors and mixed crystal
semiconductors are often synthesized by bf epitaxial growth, and
for this purpose, the crystal form and lattice constant should be similar between the heterogeneous semicon-
ductors to be joined. This will be described later.

Many of III-V semiconductors have a direct gap at the origin of the reciprocal lattice space, Γ point, and are
therefore often used for optical devices. In addition, there are many combinations that can form high-quality
heterojunctions by epitaxial growth, and they are frequently used for devices for high-speed operation.

2.4.3 III-N compound semiconductors

Zn

O
In nitride semiconductors, whose applications have expanded rapidly for

blue light emitting diodes, high-frequency, high-power devices, GaN, InN,
and AlN are currently the main research targets. They take hexagonal
Wurtzite crystal forms. They are usually grown by use of epitaxial growth
and annealed at high temperature to improve their quality. The figure in
the right shows the crystal structure of Wurzeit (for the case of ZnO).

2.4.4 II-VI compound semiconductors

Group II-VI semiconductors take various crystal forms such as zinc-blende,
wurtzite, and chalcopyrite. There are various compounds such as ZnO and
CdTe, and before GaN became the leading player in blue-color optical de-
vices, the II-VI system was mainly studied as a candidate. ZnO is still
considered to be a material that threatens the GaN system if the device
characteristics and manufacturing method are improved because the ma-
terial is easily available. The ZnO system tends to have a small structure
such as nanotubes, and it is not easy to form it into a thin film device. On the other hand, its application as
a nanostructure device is also attracting attentions. The Hg system is said to have a “negative bandgap” and
has become well known for its use in constructing topological materials.

2.5 Organic semiconductor materials

Organic thin films as semiconductors are attracting attention because they are lightweight, flexible, and inex-
pensive. Most organic solids are molecular solids in which intermolecular bonds are formed by van der Waals
forces. The qualities of organic semiconductors have been imporoved and the various concepts of semiconductor
physics are now applicable to organic ones. However, it is often more realistic to consider the electronic state in
the molecule and the solid state as an aggregate of them separately, reflecting the fact that they are molecular
solids. Especially in the case of macromolecules, on one hand Bloch electrons and bands in the molecule are
good approximation, on the other hand, the electrical conduction of the whole solid should be analyzed with
the theory for amorphous solids developed in the 1970s and 1980s.

3 Crystal growth

In order to utilise the structural sensitivity of semiconductors as functions to explore condensed matter physics,
to setup them as laboratories of quantum and many-body effects and to use them as devices, we need to obtain,
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as the starting point, obtain crystals with very low concentrations of defects and impurities. For that, the
original materials with ultra high purity, higher than those in reagents by orders, should be prepared with
cheap cost, huge amount, in very short time, and with very low environmental load. The crystal growth is
hence a high field in the semiconductor industrial science. The physics, the main issue of this lecture, is not
directly connected to that field but I would like to introduce some in a very short time.

Crystal growth methods of inorganic semiconductors can be classified to one for three-dimensional bulk
growth and another for two-dimensional growth on wafers of crystals cut from three dimensional ingot. The
latter is called epitaxial growth.

3.1 Growth of bulk crystals

Mining and refinement of source materials are very important processes before the crystal growth, and we
need to choose the best degree of material quality and refinement method considering the cost and the final
product. In the case of crystalline silicon, it is said that astonishing purity of 11N(99.999999999%) is required
for substrates of MOS-LSI 3, which is called “semiconductor grade”.

On the other hand, a solar cell device generally has an area 10 orders of magnitude wider than that of
MOS-LSI, and the tolerance for leakage current per area also differs by a few orders of magnitude. Hence
for them, the purity of 6N∼7N is enough under reduction of impurities that form non-radiative recombination
centers or pn characteristics degrading deep levels. Such wafers are called in “solar grade”.

In the latter, usually low quality Si called “metal grade” is used as a starting material. There have been
long term seekings for purification method with low power consumption and some new progress has been made
though the world market is now dominated by companies which provides cheap wafers produced with traditional
method in 2013. Such situation is largely affected by international affairs or economic atmosphere. I am sorry
but must say that “basic researches” are affected by such political situation in reality.

Bulk single crystals of inorganic semiconductors are usually obtained from gradual solidification by cooling
from high temperature melts. This is comparatively easy for single element semiconductor Si or Ge. In the
growths of compound semiconductors, mixed melts of multiple elements should be prepared and the difference
in melting point, vapour pressure and mutual solubility are the possible problems.

3.1.1 Czochralski process

In Czochralski (CZ) process, as illustrated in Fig.1.5 a thin seed crystal is put down to the surface of a melt
from source materials, and a thick cylindrical crystal is pulled up. The grown crystal is formed in a cylindrical
shape because the seed is rotated during the pulling up growth process. This is a representative method to

Seed

Single Si Crystal

Quartz Crucible

Water cooled chamber

Heat shield

Carbon heater

Graphite Crucible

Crucible support

Spill Tray

Electrode

Figure 1.5: Schematic drawing of Czochralski process. Left: Three-dimensional schematic illustration. Right:
Cross-sectional illustration.
From http://people.seas.harvard.edu/ jones/es154/lectures/lecture 2/materials/materials.html

3Here they are using a special definition of “purity”. I have experienced that such an ultra-pure Si ingot contains a considerable
amount of oxygen measured from low temperature magnetic susceptibility measurement with a SQUID magnetometer. 11N is
hence the value on the ignorance of these impurities. Oxygen has little effect on logic LSIs but is a problem in the application for
power devices.
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obtain a dislocation free crystal of Si. The thin disk form popular for LSI wafer appears after slicing the
cylindrical columnar shape.

As

seed crystal

GaAs crystal
GaAs melt

quartz tube
quartz boat

heater

jacket with heater movements
T

x

610 Cº

1250 Cº

Figure 1.6: Schematic illustration of a boat
method (horizontal Bridgeman process).

Such a primitive CZ method cannot generally be applied
to compound semiconductors due to large difference in the
evaporation pressure. Actually CZ method is often adopted
in growth of III-V semiconductors GaAs, InP, GaP, etc. but
not in the primitive form because the group V materials
have much higher vapour pressures than those of the group
III, resulting in the rapid escape of group V materials from
the melts. Instead, Liquid Encapsulated Czochralski
(LEC) process, in which the melt of the sources is encap-
sulated with an inert liquid like B2O3.

3.1.2 Boat method

Another popular method for bulk-growth of compound
semiconductors is the one called “boat method”. The boat
method is further classified into horizontal Bridgeman (HB)
method and temperature gradient freeze method. In the
former, a furnace with two temperature regions is moved
along a boat, in which the source materials are melt, and

from one end the melt is freezed into a single crystal.
Figure 1.6 shows a schematic illustration of HB method for the case of GaAs. Initially a metallic solid As

is set to one end of a quartz tube, which also contains a quartz made boat. In the beginning Ga melt and a
seed crystal are in the boat. The side of the As metal is heated to 610 ◦C while the other side to 1250 ◦C. As
sublimates severely above 600 ◦C and gets into Ga melt forming GaAs melt. At 1250 ◦C, GaAs is in melting
phase and at 610 ◦C in solid phase. As the furnace moves to the right in the figure, a GaAs single crystal is
solidified from the end of the seed crystal to the right.

3.1.3 Zone melting method

TMG AsH3

H2 N2

RF heating coil

GaAs substrate

susceptor

Figure 1.7: Extremely simplified schematic illustration
of MOVPE (MOCVD) apparatus of GaAs deposition.
The “suscepter” absorbs the power of RF and gets heat.

As mentioned in the footnote in pageE1-8, “ultrahigh
purity” Si actually often contains high concentration
of oxygen, which mainly comes from the crucibles dur-
ing the growth. For power MOS FET or other devices
in which such oxygen causes troubles, single crystals
are grown by floating zone melting (FZ) method. In
the initial stage, a rod of polycrystal with a high pu-
rity is prepared in standing manner and a seed crys-
tal is put on top of the rod. At first a zone of the
polycrystal rod from the top is melted e.g., by con-
centration of infrared beam with confocal method or
by rf loss heating. The melt in contact with the seed
crystal changes into single crystal and the melted zone
slowly goes down to form a single crystal rod. During
the process the melt does not touch any other materi-
als and the high purity of polycrystal is kept. On the
other hand, such big radiuses of grown rods as those
in CZ method cannot be obtained.

3.2 Epitaxial growth of thin films

Epitaxial growth, in which thin crystal films are grown with deposition of materials onto crystal substrates,
is classified into liquid phase epitaxy (LPE), vapor phase epitaxy (VPE), and epitaxy in vacuum or in
very low pressure gas. Here I will pick up metal organic vapor phase epitaxy (MOVPE) and molecular beam
epitaxy (MBE) from the number of epitaxial growth methods.
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3.2.1 Metal-organic vapor phase epitaxy

Also often called as Metal organic chemical vapour deposition (MOCVD). Often used for the growth of compound
semiconductors. Let us see the case of GaAs.

In general in epitaxial growth of a thin film crystal, component materials are carried onto the substrate
with some carriers or with some other method, and react with the substrate surface to form single crystal films.
Therefore the keys for the growth are the surface states of the substrate, the way of carrying the materials, the
dynamics of deposited atoms, etc. In the case of MOVPE, the sources are carried by hydrogen and nitrogen
gases. Ga is put on tri-methyl gallium ((CH)3Ga, TMG), and As on arsine (AsH3). They are carried onto
the substrate and decomposed into atoms on the surface by heating. Then they are chemically bonded to the
surface atoms to form GaAs crystal films. Omitting all the intermediate chemical reactions and the initial and
the final states can be written as

(CH3)3Ga+AsH3 −→ GaAs+3CH4.

TMG and arsine have low vapor pressures and as shown in Fig.1.7, liquids of them are bubbled with hydrogen
to be vaporized. Hydrogen gas is deoxidizing atmosphere for GaAs surface. Thus flat and high quality films can
be grown though the actual chemical reaction is not so simple. Doping of impurities, growth of mixed crystals
are possible with preparation of materials. All of metal organic gases of group II or III, arsine or phosphine of
group V are explosive and at the same time nerve gases. They are extremely dangerous and should be treated
with highest care and rigid safeguards.

3.2.2 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is a representative growth method of ultra-thin semiconductor films. Charac-
teristic features are: (1) deposition in ultra-high vacuum; (2) single crystalline substrates and various methods
for surface cleaning; (3) heating of substrates to activate the motions of deposited atoms; (4) stoichiometric
deposition of materials is not always required; (5) in situ characterization of grown films in various ways is
possible because the growth front is always on the surface to the vacuum.

molecular beam cells

RHEED
screen

electron gun

shutters

load lock
chamber

gate valve

quadrupole
mass spectrometer

substrate holder

beam flux monitor

growth
chamber

outlet of liquid nitrogen

outlet of liquid nitrogen

shutter rotation

RHEED screen

molecular beam cell

substrate rotation

growth chamber

load lock chambergate valvecontrol panel

(a) (b)

Figure 1.8: (a) Schematic illustration of an MBE machine. (b) Photograph of
a real machine (RIBER S32).

Figure1.8(a) is a schematic
illustration of an MBE ma-
chine, (b) shows a photograph
of a real machine. In order
for keeping ultra-high vacuum
in the growth chamber, (a)
“pre-evacuation chamber(s)” is
used for loading and unload-
ing of substrates. Molecular
beam cells (Knudsen cells, K-
cells; Langmuir cells, L-cells),
which have sources of evapo-
ration in them, are kept at
intermediate temperatures for
them to avoid adsorption of gas
molecules. While the growth,
the shrouds covering substrate,
heating system and molecular

beam cells are cooled down with continuous flow of liquid nitrogen to adsorb outgassed molecules. When evap-
orations are going on, the source molecules are inside the chamber and the total gas pressure increases, which
makes the quality of vacuum obscure. To monitor the quality, we need a partial pressure gauge for gas species.
That requirement, not 100 % is fulfilled by a mass spectrometer, with which partial pressure can be measured
as a function of the ratio of the molecular mass to the charge.

Substrates for growths are introduced into the preparation (pre-evacuation) chamber after surface cleaning
with chemical etching and protection of the cleaned surface with oxidation. The oxide film at the surface is
evaporated simply by heating the substrate in ultra-high vacuum.

To confirm the evaporation and to see the growth mode during the growth, we need some in-situ monitor
of the surface state. For that purpose a conventional method is refractive high energy electron diffraction,
RHEED. In the RHEED technique, as illustrated in Fig.1.8(a), electron beam with 15∼30keV acceleration is
injected onto the surface with very shallow angle and the diffraction pattern of reflected beam is imaged on the
illumination screen. The image reflects the atomic structure of the surface, that is, it is the pattern of reciprocal
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lattice. Because the incident beam goes onto the surface with very shallow angle, when the surface is a mirror,
the diffraction is close to two-dimensional, that is, the diffraction pattern is a set of vertical reciprocal lattice
“rods”.The image on the screen is a slice of the reciprocal rods with a plane almost parallel to the rods. Actual
diffraction patterns of rods have some widths due to various reasons and in such a two-dimensional growth,
images like upper-left of Fig.1.9 are obtained.

The image in Fig.1.9 has a strong diffraction spot at upper-center. This is due to the simple mirror-like
reflection from the surface (mirror spot) and the more flat is the surface, the higher the intensity is. After opening
the shutters molecular beams reach the substrate and the growth starts. Molecules or atoms migrate on the
surface of the substrate with thermal activation after adsorbation and hit the lattice points at last, forming
strong bonding to substrate crystals. This is one of the possible mechanisms for crystal growth and such a
“state of growth” is called “growht mode”. The growth mode mentioned above is called layer-by-layer mode.
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Figure 1.9: Upper-left: RHEED image for two-dimensional MBE
growth. The intense spot at upper-center is the mirror spot. The
right shows the oscillation of the intensity at the mirror spot as the
film grows. The cartoons illustrate the surface states at indicated
points in the intensity oscillation of the mirror spot.

In the initial stage of layer-by-layer
mode, one atomic monolayer growth con-
tains a cycle from a flat surface through a
rough surface to a new flat surface. Such
a single cycle causes one period in inten-
sity oscillation of mirror spot. The oscil-
lation hence makes it possible for us to
monitor the growth of each atomic layer.
The oscillation damps in proceeding of the
growth due to some incoherency though in
many cases growth interruption recovers
the flatness for lowering the surface energy
of roughness. These properties opens up a
way to “flat surface growth” of “migration
enhanced epitaxy”, in which the intensity
of mirror spot is monitored and the shut-
ters are controlled to keep the highest in-
tensity in the oscillation.

With increasing substrate tempera-
tures, generally the dominant growth mechanism changes into “step flow mode”, in which migrating atoms
on the surface attach to the edges of surface steps causing widening of terraces, that is, flow of steps. In this
mode no oscillation occurs.
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Chapter 2 Band structure, effective mass approximation

In solid-state physics, the term “band structure” refers to the energy dispersion relations of the crystal eigen-
states in the reciprocal lattice space introduced in the previous chapter. The theme of this chapter is intro-
duction of the concept and how to calculate it theoretically. In addition, we will introduce the effective mass
approximation, which is indispensable for handling band electrons in a simple and clear view.

1 Band electrons

In free space, the kinetic energy of an electron takes a continuous value from zero. On the other hand, the
kinetic energy takes a discrete value in the bound state in the localized potential of the nucleus. There are two
views on the energy eigenstates in the periodic potential. One is the perturbation to the state in free space,
which creates a section (energy gap) where the eigenvalues do not exist, and the energy eigenvalues are cut to
bands. The other is that the discrete level due to the localized potential spreads in a band due to the tunnel
between the adjacent sites. The former is called nealy free electron approximation (NFEA), and the latter
is called tight-binding approximation (TBA).

1.1 Bloch theorem

It is needless to proove the Bloch theorem, which is very basics of the solid state physics. For the reference, the
theorem is described as follows. Energy eigenstates in a periodic potential are expressed in the real space (r)
expression as

ψnk(r) = unk(r) exp(ik · r), (1.1)

where n is the band index, unk is a function with the lattice periodicity, i.e.

∀R ∈ {(lattice vector)}, unk(r) = unk(r +R). (1.2)

Here k is the wavenumber.

1.2 Nearly free electron approximation (NFEA)

We write the equation for the eigenstates in a lattice potential as

H ψ(r) =

[
− ℏ2

2m0
∇2 + V (r)

]
ψ(r) = Eψ(r), (1.3)

where V (r) is the lattice potential.
From the periodicity of V (r), uk(r), they can be Fourier expanded as

V (r) =
∑
G

VGe
iG·r, uk(r) =

∑
G

CGe
iG·r, (1.4)

where G are the reciprocal lattice vectors. With substituting (1.1) and (1.4) into the Schrödinger equation
(1.3), we obtain ∑

G

[{
ℏ2

2m0
(k +G)2 − E)

}
CG +

∑
G′

VG−G′CG′

]
ei(k+G)·r = 0.

Because each term in the sum of G should be zero, the following simultaneous equations for {CG} are obtained.∑
G′

[{
ℏ2

2m0
(k +G)2 − E

}
δGG′ + VG−G′

]
CG′ = 0. (1.5)

The condition for eq.(1.5) to have non-trivial solutions is∣∣∣∣[{ ℏ2

2m0
(k +G)2 − E

}
δGG′ + VG−G′

]
GG′

∣∣∣∣ = 0. (1.6)

In NFEA, we consider the pertubation δVG−G′ to (V (r) = 0)

ψ(r) = eik·r, C0 = 1, CG = 0 (G ̸= 0), E =
ℏ2k2

2m0
. (1.7)

E1-12



As a result of pertubation, δCG is caused. In (1.5), the terms δV δC, δEδC are in the higher order to be ignored.
Then

ℏ2

2m0
[(k +G)2 − k2]δCG + VG = 0 ∴ δCG =

2m0

ℏ2
−VG

(k +G)2 − k2 .

However the approximation collapses at
(k +G)2 − k2 = 0. (1.8)

Therefore around the point (1.8), we approximate that only C0 and CG are non-zero. The we can write down
(1.6) as ∣∣∣∣∣∣∣

ℏ2

2m0
k2 − E V−G

VG
ℏ2

2m0
(k +G)2 − E

∣∣∣∣∣∣∣ = 0, (1.9)

which gives the energy eigenstates as

E =
1

2
[E(0)(k) + E(0)(k +G)]± 1

2

√
[E(0)(k)− E(0)(k +G)]2 + 4|VG|2, (1.10)

where E(0)(k) ≡ ℏ2k2/2m0. The result indicates the appearance of the energy separation of ±VG(bandgap
or forbidden band). For a system with the lattice constant a, the condition (1.8) is 2a cos θ = nλ(n is an
integer, λ is the wavelength of electron). This is nothing but the Bragg condition for diffraction of waves. Thus
the result can be interpreted as the electron wave get a Bragg reflection from the lattice and the interference
between the waves creates a standing wave, which results in the bandgap.

1.3 Reduced zone expression

A Bloch function can be written as fowllows with G a reciprocal lattice vector as

ψnk(r) = unk(r)e
ik·r = unk(r)e

−iG·rei(k+G)·r.

Function v(r) ≡ unk(r)e
−iG·r also has the periodicity v(r) = v(r+R), where R is lattice vectors. ψnk can

thus be expressed as
ψnk(r) = ξn′k+G(r) (1.11)

with another Bloch function ξn′k. Namely, the expression in (1.1) has the arbitrariness of reciprocal lattice
vectors. In other words, when a wavefunction has a spatial modulation of lattice period, there is ambiguity
whether the modulation is included in the lattice periodic part u(r) or in the plane wave part eik·r.

On the other hand, the system represented by Schrödinger equation (1.3)has the time-reversal symmetry and
E(k) = E(−k). The above two relations on E(k) leads to E(G+ k) = E(G− k). That is, E(k) is symmetric
to the zone boudaries.

The arbitrarity in (1.11) leads to the arbitrarity in the representation of E(k). As Fig.1.2(a), in extended
zone representation, E(k) is represented as a single-valued function of k while as in Fig.1.2(b), in reduced
zone representation, representation of E(k) is folded into the first Brillouin zone.

k

k

E k( )

E k( )

p/a

p/a

2V0

2V0

(a) (b)

Figure 1.1: (a) In NFEA, a bandgap
of (1.10) appears at k = G/2. (b)
Blowup of the region around the
bandgap in figure (a). The cartoons
explain why the standing waves get
the energy gap
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k k

E k( ) E k( )

p/a p/a-p/a -p/a2p/a-2p/a 3p/a-3p/a 0 0

(a) (b)

Figure 1.2: Two ways of expression for the energy bands of NFEA. (a) Extended zone expression. (b) Reduced
zone expression.

distance : reciprocal lattice number of points
0 : (0,0,0) 1√
3: (1,1,1)，(1,1,-1)，(1,-1,1)，· · · 8
2 : (2,0,0)，(0,2,0)，(0,0,2)，(-2,0,0),· · · 6√
8 : (2,2,0)，(2,0,2)，(0,2,2)，(-2,2,0)，· · · 12√
11 : (3,1,1)，(1,3,1)，(1,1,3)，(-3,1,1)，· · · 24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Classification of reciprocal lattice points with the distance from Γ-point (unit G0 ≡ 2π/a).

In Fig.1.2(b), the second and the third bands is obtained from cutting for the first Brillouin zone [−π/2, π/2]
of the overlap of the extended zone representations from the two neighboring reciprocal lattice points k = ±2π/a.
This is a natural consequence that the reduced zone representation is possible from the arbitrariness of the
reciprocal lattice vectors as in (1.11).

1.4 Empty lattice approximation

In NFEA, in the limit of V0 → 0, this is nothing but a free space and the energygap disappears, the dispersion
relation is simply paraboric. However, the free space is not a system in which the spatial periodicity of the
lattice is lost, and the continuous translational symmetry also includes the periodic translational symmetry of
the lattice. Rather, it can be considered that the lattice of the empty primitive cell remains. In the empty
lattice approximation, we hence consider the reduced zone representation of the parabolic energy dispersion.
In Bloch function representation, the plane wave function eik

′·r is separated into the lattice periodic part unk(r)
and the crystal wavenumber part eik·r and apply reduced zone representaiton.

Let’s take an example with a three-dimensional crystal. Consider the reciprocal lattice and Brillouin zone
in Fig.1.4 in the case of fcc. First, to obtain the reduced zone representation, since the principle of reduced
zone representation is indefiniteness of the reciprocal lattice vector as in (1.11), consider the reciprocal lattice of
fcc and the bcc lattice of Fig.1.4 (a), and draw parabola with the origin at each reciprocal lattice point. Then
we cut the diagrams with the first Brillouin zone shown in Fig.1.4(c). The reciprocal lattice points we need to
consider in this drawing are summarized in Tab.2. The farer from the origin, the higher the energy branch of
the parabora from the reciprocal lattice point.

The problem with a three-dimensional band structure expression is how to display it. It is not possible to
draw multiple parabolas in a three-dimensional space. Usually we only draw the energy dispersion on some
representative lines in the reciprocal space. Fig.1.3 shows a way of drawing often used to display the band
structure. The energy dispersions on the lines which connect points with high symmetries are drawn. As in
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the figure the line goes along L→ Γ →X→K→ Γ. (a) shows the empty lattice approximation while (b) shows
the realistic band dispersion in Si calculated with empirical pseudo-potential approximation (we will see in the
next week). There is no bandgap in the empty lattice approximation naturally. On the other hand, we see clear
resemblance between them. When we go into realistic calculations with gaps, the diagram is usuful to seew
which branch corresponds to which reciprocal point. Furthermore, when a level repulsion causes energygap, we
need to consider symmetry of the lattice and the empty lattice approximation is also usuful for seeing that.
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Figure 1.3: (a) Empty lattice approximation of fcc-lattice. Three numbers in [· · · ] indicate corresponding origins
of parabolas. (b) Realistic band structure of Si calculated by empirical pseudo-potential method.

1.5 Tight binding approximation

In the next week we begin with tight-binding approximation.
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