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4.2.2 Luminescence with interband transition

There are numerous types of semiconductor light emission. A typical example is light emission due to the recombi-

nation(pair annihilation) of electron-hole pairs. Minority carriers excited by various methods, including the above light

absorption, emit their energy as photons by radiative recombination with the majority carriers. When the electron-

hole pair does not emit a photon and the energy is dissipated to other freedoms, the process is called non-radiative
recombination. Such emission of photons by radiative recombination is called luminescence. Amon them the ones

with comparatively short lifetime are called fluorescence while those with very long lifetime is called phosphorescence.

Luminescence is also classified with the origin of the electron-hole pair creation. The photon-absorption originated emis-

sion is called photoluminescence, the electrically stimulated emission (electric field activation of recombination center,

injection of minority carriers, etc.) is called electroluminescence. By some reason minority carriers are trapped in

impurities and some heat pulses cause release of them and lead to luminescence, which phenomenon is called thermolu-
minescence*1.

As we saw in the previous section, there are two kinds of photon-emission, stimulated emission and spontaneous
emission. In the former the emission probability is proportional to the photon density in the surrounding space while in

the latter the probability is independent of that. If we include the zero-point fluctuation into the photon density, there is no

difference in these two. In practice, however because the former is significant under limited conditions, causing peculiar

phenomena like laser light emission etc., we usually discuss these separately. As this indicates, the density of photons is

a very important factor in the treatment of light emission.
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Fig. 4.3 Illustration of the concept of pseudo-Fermi levels.

The Planck’s law of radiation gives the density of photons

with energy E in a material with reflactive index n̄ (we assume

a real number ignoring the absorption) as

P (E) =
8πn̄3E3

h3c3
1

exp(E/kBT )− 1
. (4.70)

When minority carriers are generated by photoexcitation

under light irradiation, the carrier distribution deviates from

the thermal equilibrium, which is described by single chem-

ical potential and temperature. Even in such a case, if the

system is steady in balance, we consider the energy distri-

bution function fc of electrons in the conduction band, that

of electrons in the valence band fv . Because in most cases,

relaxation of distribution by carrier-to-carrier interaction and

relaxation by intra-band carrier-lattice interaction are much

faster processes than the inter-band carrier recombination, we adopt the approximation described in the following. In

a semiconductor under steady light irradiation, the electrons in the conduction band and those in the valence band are

in quasi-thermal equilibrium state described by the Fermi distribution functions with the same temperature but with the

*1 There are many other excitation factors around us, such as electron beams, sound, friction, and chemical reactions, etc.
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different chemical potentials called quasi-Fermi levels. The difference is caused by the exciation by the light and the

slow inter-band transition. Then we write

fc(E) =

[
exp

(
E − EFc

kBT

)
+ 1

]−1

, fv(E) =

[
exp

(
E − EFv

kBT

)
+ 1

]−1

. (4.71)

Let us consider the process of the photon absorption (energy ℏω) and the excitation of an electron from the valence

band (energy E1) to the conduction band (energy E2). The frequency of such transition is written as

R(1 → 2) = B12fv(1− fc)P (ℏω), (4.72)

where B12 is the transition probability of 1 → 2. Conversely, the frequency of spontaneous emission with the electron

relaxation from E2 to E1 is
R(sp, 2 → 1) = A21fc(E2)(1− fv(E1)), (4.73)

independently of the photon density. The frequency of the stimulated emission is proportional to the photon density as

R(st, 2 → 1) = B21fc(E2)(1− fv(E1))P (ℏω). (4.74)

They should fulfill the balance equation

R(1 → 2) = R(sp, 2 → 1) +R(st, 2 → 1). (4.75)

Substituting equations (4.70)−(4.74) to the above and the comparison of LHS and RHS gives the following Einstein
relations.  A21 =

8πn̄3E3
21

h3c3
B21,

B12 = B21.

(4.76a)

(4.76b)

These are identical with eq.(4A.9). Equation (4A.9) is for the angular frequency spectrum and there is the difference in

the conversion factor ℏ.

4.3 Phenomenological treatment of electromagnetic field in materials

In the above we have considered the optical response caused by the photon absorption by interband transition of

electrons based on the knowledge of two-level systems. This is very important of course, but there are many other optical

processes in real crystals. It is also important to look at the optical phenomena from macroscopic perspectives. For

example, the reflactive index can be viewed as a parameter that modifies the speed of light. We have a brief look at such

a classical macroscopic approachs.

Let us begin with the Maxwell equations:

divD = ρ, divB = 0,

rotE =
∂B

∂t
, rotH = j +

∂D

∂t
,

D = ϵ0E + P , B = µ0H +M .

(4.77a)

(4.77b)

(4.77c)

Here we assume a non-magnetic insulating material and drop the magnetization M = 0⃗, and the current |j| ≪
|∂D/∂t|*2. These simplifications leads to the following wave equation.

∆E − ϵ0µ0
∂2E

∂t2
= µ0

∂2P

∂t2
, (4.78)

*2 When these are finite, various interesting phenomena are expected even in this macroscopic level. On the microscopic level, we can find numerous
subjects. These are called magneto-optical effects. They are the targets of researches as well as the sources of many usuful experimental
techniques. [2, 3] are recommended for advanced study.
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which is the same as that for the vacuum when P = 0⃗. This means that the polarization P represents the effect of dielec-

tric material in this macroscopic model. In the linear response approximation, P is written with the electric susceptibility

tensor χ as
P = ϵ0χE. (4.79)

Equation (4.77c) leads to D = ϵ0(1 + χr)E and relative dielectric functionor relative permittivity is defined as fol-

lows*3.
D = ϵ0ϵrE, ϵr = 1 + χ. (4.80)

Below for simplicity, we consider isotropic materials and the tensor ϵr can be treated as a scalar ϵr. From eq.(4.79) and

(4.80), eq.(4.78) becomes

∆E − ϵ0µ0
∂2E

∂t2
= ϵ0µ0(ϵr − 1)

∂2E

∂t2
.

Then we obtain

∆E − ϵr
c2

∂2E

∂t2
= 0. (4.81)

In the above simplest approximation, the effect of polarization in the material can be taken into account with changing

the light speed c with c′ = c/
√
ϵr. Hence the dispersion relation in the vacuum ω = ck is modified as� �

c2k2 = ω2ϵr(ω,k). (4.82)� �
Here ϵr depends on ωr, k, reflecting the properties of materials.

As above, the association of the polarization with the electromagnetic wave inside materials can be taken into account

phenomenologically by considering the relative dielectric function ϵr(ω,k) or the refractive index ñ =
√
ϵr . Above that,

the absorption we saw in Sec.4.2.1 can be phenomenologically taken into account with adding the imaginary part to the

refractive index.Then the complex refractive index is defined as

ñ(ω,k) = n(ω,k) + iκ(ω,k). (4.83)

Then from eq.(4.59), or from the definition I(z) = I0 exp(−αz), the absorption coefficient α is expressed as

α =
2ω

c
κ(ω,k). (4.84)

Let us go into a bit “model” of materials. In the Lorentz model, the electromagnetic field in the materials is a set

of harmonic oscillators. In the model the mass, the charge, and the spring constant is common as (m, e, ξ) and the

electromagnetic wave interacts with the oscillators through the Coulomb interaction with the charges. The frequency

of the electromagnetic wave is ω and the wavelength is much longer than the distance between the oscillators and the

electromagnetic wave can be approximated by uniform time-dependent electric field, which is written as eE0e
−iωt. The

equation of motion for each oscillator is written as

m
d2x

dt2
+ Γm

dx

dt
+ ξx = eE0 exp(−iωt), (4.85)

where Γm is the coefficient representing the energy dissipation (friction in a classical model).

The eigenfrequency of each oscillator is ωh =
√

ξ/m. In order to find the long-term stable solution of (4.85), we

substitute x(t) = xp exp(−iωt). Then

xp(ω) =
eE0

m

1

ω2
h − ω2 − iωΓ

(4.86)

*3 Various expressions are use for the dielectric funtion. Here we put the expression “relative” to clarify the unit is taken as the vacuum dielectric
constant ϵ0. The units in electromagnetism often cause confusions. Textbooks [5, 6, 7] are recommended for those who are intrested in the
problem.
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is obtained. Let N be the spatial density of the oscillators and we get

P = N(exp(ω)) =
Ne2

m

1

ω2
h − ω2 − iωΓ

E0. (4.87)

The coefficient of E0 in r.h.s. corresponds to χ in (4.79). Then the definition in (4.80) leads to the relative dielectric

function

ϵr(ω) = 1 +
Ne2

ϵ0m

1

ω2
h − ω2 − iωΓ

. (4.88)

In the above we consider the case of single mode oscillator. If the oscillator has multiple mode and we write fj as the

portion of the mode indicated by index j, (4.88)は

ϵr(ω) = 1 +
Ne2

ϵ0m

∑
j

fj
ω2
h − ω2 − iωΓj

. (4.89)

This fj is the oscillator strength we’ve already seen, but with this treatment we understand the wording of “oscillator

strength.”

4.4 Optical response of excitons

The excitons introduced at the end of the last chapter have discrete energy levels below the band gap. In many cases they

appear as prominent peak structures in the absorption/emission spectrum. In bulk semiconductors, they appear mostly at

low temperatures but the situation changes in quantum structures discussed later in this lecture. We do not have time to

go into but the Frenkel-type excitons are now the main origin of the electroluminescence in organic semiconductors. Let

us begin with the excitons in bulk semiconductors.

4.4.1 Absorption/emission by excitons

As we saw in Sec.3.3.2, the kinetic freedoms in excitions can be specified by the electon-hole relative spatial coordinate

r and coordinate of the parallel motion R. Then the wavefunction can be written in the effectve mass approximation as

ΦnK(r,R) =
1√
V

exp(iK ·R)ϕn(r). (4.90)

The Fourier transform of the above is

FnK(ke,kh) =
1

V

∫
d3red

3rhe
−ike·ree−ikh·rhΦnK(r,R)

=
1√
V

∫
d3rd3Re−iR·(ke+kh−K)ϕn(r)e

−ik∗·r

=
1√
V

∫
d3re−ik∗·rϕn(r)δK,ke+kh

, k∗ ≡ mhke −mekh

me +mh
. (4.91)

The total wavenumber of the excition K is thus turned out to be

K = ke + kh. (4.92)

For the treatment of optical absorption, we take the initial state before the electron-hole excitation as the ground state

Φ0 = ϕckeϕvke and calculate the transition probability wif to the state represented as eq.(4.90) with taking kp = 0⃗，

ke = −kh and along with the line shown for the case of two-level systems.

wif =
2π

ℏ
e2

m2
|A0|2

1

V

∑
λ

|⟨ΦλK | exp(ikp · r)e · p|Φ0⟩|2δ(Eg + Eλ − ℏω)

=
2π

ℏ
e2

m2
|A0|2

1

V

∑
keλ

|FλK(ke,−ke)⟨ϕcke
|e · p|ϕvke

⟩|2δ(Eg + Eλ − ℏω). (4.93)
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(a) (b)

Fig. 4.4 (a) Optical absorption peaks by excitons at lower side in the energy than the fundamental absorption edge
in GaAs[9]. (b) Absorption anomaly by excitons around the fundamental edge in GaAs[10].

From ke = −kh,

FnK(ke,−kh) =
1

V

∫
d3red

3rh exp[−ike · (re − rh)]ΦλK(re, rh). (4.94)

In (4.93), the summation over ke results in re = rh. FnK takes large values only in a narrow region of ke around ke ≈ 0⃗.

In that region, ⟨ϕcke |e · p|ϕvke⟩ is almost constant and is M in (4.62). We then obtain

wif =
2π

ℏ
e2

m2
|A0|2

∑
λ

|M |2|ϕλ(0)|2δ(Eg + Eλ − ℏω). (4.95)

Again for simplicity we consider an isotropic system. Because ϕλ(0) is not zero only for s-state,

|ϕn(0)|2 =
1

πa3exn
3
, En = −Eex

n2
. (4.96)

The imaginary part of the relative dielectric function ϵr2(ω) = 2in(ω)κ(ω) is

ϵr2(ω) =
πe2

ϵ0m2ω2
|M |2 1

πa3ex

∑
n

1

n3
δ

(
Eg −

Eex

n2
− ℏω

)
. (4.97)

In the above the spin degree of freedom 2 is not considered and the result should be multiplied by two.

Fig. 4.5 Emission spectra of bound excitons in Cu2O[11].

We do not go into calculation details (see e.g.

[8]), but the twice of (4.97) agrees with (4.68) at

the boundary ℏω = Eg between discrete states

and continuum. Hence we can confirm how good

is the approximation by the comparison of the

spectra in experiments.

In eq.(4.97), the part other than δ-functions is

common and we write it as the constant C.

ϵr2 = Cδ

(
Eg −

Eex

n2
− ℏω

)
. (4.98)

Mathematical identity

lim
Γ→+0

1

x0 − x− iΓ
= P 1

x0 − x
+ iπδ(x0 − x)

(4.99)
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tells

ϵr2 = Im

 C/π

Eg −
Eex

n2
− (ℏω + iδ)

 . (4.100)

Here we write Γ → +0 as δ. And the Kramers-Kronig relation (4B.2) leads to

ϵr =
C/π

Eg −
Eex

n2
− (ℏω + iΓ )

, (4.101)

with which we can try fitting the data in, e.g. Fig. 4.4(b).

The emission is the reversal process of the absorption and just as the absorption, discrete emission peaks appear at lower

energies than the funcamental emission edge. Figure 4.5 shows an example of photoluminescence spectra of Cu2O.

4.4.2 Exciton-polariton

Well known as “polaritons” are the quasiparticle created by the combination of optical phonons and photons. Here we

consider, however the combination of photons and excitons. The concept of exciton-polariton is illustrated in Fig. 4.6.

As mentioned in the previous section, an absorption and an emission of photon with an exciton are reversal process to

each other. In an exciton-polariton these processes form a continuous chain. The cycle period of the processes is as short

as a few fs and both the exciton and the photon keep their quantum coherence and the resultant quasiparticle propagates

inside the crystal as a coherent state.
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Fig. 4.6 Illustration of the concept of exciton-polariton. A photon creates an exciton and the recombination of the
electron-hole pair recreates a photon. These processes occur in series.
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Fig. 4.7 Schematic drawing of the dispersion
relation of exciton-polariton.

We consider the ground state of n = 1 in eq.(4.101), define ω0 as

Eg−Eex ≡ ℏω0, and the contribution to the dielectrin function other

than the excitons as ϵs. Then with γ = Γ/ℏ, the relative dielectric

function is written as

ϵr(ω) = ϵs

(
1 +

∆ex

ω0 − ω − iγ

)
. (4.102)

For the transverse wave with k ·E = 0, the angular frequency ωt =

ω0, the polariton equation (4.82) holds. On the other hand, for the

longitudinal wave ϵr(ω) = 0, the angular frequency ωl is given as

ωl = ω0 +∆ex = ωt +∆ex. (4.103)

∆ex is called longitudinal-transverse splitting.

Now we consider the wavenumber k = k1+ik2, then from (4.82),

(4.102) we get 
ω2ϵs
c2

(
1 +

∆ex

ω0 − ω

)
= k21 − k22, ,

πδ(ω − ω0)
ω2
0ϵs
c2

= 2k1k2.

(4.104a)

(4.104b)
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Equation (4.104b) represents the resonance at ω = ω0, then we ignore k2 in (4.104a) to get

ω

√
ω − ω−∆ex

ω − ω0
=

ek1√
ϵs
, (4.105)

which gives the dispersion relation of exciton-polariton.

Appendix 4B: Kramers-Kronig relation

Here we just show well-known Kramers-Kronig relation. Let us consider a complex function with a complex argument

ω as
χ(ω) = χ1(ω) + iχ2(ω), χ1, χ2 ∈ R. (4B.1)

χ(ω) is analytic in the upper half of ω-plane and diminish faster than 1/|ω| for large |ω|. Then there hold relations

between χ1 and χ2 as

χ1(ω) =
1

π
P
∫ ∞

−∞

χ2(ω
′)

ω′ − ω
dω′, χ2(ω) = − 1

π
P
∫ ∞

−∞

χ1(ω
′)

ω′ − ω
dω′. (4B.2)

Here P represents the Cauthey’s principal value. The above are the Kramers-Kronig relation.

Appendix 4C: Lattice vibration in semiconductors

Lattice vibration is a phenomenon in which an atom vibrates around it with kinetic energy while being localized at

an equilibrium position as a time average position. This is an important subject in semiconductor physics, should be

discussed using at least one whole chapter, but that is impossible due to the lecture time. Here we take a minimum look

at very basics.

4C.1 Lattice vibration in one-dimensional system

Just as in the electron system, we introduce basic concepts in one-dimensional systems.

M1 M2

a

u1,i
u2,iu2,i-1

u1, +1i

Fig. 4C.1 Schematic diagram of one-dimensional lattice
vibration.

We consider a one-dimensional latteic with the unit

cell of length a, which has two atoms with masses M1

and M2. The shifts of the atoms from the equilib-

rium positions are written as u1j , u2j (j: integer). The

force working on the atoms is assumed to be harmonic

oscillator-like, that is, the force proportional to the shift

of the distance between neighboring atoms from the

equilibrium value a/2. Let α be the coefficient for the

force then we get the equation of motion as

M1
d2u1,j

dt2
= −α(u1,j − u2,j−1) + α(u2,j + u2,j−1) = α[−2u1,j + (u2,j − u2,j−1)], (4C.1a)

M2
d2u2,j

dt2
= α[−2u2,j + (u1,j − u1,j−1)]. (4C.1b)
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Fig. 4C.2 Dispersion relation of one dimensional lattice vi-
bration ω(q) obtained from eq.(4C.5) is plotted for the case
M1 = 2M2.

The equation (4C.1) remains unchanged with the parallel shift operation j → j + n (n is an integer) and the solution

can be written in the form of Bloch function. Let us take x coordinate along the lattice direction and the equations for the

wavenumber q are {
u1,j(xj) = eiqxju1,q,

u2,j(xj + a/2) = eiq(xj+a/2)u2,q.
(4C.2)

Substituting the above into (4C.1) we obtain
M1

d2u1,q

dt2
= 2α(−u1,q + cos

ja

2
u2,q),

M2
d2u2,q

dt2
= 2α(−u2,q + cos

ja

2
u1,q).

(4C.3)

In order to find the solution we assume u(1,2),q ∝ exp(iωt) to write down2α−M1ω
2 −2α cos

qa

2
−2α cos

qa

2
2α−M2ω

2

u1,j

u2,q

 ≡ A

u1,q

u2,q

 = 0⃗. (4C.4)

For the equations to have non-trivial solution {ui,q} other than 0⃗, |A| = 0 leads to

ω2
±
α

=

(
1

M1
+

1

M2

)
±

√(
1

M1
+

1

M2

)2

− 4
sin2(qa/2)

M1M2
. (4C.5)

We consider non-negative ω, and eq.(4C.5) has two modes, the dispersion relations of which are shown in Fig. 4C.2.

The following description of wording does not depend on the dimension.

The modes with linear dispersion around q ≈ 0 are called acoustic modes, those with finite ω and dω/dq = 0 for

q = 0 are called optical modes. The naming acoustic mode comes from the property that the group velocity does not

depend on the frequency just like sound in the air or electromagnetic wave in the vacuum. The naming optical mode

comes from the interaction with photons as the small wavenumber and the large energy. The quantized particles of them

are called acoustic phonon and optical phonon respectively.

4C.2 Lattice vibration in zinc-blende crystals

We consider zinc-blende (ZB) crystals as an example of three-dimensional crystal which has two species of atoms in

the unit cell. The Bravais lattice is fcc but the ZB crystalline structure can be considered as an overlapp of two “fcc

crystals”, in which one atom is placed at the lattice point of fcc lattice.
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(to be continued in the next lecture note.)
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