材料
材料工学とは、新たな材料を生み出すことや、それらを活用するための技術を開発・研究する学問。物質の性質の研究や、材料の大量生産方法など、材料に関するあらゆることがテーマ。材料を実際に有効活用するための手法を確立することも、材料工学の領域の学問。

disable-gutenberg
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121smart-custom-fields
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121wordpress-seo
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121tcd-solaris
ドメインの翻訳の読み込みが早すぎました。これは通常、プラグインまたはテーマの一部のコードが早すぎるタイミングで実行されていることを示しています。翻訳は init
アクション以降で読み込む必要があります。 詳しくは WordPress のデバッグをご覧ください。 (このメッセージはバージョン 6.7.0 で追加されました) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121材料工学とは、新たな材料を生み出すことや、それらを活用するための技術を開発・研究する学問。物質の性質の研究や、材料の大量生産方法など、材料に関するあらゆることがテーマ。材料を実際に有効活用するための手法を確立することも、材料工学の領域の学問。
材料研究・材料開発を通してサステナブル社会に貢献複合材料・表面改質材料といった先進金属材料の強度特性の予知と制御に着目し、新しい材料評価・試験システムの開発を行っています。金属材料の他にも、イオン性高分子やナノ構造制御を用いた高機能性表面の開発とその発現メカニズムの解明、粉末冶金的手法を用いたホウ素系熱電材料・超硬材料の開発等、多種多様な材料開発を行っています。また、研究活動の一環として、開発した材料の性能を測定するための装置作製も行います。
材料の性能を決める重要なポイント、それは表面である金属やセラミックス材料の表面を物理的・化学的に加工処理することにより、その性質を向上させたり、新たな機能を加える研究を行っています。そのアプローチは「金属皮膜をめっきする」、「工具で削る・磨く」、「微粒子をぶつける」などと多岐にわたります。目指す表面も、目的に応じて超平滑であったりナノスケールの微細構造を有していたりとさまざまです。また、リサイクリングなど環境保全の研究にも重点をおいています。
宇宙工学と医工学をつなげる材料工学本研究室ではバイオマテリアルの開発・宇宙開発技術の応用という2つの異なった分野の研究を行っています。生体材料は機械加工の技術を用いてインプラント材料表面を改質し、その生体適合性への効果を検証の他、新規バイオセラミックスの開発も開始しています。宇宙開発分野では宇宙空間で使用するプラズマロケットの技術を応用して、再使用宇宙往還機の耐熱タイルの開発および大気圏再突入環境模擬の実験設備の開発を行っています。
未知の高分子を探究して次世代デバイス&新材料を開発高分子合成化学、材料化学、液晶化学、光化学を基盤として、新規な反応開発から、化合物合成、物性評価、構造制御、新機能開拓、デバイス応用まで一貫して行っています。素材としては自然界に存在する天然由来物質や簡単に入手できる汎用化合物を対象にして、産業上有用な物質へ変換することを目指しています。最近では、新しい導電性ポリマーや有機無機ナノ半導体を開発し、それらの蓄電・発電デバイス材料や有機エレクトロニクス材料への応用を試みています。
生物の不思議をものつくりに活かす化学と工学私たち人間をはじめとする多くの生物は、様々な化合物(バイオ分子)が集まってかたちづくられ、多彩な機能を発揮しています。本研究室では、タンパク質、糖質、脂質をはじめとするバイオ分子のユニークな特性を素材開発やものつくりに活かすための研究を行っています。化学やバイオテクノロジーの原理を駆使してバイオ分子の機能を高め、「資源の有効利用」「省エネルギー」「低環境負荷(地球にやさしい)」を実現する機能材料や物質生産技術を開発しています。
有機合成を基盤として環境に優しい材料の開発を目指す有機合成を基盤として環境に優しい材料の開発を目指して研究を行っています。さらに私達は、材料の物性や機能を追求するだけではなく、人体や生態系に安全で、環境負荷の低減を考慮した省エネルギー的な材料の合成法の確立を目標に日々研究に取り組んでいます。
分子デザインを鍵にエネルギー材料・機能材料を創成私たちの生活を豊かにする材料は小さな分子の集合体であり、すなわち材料の機能や性能は材料構成分子の性質・機能ならびに分子の集積構造に依存しています。私たちの研究室では、機能材料の設計を材料構成要素である分子そのものから行い、同時にその高次構造を制御することで新しい機能材料・エネルギー材料の開発を進めています。具体的には、環境を考慮した高効率触媒の開発や新規材料合成法の創成、エネルギー貯蔵への展開などに取り組んでいます。
電気を利用して、病気をみつけるナノメートルレベル(1ナノメートルは髪の毛の太さの約10万分の1!)という非常に小さい世界で分子を整列させたり密集させたりすることで作る機能性バイオ界面を用いて、感染症のウイルス粒子や病気の原因物質などを電気的に分析できるようになる材料やデバイスの研究開発に取り組んでいます。
物質の界面制御を利用した機能性材料の調製法を研究両親媒性分子などが形成するさまざまな組織体を利用した機能性材料の調製法について研究しています。これらの分子組織体は構成分子が整然とした配列した秩序構造をもっていることから、吸着や反応のマトリックスに応用することでエネルギーナノ材料の高機能化が期待できます。また、これらの材料を光触媒や新しいタイプの太陽電池に応用する研究にも取り組んでいます。
環境・エネルギー問題の解決を図る新物質材料を開発材料の性質を「フォノニクス」という観点から理解し、材料科学的視点に基づき、結晶化学的アプローチによる新物質・材料設計と新材料の界面及び組織の構築手法を開発しています。これらの手法は、1)高熱伝導材料、2)ケミカルリアクター、3)エネルギー変換デバイスなどへ適用され、特に、排熱放熱材料、ケミカルリアクター用固体電解質及び電極材料、排熱利用熱電半導体、光触媒(人工光合成)、色素増感太陽電池などの性能向上に貢献します。
強く、スマートな無機材料を創り出す近年、材料の高性能化や信頼性の確保に対する要求が高まっており、厳しい環境下でも機能を発揮できる材料の研究開発が進められています。当研究室では、厳しい環境下(高温、高圧、腐食性環境など)において特異な機能を発揮できる材料として、セラミックスやそれらと金属の複合材料に注目し、作製プロセスや機能の設計・制御に関する研究を進めています。また、これまでにない新しい化学組成や微構造、特異な性質を持つ新物質の合成にも取り組んでいます。
物質のなりたちを観察しエネルギーと資源の活用を進める無機化合物を中心に、物質のなりたちと環境による変化、化学反応のしくみ、新しい物質の生成などをいろいろな工夫をして観察することで、物質の活用法を見出したりエネルギーを取り出したりする研究をしています。具体的には、スクラップ鉄からクリーンエネルギー水素をつくる、粘土鉱物のイオン交換反応で環境汚染金属を回収する、産業廃棄物の性質を調べ化学的処理により機能性材料に作り変えるなどの研究をしています。また新しい発想のX線分析法の開発も行っています。
放射線を利用し廃棄物処理の最適化を目指す原子力をエネルギー源として用いる以上、その使用済み燃料の処理は、後世に負の遺産を残さないために避けて通れない課題です。当研究室では福島第一原子力発電所事故により生じた損傷燃料の安定化や、放射性廃棄物を長期に亘り閉じ込めることの可能な最適なガラス組成を探すために、X線を用いて物質の内部構造を知り、その知見をプロセスの最適化に繋げるような研究を展開しています。本学原子力研究所と国内外の共同利用施設を併用して研究を進めています。
核分裂生成物を追いかけ、科学的ロマンを見出す原子炉の廃止措置を進める場合、特に福島第一原子力発電所においては、核分裂生成物(FP)の取扱いが重要となります。当研究室では、FPの挙動に対して注目しています。すなわち、燃料の中に「錬金術的に、神秘的に」発生する元素の(移動、析出等の)挙動を追求していきます。アプローチ方法としては、燃料、廃棄物を模擬した基礎的な実験、熱力学的な平衡計算、動力学的な反応速度論の検討等を行うことで、燃料、廃棄物等におけるFPの挙動を探求します。
材料研究・材料開発を通してサステナブル社会に貢献複合材料・表面改質材料といった先進金属材料の強度特性の予知と制御に着目し、新しい材料評価・試験システムの開発を行っています。金属材料の他にも、イオン性高分子やナノ構造制御を用いた高機能性表面の開発とその発現メカニズムの解明、粉末冶金的手法を用いたホウ素系熱電材料・超硬材料の開発等、多種多様な材料開発を行っています。また、研究活動の一環として、開発した材料の性能を測定するための装置作製も行います。
材料の性能を決める重要なポイント、それは表面である金属やセラミックス材料の表面を物理的・化学的に加工処理することにより、その性質を向上させたり、新たな機能を加える研究を行っています。そのアプローチは「金属皮膜をめっきする」、「工具で削る・磨く」、「微粒子をぶつける」などと多岐にわたります。目指す表面も、目的に応じて超平滑であったりナノスケールの微細構造を有していたりとさまざまです。また、リサイクリングなど環境保全の研究にも重点をおいています。
“材料”の“強さ”を“科学”する機械や構造物に用いられる材料の「強度」や「変形機構」に関する研究を行っています。特にX線や中性子線といった量子ビームを用いた測定を強みとしています。大きな材料も小さな原子の集まりによってできていますから、材料の性質を理解するためには原子レベルの現象から理解する必要があります。量子ビームは原子レベルの現象を統計的に評価するのに優れた方法で、他の方法では困難な非破壊測定や高温など環境雰囲気中や負荷中などのその場測定も可能です。
宇宙工学と医工学をつなげる材料工学本研究室ではバイオマテリアルの開発・宇宙開発技術の応用という2つの異なった分野の研究を行っています。生体材料は機械加工の技術を用いてインプラント材料表面を改質し、その生体適合性への効果を検証の他、新規バイオセラミックスの開発も開始しています。宇宙開発分野では宇宙空間で使用するプラズマロケットの技術を応用して、再使用宇宙往還機の耐熱タイルの開発および大気圏再突入環境模擬の実験設備の開発を行っています。
模型実験とシミュレーションから自動車衝突を解明する自動車衝突時における車体構造と乗員の安全について、縮尺模型実験とシミュレーションの両面から検討を行っています。乗用車だけでなく今後実用が広まるミニカーや、交通弱者である歩行者と自転車乗員など幅広く検討しています。車体構造については荷重伝達の観点から評価して、効率の良い構造の模索を行っています。また、東京大学生産研究所との共同研究としてドライビングシミュレータを用いて運転支援システムの構築と運転のしやすさの両立を検討しています。
機械構造物の安全性、使いやすさ、高付加価値化の実現実験と解析から構造物の安全性を検証し、事故の無い、あるいは、高付加価値な設計を提案しています。航空機は、軽量化と高容量化というトレードオフの設計要求があり、解決策として、メンテナンスを行いながら構造物の安全性を維持する方法とサンドイッチパネルのような軽量で高性能な複合構造物を創造する方法があります。本研究室では、これら二つの方法によって、利用者あるいは設計の現場での要求事項を満足できるような研究計画を創造し、改善策を提案しています。
“材料”の“強さ”を“科学”する機械や構造物に用いられる材料の「強度」や「変形機構」に関する研究を行っています。特にX線や中性子線といった量子ビームを用いた測定を強みとしています。大きな材料も小さな原子の集まりによってできていますから、材料の性質を理解するためには原子レベルの現象から理解する必要があります。量子ビームは原子レベルの現象を統計的に評価するのに優れた方法で、他の方法では困難な非破壊測定や高温など環境雰囲気中や負荷中などのその場測定も可能です。
先端的な宇宙機構造や推進・帯電についての研究人工衛星やロケットなどの宇宙機システムを研究対象とし、構造、機能モデルの試作による実証実験や検証実験、解析シミュレーション等を行うことによって、研究開発力を養います。また、軌道周回衛星や深宇宙探査衛星等への適用を目指した新たな宇宙構造物概念を創出する他に、宇宙環境が宇宙機に及ぼす影響の定量的把握や、学生によるロケット打ち上げ実験を可能にする新たなロケットエンジンシステムの開発などを通して実践的な設計開発能力を養成します。
機械構造物の安全性、使いやすさ、高付加価値化の実現実験と解析から構造物の安全性を検証し、事故の無い、あるいは、高付加価値な設計を提案しています。航空機は、軽量化と高容量化というトレードオフの設計要求があり、解決策として、メンテナンスを行いながら構造物の安全性を維持する方法とサンドイッチパネルのような軽量で高性能な複合構造物を創造する方法があります。本研究室では、これら二つの方法によって、利用者あるいは設計の現場での要求事項を満足できるような研究計画を創造し、改善策を提案しています。
材料研究・材料開発を通してサステナブル社会に貢献複合材料・表面改質材料といった先進金属材料の強度特性の予知と制御に着目し、新しい材料評価・試験システムの開発を行っています。金属材料の他にも、イオン性高分子やナノ構造制御を用いた高機能性表面の開発とその発現メカニズムの解明、粉末冶金的手法を用いたホウ素系熱電材料・超硬材料の開発等、多種多様な材料開発を行っています。また、研究活動の一環として、開発した材料の性能を測定するための装置作製も行います。
材料の性能を決める重要なポイント、それは表面である金属やセラミックス材料の表面を物理的・化学的に加工処理することにより、その性質を向上させたり、新たな機能を加える研究を行っています。そのアプローチは「金属皮膜をめっきする」、「工具で削る・磨く」、「微粒子をぶつける」などと多岐にわたります。目指す表面も、目的に応じて超平滑であったりナノスケールの微細構造を有していたりとさまざまです。また、リサイクリングなど環境保全の研究にも重点をおいています。
“材料”の“強さ”を“科学”する機械や構造物に用いられる材料の「強度」や「変形機構」に関する研究を行っています。特にX線や中性子線といった量子ビームを用いた測定を強みとしています。大きな材料も小さな原子の集まりによってできていますから、材料の性質を理解するためには原子レベルの現象から理解する必要があります。量子ビームは原子レベルの現象を統計的に評価するのに優れた方法で、他の方法では困難な非破壊測定や高温など環境雰囲気中や負荷中などのその場測定も可能です。
宇宙工学と医工学をつなげる材料工学本研究室ではバイオマテリアルの開発・宇宙開発技術の応用という2つの異なった分野の研究を行っています。生体材料は機械加工の技術を用いてインプラント材料表面を改質し、その生体適合性への効果を検証の他、新規バイオセラミックスの開発も開始しています。宇宙開発分野では宇宙空間で使用するプラズマロケットの技術を応用して、再使用宇宙往還機の耐熱タイルの開発および大気圏再突入環境模擬の実験設備の開発を行っています。
地震による被害をなくすために!2011年東北地方太平洋沖地震のような大きな揺れであっても原子力発電所に被害を起こさせないために、地震による構造物(機器・配管、建屋、土木構造物等)の揺れの計算や、構造物が壊れるメカニズムの研究を行っています。また、大きな揺れでも被害を生じさせない構造物にするために、既にある構造物を補強する方法の検討や、その効果を効率的に計算する方法を研究しています。