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MODELING ELASTO-PLASTIC HYSTERETIC BEHAVIORS OF STRUCTUKRAL
STEEL AND APPLICATIONS TG STRUCTURAL MEMBERS

M. Minagawa, T. Nishiwaki and N. Masuda
Musashi Institute of Technology
1-28-1 Tamazutumi, Setagaya-ku, Tokyo 158, JAPAN

SUMMARY

We propuse a cyclic plasticity model for predicting quasi-
static hysteretic behaviors of steel. The model is based on
the "infinite surface model" proposed by Dr. Popov et. al.. It
is applied to predictions of tension-compression stress-strain
relations of mild steel and high strength steel as well as
moment—curvature relations of steel beams. Comparing these
relations with experimental results, we confirm the validity
of the model proposed here.

1. INTRODUCTION

When elasto-plastic hysteretic behaviors of structures
or structural members is predicted with numerical methods
such as the finite element method, assumptions introduced in
calculation procedures and quality of modeling affect on
predicted results. Especially, for local analyses such as
local buckling analyses or crack propagation analyses, a
proper stress-strain model is needed in order to make
predictions accurate.

In order to complement shortcomings of primary models
such as the isotropic hardening model [1] and the kinematic
hardening model [2,3], a lot of constitutive models had been
presented. A model of a field of work hardening moduli,
introduced by Mrbéz [4], corresponds to an extension of the
sub-layer model [5] to multi axial stress conditions. In this
model , the change in the strain hardening modulus is
represented by the concept of movements of wmulti surfaces
defined in the stress field. In this model, a piecewise linear
stress-strain relation under proportional loading is assumed
{61, and a lot of surfaces should be dealt with in calculating
hysteretic behaviors.

The two surface model was presented by Dafalias and
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Popov [7,8,9] and Krieg [6] individually in order to prevent
the shortcoming. I[n this model, a bound surface, as a state
surface corresponding to an extreme strain state, is
introduced 1in addition to the yield surface. The strain
hardening modulus 1is defined by the coufigurations and
locations of these two surfaces. After the presentation of the
two surface model, some amendments are presented [10,11]. But
it was pointed out by one of the presenters that "if load
reversals take place before any noticeable plastic flow took
place in the opposite sense, the updating of the key parameter
cannot be done correctly. In this case a progressively greater
and greater overshooting of the probable stress path develops
————— " [12]. In order to prevent this weak point, Petersson
and Popov presented an improved model [12,13]. In this model,
infinite intermediate surfaces were introduced between these
two surfaces and the complication due to treatment of many
surfaces was prevented with an interpolation procedure. It

was, however, shown by the authors’ investigations that the
validity for material with yield plateau and conspicuous
strain hardening characteristic was doubtful. Moreover

numerical trial-and-error must be done in order to estimate
all of material property parameters introduced in the model
and then a more rational method for evaluating them should Dbe
found. In this paper we propose a modified cyclic plasticity
model. As applications of the model, tension-compression
stress-strain relations of structural steel and moment-
curvature relations of H-shaped steel are predicted and
compared with experimental results.

2. PETERSSON-POPOV MODEL [12,13]

Stress~strain relations represented by the Petersson-
Popov Model are expressed by means of loading surfaces. Fig.l
explains the councept of this model by combinations of uniaxial
stress-strain relations and behaviors of bi-axial multi
surfaces for pre-loaded material. In the left figure, a
difference between stress-strain relations of the tension path
q-a-b-c from a reversed point q and those of the compression
path q'-a’-b’-c’ is represented by movements and expansions
and/or reductions of the surfaces f5,f1 and so on.

Enl!
Fig.1 Tension-compression stress-strain relations and
corresponding loading surfaces in bi-axial stress space.

723

 t

Fig.2 Definitions of times ty, tc and tj
in Eq.(2).

Each loading surfaces are defined by a size function
and a vector {a } indicating those central coordinates {12].
The size function is evaluated as the weighted summation of
two  functions x4 and «y, which are size functions
corresponding to two fundamental loading phases:

kK =W kg + (1-W) «y (1)

where « , is the function in the case where no hysteretic
effect exists and «} is that in the case where the hysteretic
effect becomes stationary. These functions are referred to as
fundamental size functions in - this paper. The weighting
function W represents the change in the size function from « 4
to Kk p- The functions « 5 and &« are determined from
experimental results obtained from a tension test and a
tension-compression test and the function W is estimated by
means of numerical trial and error.

The following state variables describe the degree of
hysteretic effect in this model (see Fig.2):

te 113 .
b= de, in=[ di, dé= /% debde (2)
ty te

where E'p is cumulative equivalent plastic strain from the
start time (ty) of loading to the time (tc) of the last
reversal, and & j is equivalent plastic strain increment from
the time (t;) to the time (tj) when the stress-strain relation
is to be predicted.

3. PROPOSED CYCLIC PLASTICITY MODEL
The model proposed by the authors 1is constructed by
modifications of the Petersson-Popov Model. Important

features of this model are referred to in this section.

3.1 Evaluation of Cumulative Equivalent Plastic Strain

Fig.3 shows two stress-strain curves obtained by
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experiments. In each test unloading took place at the point R
and the point R’ respectively. If plastic strain is
accumulated over all paths, the cumulative plastic strain at
the point R is fairly greater than that at the point R’. But,
the stress-strain curve on the path after the point R is much
the same as that on the path after the point R’. Therefore we
can understand the fact that the plastic strain produced in
repetitive loading processes has to be separated in two
components: one has an effect on following stress-strain
relations and the other does not. Basing on this phenomenon,
the cumulative equivalent plastic strain is evaluated under
the assumption that the plastic strain beyond the preceding
plastic strain amplitude is effective. Thick lines in Fig.4
show the paths on which the plastic strains are to be
accumulated in the case of uni-axial loading.

3.2 Choice of Fundamental Size Functions and Institution of
Weighting Functions

K expressing enlargement and reduction of loading
surfaces is defined by the following equation:

£ = Wi kg + (1-W5) & j41 ; J=1,Ny (3)

where x j and « j4+1 are fundamental size functions and W; is
a weighting function expressing the variation in the size of
surfaces according to loading histories. The equation means
that the variation in the size function in a certain limited
range of E'p can be expressed using the fundamental size
functions « j and & j4+1 defined as size functions at the
boundaries determining the range and the weighting function W;
for the range. When the number of boundaries is taken as Np,
an Np number of weighting functions and an Np+1 number of
fundamental size functions are required.

3.3 Estimation of Material Properties

All of the material properties of the proposed model can
be estimated by a combination of a monotonous tension test and
several tension-compression tests each including only one
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reversed point. A procedure evaluating material properties is
as follows.

(a)Determination of « 1.
Virgin stress-plastic strain curve represents 1.

(b)Determination of size'functions Kk i's
Size functions « j 's corresponding to the cumulative
plastic strains & D, ’s have to be determined. Using the
virgin stress- plastlc strain curve and the stress-plastic
strain curve obtained by unloading from the point where
the cumulative plastic strain reaches & jr X is
evaluated as the function of & i- Fig.5 shows how to
evaluate « j corresponding to the reversed plastic strain
€ P,J‘.

(c)Determination of 4 yp41
« j corresponding to the state in which the hysteretic
effect becomes stationary is « Np+1. The stationary state
in hysteretic effect means that no difference is found
among each « J’s. In the case where « j ’s do not converge
within the experiments, & j for the measured maximum & P, J
is adopted as « Np+1-

(d)Determination of Wj
By means of « 1, K 9y+++3 K Nb+1> Weighting values for the
evaluation of the function « j corresponding to the values
of E'p’J’s are determined by the next equation.

Wi = (& - xj41) / (&5 - &j5+1) (4)
Weighting functions are determined by the formula which
shows the relation of the weighting values and the
corresponding E'p.

4. PREDICTION OF TENSION-COMPRESSION STRESS~STRAIN RELATIONS

4.1 Specimens and Testing Apparatus

Structural steels of SM41A, SM50A and HT70 were used.
Table 1 shows the mechanical properties of the steels
presented by the steel makers. The configuration of the test
specimens used is illustrated in Fig.6. A testing machine with



726

L (mm)

y Y.P. T.S. El.
96 < “3 g (MPa) (MPa) (%)
i

SM41A 284 421 37
SM50A 353 529 28
284 HT70 622 661 -

— 18

110 12 40 12 110

Fig.6
Configuration of test specimens. Table . 1 Mechanical properties.

30 tonf capacity tension-compression actuator was employed and
the oil pressure chucking system with 20 tonf capacity was
used for setting the specimens. The load was detected by a
load-cell attached to the testing machine and the strain was
detected by strain gauges. The loading is controlled by the
strain at the central section of the test specimens with the
strain rate of 0.0001mm/mm/sec.

4.2 Numerical Calculation Method

Elasto-plastic finite element analyses were carried out
for round-bar steel specimens subjected to tension-compression
repetitive loading under strain control [14,15]. Assumptions
introduced in the analyses are as follows;

(1)constant strain triangular finite elements were used,

(2)initial yvielding complies with von Mises yield
criterion,

(3)yielding was judged with the r-min method [167],

(4)incremental method was used as a nonlinear calculation
procedure.

4.3 Comparisons of Experimental and Calculated Results

In order to estimate the size function « in strain
hardening region of two types of steel of SM41A and HT70,
three fundamental size functions and two weighting functions
shown by Fig.7 and Fig.8 were determined. The fundamental size
functions « 1 and « 2 correspond to « a and «}, of the

(MPa) HT70:x,

jp— —e— SM41A
800 e
C - ——A—-HT70
5600 /( HT70:xk 1.0 oo v
¥ HT70:x, SMatA:x ~ ! - Wl ..
< I{ 3 — ~a N2 wo + cEy
= W, | N € = 279 forPimara
“ 400 \ N 3.6 for HT70
< ! ‘\\;\
L5
0.5 \ '
200! \ ‘\
\ 4,
\ N
| I N B T SO S U N | L i LNA oL
0 2 4 6 8 10 0 2 4 6 8
Tpi (1) €, (1)

Fig.7 Fundamental size functions Fig.8 Weighting functions of
of SM41A and HT70. SM41A and HT70.
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Petersson-Popov Model, while « 5 is the function of materials
with loading history correspouding to a start point of the
strain hardening. One of the weighting function Wy is assumed
to decrease lineary and the other was measured from
experimental results, Fig.9 shows stress-strain relations
predicted by the proposed model and those gained by the
corresponding experiments.

For prediction of stress-strain relations in plastic
flow region of SM50A steel, five fundamental size functions
and four linear weighting functions were employed. Fig:10
shows fundamental size functions measured. In addition to
three functions used in predicting stress-strain relations in
the strain hardening region, two more functions were measured
and directly used as additional fundamental size functions.

Py Ny =4 T p,st:plastic strain’at
4004 ez strain hardening point
300477 ==
Kk
200y —— « 1 for ¥ =0
-~-- &2 for E 4=0.17% p st
wo4  —— g3 for € p=0.33F p gt
——#& 4 for T p=Fp st
0 04 0.8 12 16 2.0
(%)
Fig.10 Fig.11

Fundamental size functions of Weighting functions assumed for
SM50A in plastic flow region. SM50A.
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the case of plastic flow region.

Therefore, all of the weighting functions were defined as
linear functions as shown in Fig.1l. Fig.12 shows .stress—
strain relations and those relations obtained by experiments.

The error measure shown in Fig.9 and Fig.12 is defined as
the following equation:

5
Ll puhsl Trea™ a""p'l de, /Ll Dllhll a"exp" de X100 (%) ( )

In spite of the use of material properties det§rmined
from fundamental measurements only for some specimens, Fhe
stress-strain . relations predicted coincide considerably with
the measured stress-strain relations.

5. PREDICTION OF MOMENT-CURVATURE RELATTONS OF STEEL BEAMS

5.1 Measurement Method and Material Properties

Tenason tast Chemical composition I = s ,]—_n
Y.p. 7.8, EL.| C Si MWal P S| Ceq Specisen
(dpu) . {Hpa} (2} 1100 1000 | 1100
[M-iTSaiTSagSnd
ssar | 312 436 24.5 | 0 20 60| 20 40 | 21 — esa T '=§
. ; Bl Tz osea ]
Table 2 Mechanical properties 2600
and chemical compositions (a)configuration
'] Lower Tensile Broken TYoung's uk
!r:;; !;’ald Strength Stress Modulus 4 u——i——u yA
Point  Point x10° F Q__'___a 2
o [25% op oy, E 4
Lhs ! {v)aodelling
f1 344 301 440 347 2.10
'e;"E’ -— 402 498 402 2.10
unit : MPs Flgo 13

Table 3 Mechanical properties H-shaped steel beam specimen.
obtained by tension tests.
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Fig.14 Fundamental size functions for the'Hfshaped steel.

A specimen consists of a test portion cut out from H-
shaped steel of S541 quality and of two loading arms. The
mechanical properties and chemical compositions of the H-
shaped steel in the test portion are given in Table 2. The
configuration and dimensions of the specimen are shown in
Fig.13(a), while the method of loading is shown in Fig.13(b).
Loading speed was controlled by mini-computer so that strain
rate at the upper and lower flanges would be approximately
0.0001 mm/mm/sec. The curvature of the test portion was
calculated with the assumption that cross sections of the beam
remain plane.

The mechanical properties measured by tension tests are
given in Table 3. To obtain the values for the material
properties introduced in the proposed model, a tension-~
compression tests each including a single unloading were
performed besides tension tests.

The fundamental size functions are shown in Fig.14. Since
X Nb+1 defined as the fundamental size function when the
effects of hysteresis had converged was not measured, the
fundamental size function at the time of start of strain
hardening enlarged 30 percent in the direction of stress axis
was taken to be « Np+1» referring to the results of
measurements on mild steel shown in Sec.4. All of the size
functions measured were adopted as fundamental size
functions, and weighting functions were all made to be linear.
The residual stresses occurring in the specimens were measured
by the hole drilling method and a simple distribution type was
assumed.

5.2 Calculation of Moment-Curvature Relations

In case of a frame member having a biaxially symmetrical
section, calculations of sectional behaviors can be performed
by means of the tangent stiffness method by Chen and Atsuta
[17] with some modifications. The hypotheses introduced in
numerical calculations are given below.

1) Stress components other than normal stress in the
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direction perpendicular to the member cross section

are ignored.
2) The configuration of the cross section is invariable.

3) Unstable behavior such as local buckling does not occur.
4

) Stress, strain and tangent modulus vary linearly
inside each element.
5) Residual stress exists.

In order to evaluate the tangent stiffness, the cross
section was divided into finite triangular elements and using
the abovementioned hypothesis 4), an integrated value
concerning an element was obtained by the values at the three
nodal points composing the element.

5.3 Comparisons of Experimental and Calculated Results.

Hysteretic moment-curvature relations were calculated,
and compared with those relations obtained by corresponding

loading tests. The results are shown in Figs.15. The solid
lines of the left figures show the calculated moment-
curvature relations and the brokenm lines the relations

obtained from the results of corresponding loading tests,
respectively. The stress-strain relation at the top fibers of
the upper flange obtained in the numerical calculation are
shown in the right figures.

(Ront-m) (kN-m) .
6 - T 8
(8)Homent-curvaturs @ | (b)Stress-strain relation _]
4F relation 40 . |'
2 1
—~ 8
2r 4 20 %‘3 '
<8 \
M oF--- ---4 o oé ,
- RN AU AU A R S AP
-2r -20 g "
“4r 1 =49  calcutation -
' i :
-8 — i 1 i 2 L i elo!r‘m!ﬂt v '
-02 -0 ] [+3] 0.2 o !
+ m L P A A R
€ (%)
(i) Loading pattern No.1
-
(tonfm) (KN-m) g
° {a)Moment-~curvature | 21 (b)Stress-strain relation
a relation %0 E E
é d
© '
2 20 g, :
.
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* g 4
-2 -20 . g :
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-4 —40 colculation © < '
"""" Pl
-8 " R 1 experiment _ ° .
-02 =0 ] [+1] 02 o !
2 1
‘ a/m) ?h. % -0.35 0.0% 0. 45 0.8% nes
(1i) Loading pattern No.2 £ (%)

Fig.15 Comparisons of moment-curvature relations.
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Since the strain to which the material was subjected was
about 2 percent at maximum in terms of value of & prit can be
considered that the effect of having determined « yp41 from
assumpt.ions based on the measurement results for another type
of mild steel has not appeared. As for weighting functions,
they were all set linear, and it was found that as a result of
having used four or five fundamental surface size functions,
serious errors were not brought about in the calculated
results. Regarding hysteretic moment-curvature relations, it
is thought the errors in the first loading paths have been
slightly large mainly because of the scatter in upper yield
point values of materials, but it was found concerning
subsequent cyclic loading processes that moment-curvature
relations obtained from measurements could be predicted with
great accuracy.

6. CONCLUDING REMARKS

A cyclic plasticity model proposed here was constructed
by refinements of the multi surface plasticity model
introduced by Petersson and Popov. We carried out some
experiments to measure repetitive stress-strain relations of
steel and proposed a model with three significant differences
from the Petersson-Popov Model:

(a)Effective value of cumulative equivalent plastic strain is

defined as one of state variables.

(b)Additional material property functions are employed. These
functions express strain hardening characteristics of
materials with certain loading histories.

(c)All of the material property functions can easily be
obtained by a combination of a simple tension test and
gseveral simple tension-compression tests,

This model was applied to predictions of uniaxial stress-
strain relations of mild steel and high strength steel. By
comparing the results with those of corresponding experiments,
it was confirmed that the accuracy of the stress-strain
relations calculated by means of the proposed model was good.

In order to calculate moment-curvature relations of H-
shaped beams, the tangent stiffness method was employed by
means of cross sectional elements in which stress, strain and
tangent modulus vary linearly. The calculated moment-curvature
relations were compared with those obtained by experiments and
it was shown that the hysteretic moment-curvature relations
could be predicted with great accuracy.
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