その他の分野
社会に役立つ新技術開発に向けて、物理学の応用研究化学を用いた我々の生活をよりよくしていくための研究などさまざまな研究が行われている。

disable-gutenberg
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121smart-custom-fields
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121wordpress-seo
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121tcd-solaris
ドメインの翻訳の読み込みが早すぎました。これは通常、プラグインまたはテーマの一部のコードが早すぎるタイミングで実行されていることを示しています。翻訳は init
アクション以降で読み込む必要があります。 詳しくは WordPress のデバッグをご覧ください。 (このメッセージはバージョン 6.7.0 で追加されました) in /www/se1/public_html/wordpress/wp-includes/functions.php on line 6121社会に役立つ新技術開発に向けて、物理学の応用研究化学を用いた我々の生活をよりよくしていくための研究などさまざまな研究が行われている。
エレクトロニクスの持続可能な発展のためにシリコン(Si)という半導体材料は、私たちの生活には欠かすことができません。スマホの頭脳である集積回路、車など高電圧を制御するパワーデバイス、再生可能エネルギーとして年々導入の進む太陽電池。すべてにSiが使われています。しかし最近、それらの性能向上に限界が訪れようとしています。私たちは、Siの上への新しい高性能材料の導入や新しいデバイス構造の提案によって、性能向上の限界を乗り越え、社会の継続的、持続可能な発展を可能にすることを目指しています。
革新的な原子炉概念・核エネルギー応用の追求持続可能な社会を支える革新的原子力概念について研究を行っています。革新炉としては、高速増殖炉、固有安全炉、トリウム炉、溶融塩炉、濃縮・再処理が不要なCANDLE炉などを対象。核エネルギーの応用としては、がん治療用の放射性核種生成、宇宙用の原子力電池、小型原子炉電源、ロケット推進用原子力エンジン、さらには原子力発電の経済性や核燃料デブリの回収技術等について、企業や研究機関との共同研究を通じて、独創的な研究を推進しています。
オリジナル装置の応用研究と水分子ダイナミクス解明地球上で最も豊富な分子の一つである水は様々な物質中に存在し、その物質の物性や機能性は水─溶質間の分子間相互作用によって形成された分子集団(液体構造)によって決定されます。本研究室では、オリジナルの広帯域誘電分光法、自己光混合レーザ計測法を用いて、様々な物質中に形成された液体構造の解明を目指しています。
生物の不思議をものつくりに活かす化学と工学私たち人間をはじめとする多くの生物は、様々な化合物(バイオ分子)が集まってかたちづくられ、多彩な機能を発揮しています。本研究室では、タンパク質、糖質、脂質をはじめとするバイオ分子のユニークな特性を素材開発やものつくりに活かすための研究を行っています。化学やバイオテクノロジーの原理を駆使してバイオ分子の機能を高め、「資源の有効利用」「省エネルギー」「低環境負荷(地球にやさしい)」を実現する機能材料や物質生産技術を開発しています。
エレクトロニクスの持続可能な発展のためにシリコン(Si)という半導体材料は、私たちの生活には欠かすことができません。スマホの頭脳である集積回路、車など高電圧を制御するパワーデバイス、再生可能エネルギーとして年々導入の進む太陽電池。すべてにSiが使われています。しかし最近、それらの性能向上に限界が訪れようとしています。私たちは、Siの上への新しい高性能材料の導入や新しいデバイス構造の提案によって、性能向上の限界を乗り越え、社会の継続的、持続可能な発展を可能にすることを目指しています。
ミクロからマクロまで、多彩な現象を理論的に解明素粒子・原子・分子といったミクロな世界から地球・星・宇宙といったマクロな世界まで、自然界は不思議な現象であふれています。そうした多彩な現象のからくりを、物理学の視点から、理論計算や計算機シミュレーションにより解明します。