No.	English	Japanese
001	The calculation of the deformations of various bodies under a variety of loads is one of our primary concerns.	種々の荷重の下での種々の物体の変形を算出す ることは , 我々の主要な関心事のひとつであ る .
002	By the technique of introducing a cutting plane, the originally internal forces become external with respect to the remaining portion of the body.	切断面を導入するという手法によって , 元来内 部的な力 (内力) であったものが , 物体の残り の部分に関して外部的な力 (外力) となる。
003	It is convenient to analyze structures or structural elements by considering each part separately and creating a free-body diagram for each part.	構造物の個々の部分を別々に考え,それぞれ自 由物体図を作ることによって,構造物や構造要 素を解析することは便利である.
004	The intensity of normal force per unit area is termed the normal stress and is expressed in units force per unit area.	単位面積あたりの垂直力の強さは垂直応力と呼 ばれ , 単位面積あたりの力の単位で表現され る。
005	If forces applied to the ends of a bar are such that the bar is in tension, then tensile stresses are set up in the bar.	棒の端部に作用する力が , 棒を引っ張るように 作用する場合 , 引張応力が棒に生じる。
006	The elongation per unit length, which is termed the normal strain, may be found by dividing the total elongation by the gage length.	単位長さあたりの伸びは , 垂直ひずみと呼ば れ , 伸びの総和をゲージ長で割ることにより得 られる。
007	The relation between stress and strain is linear for comparatively small values of strain.	応力とひずみの関係は , ひずみが比較的小さい 値の場合には線形である。
008	The behavior of materials under load as discussed in this text book is restricted to the linear region of the stress-strain curve.	本テキストで議論される場合には , 荷重を受け る材料の挙動は応力ひずみ曲線の線形領域に限 定される。
009	The ordinate of the point on the stress-strain curve at which there is an increase in strain with no increase in stress is known as the yield point of the material.	応力ひずみ曲線上で,応力が増えないのにひず みが増加する点の縦座標は材料の降伏点として 知られている。
010	Determine the total elongation of a straight bar of length L, cross-sectional area A, and modulus of elasticity E if a tensile load P acts on the ends of the bar.	弾性係数E,断面積A,長さLの棒が,短部に引張 荷重Pを受ける場合の,全伸びを求めなさい.

Week-2 Determination of Reactions

No.	English	Japanese
011	The free body diagram of a structure or component consists of a drawing of the structure or component together with vectors representing the effects of all forces and couples acting directl on it.	構造物あるいは構造部材の自由物体図は、それ らの図と、直接作用するすべての力および偶力 の効果を表すベクトルから構成される。
012	Because of the nature of a roller, there is only a single vertical reaction force acting at the point of support.	ローラーの性質により、ローラー支点には単一 の鉛直反力のみが作用する。
013	The force transmitted to a structural member joined to a supporting body by a frictionless pin (or hinge) capable of transmitting only a force is often designated by its horizontal and vertical components.	力だけを伝達することができる摩擦のないピン (またはヒンジ)により支持体に接合された構 造部材に伝達される力は、しばしばその水平成 分と鉛直成分によって表される。
014	If a structural member is joined to a support in such a manner that both transalation and rotation are prevented, the effect of the support is indicated with horrzontal and vertical force components together with a moment.	構造物が、移動と回転が生じないように支点に 接合されているならば、支点の効果は水平力、 鉛直力およびモーメントで示される。
015	In the case of general two-dimensional coplanar force system, three independent equilibrium equations are available to determine unknown reaction forces.	ー般的な二次元面内力システムの場合には、未 知の反力を決定するために3つの独立なつり合 い方程式が用いられる。
016	If all forces act in the parallel direction, there are two independent equilibrium equations: one force equation and one moment equation or two moment equations.	もしすべての力が平行に作用するならば、二つ の独立な均り合い方程式がある:すなわち、力 に関する方程式とモーメントに関する式、ある いはモーメントに関する二つの式である。
017	General three dimensional force system involves six independent equilibrium equations.	一般的な三次元の力システムは、6つの独立な 均り合い方程式が含まれる(" 必要となる " と いう意味)。
018	In order to determine reaction forces acting on a structural component subjected to a distributed load the load are to be replaced with its resultant.	分布荷重を受ける構造部材に作用する反力を求 めるには、分布荷重をその合力と置換する必要 がある。
019	The resultant replacing a distributed load is the area of the load diagram and is to act through the centroid of the load diagram.	分布荷重と置換する合力は、大きさが荷重図の 面積であり、荷重図の図心を通って作用させな ければならない。
020	The centroid of a triangle is located at one-third of the base from the high side of the triangle.	三角形の図心は、高さを示す辺から、底辺の三 分の一の位置にある。

No.	English	Japanese
021	A bar subject to forces or couples that lie in a plane containing the longitudinal axis of the bar is called a beam.	棒の長さ方向の軸を含む面内にある力あるいは 偶力を受ける棒は,梁と呼ばれる.
022	If a beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point, it is called a cantilever beam.	もし,はりが一端でのみ,その軸が支点周りに 回転することができないように支えられている とき,このはりは片持ち梁と呼ばれる.
023	The end supports of a simple beam are capable of exerting only forces upon the beam and are not capable of exerting any moment, and at least one of the supports must be capable of undergoing horizontal movement.	単純梁の両端の支点は,梁に力のみを及ぼすこ とができ,モーメントを及ぼすことができな い.そして,少なくとも支点のひとつは水平移 動を受けることができなければならない.
024	A beam simplly supported at two points and having one or both ends extending beyond these supports is termed an overhanging beam.	二点で単純支持され,(梁が)一端あるいは両 端でこれらの支点を超えて伸びているとき,こ の梁を張り出し梁と呼ぶ.
025	Beams in which the reactions of the supports can (can not) be determined by use of the equations of static equilibrium are said to be statically determinate (indeterminate).	静力学的な均り合い式を用いて支点の反力が決 定できる(できない)梁は(不)静定であると 言われる.
026	Loads applied to a beam may consist of concentrated loads, uniformy distributed loads, uniformly varying loads and couples.	梁に作用する荷重は,集中荷重,等分布荷重, 等変分布荷重,偶力などからなる.
027	The algebraic sum of the moments of the external forces to one side of a section about an axis through the section is called the bending moment.	ある断面の片側に作用する外力の,その断面を 通る軸回りのモーメントの代数和は曲げモーメ ントと呼ばれる.
028	The algebraic sum of all the vertical forces to one side of a section is called the shearing force.	ある断面の片側に作用するすべての鉛直力の代 数和はせん断力と呼ばれる.
029	A force that tends to bend the beam so that it is concave upward is said to produce a positive bending moment.	上に凹になるように梁を曲げる傾向にある力 は,正の曲げモーメントを生ずるといわれる.
030	A force that tends to shear the left portion of the beam upward with respect to the right portion is said to produce a positive shearing force.	梁の左側部分を右側部分に関して上方向にせん 断する傾向にある力は,正のせん断力を生ずる といわれる.

No.	English	Japanese
031	In order to determine the shearing force and the bending moment at all sections along the beam, two equations are usually written to specify the shearing force and the bending moment as functions of a coordinate system along the beam axis with the origin at one end of the beam.	梁に沿ってすべての断面でのせん断力と曲げ モーメントを知るために,梁の一端を原点として 梁の軸に沿った座標系の関数としてせん断力と 曲げモーメントを特定するための二つの式が通 常書かれる。
032	Shearing force and bending moment diagrams represent grafically the distribution of shearing force and bending moment along the length of the beam.	せん断力図と曲げモーメント図は、梁の長さに 沿ったせん断力と曲げモーメントの分布を図で 示すものである。
033	In order to derive relationships between load intensity, shearing force and bending moment at any point in a beam, we cut out the element of length dx from the beam and draw a free body diagram of it.	梁の各点での荷重強度、せん断力、曲げモーメ ントの間の関係を導くために、梁から長さdxの 要素を切り出してその自由物体図を描く。
034	Constant shear, corresponding to a uniformy distributed load, is accompanied by a constant slope of the bending moment diagram.	等分布荷重に対応した、一定のせん断力は、曲 げモーメント図の一定勾配(すなわち直線)を もたらす。
035	A concentrated force produce an abrupt change in shear as well as in the slope of the bending moment diagram.	集中荷重は、せん断力の急激な変化と、曲げ モーメント図の勾配の急激な変化をもたらす。
036	The change in shear between two sections is equal to the area of load diagram. The shearing force increases for the negative area of load diagram, while it decreases for the positive area.	2断面間のせん断力の変化は、荷重図の面積に等 しい。その面積が負の場合、せん断力は増加す るのに対して、正の場合には減少する
037	The load intensitity is equal to the rate of change of the shearing force with respect to the coordinate. The slope of the shearing force diagram decline for the positive load intensity.	荷重強度は、座標系に関してせん断力の変化率 に等しい。荷重強度が正の場合、せん断力図の 勾配は負になる。
038	The change in bending moment between two sections is equal to the area of shearing force diagram. In the case of positive area, the bending moment increases.	2断面間の曲げモーメントの変化は、せん断力図 の面積に等しい。面積が正の場合、曲げモーメ ントは増加する。
039	The shearing force is equal to the rate of change of the bending moment with respect to the coordinate. Positive shear is accompanied by increasing bending moment.	せん断力は、座標系に関する曲げモーメントの 変化率に等しい。せん断力が正の場合には、曲 げモーメントは増加する。
040	At a point where the seharing force is zero, the slope of the bending moment diagram is zero and the moment may have a maximum or minimum value.	せん断力がゼロとなる点では、曲げモーメント 図の勾配はゼロであり、その値は最大値または 最小値をとりうる。

No.	English	Japanese
041	It is convenient to imagine a beam to be composed of an infinite number of thin longitudinal fibers which are assumed to act independently of every other fiber.	梁が、各々独立に振舞うと仮定される無限個の 薄い長さ方向の繊維から構成されていると想像 することは(理解をするのに)都合がよい。
042	A simple beam subject to a downward load deflects downward and each fiber in the lower (upper) part of the beam undergoes extension (compression) which sets up tensile (compressive) stresses acting on the fibers in the direction of the longitudinal axis of the beam.	下向きに作用する荷重を受ける単純梁は下方に たわみ、梁の下側(上側)の部分における個々 の繊維は引張(圧縮)を受け、その結果梁の長 手方向で繊維上に作用する引張(圧縮)応力を 生ずる。
043	There always exists the neutral surface in the beam containing fibers which do not undergo any extension or compression, and thus are not subject to any tensile or compressive stress.	引張も圧縮も受けない繊維を含む中立面が梁に は常に存在し、それらの繊維はいかなる引張応 力も圧縮応力も受けない。
044	The intersection of the neutral surface with any cross section of the beam perpendicular to its longitudinal axis is called the neutral axis.	中立面と梁の長手軸に垂直な任意の横断面の交 差軸は中立軸と呼ばれる。
045	In the derivation of the expression for normal stresses, it is assumed that a plane section normal to its longitudinal axis prior to loading remains plane after deformation.	垂直応力のための式を導く際に、以下のことが 仮定される:載荷まえに梁の長手軸に垂直だっ た平断面は変形後も平面を保つ。
046	Further, it is assumed that the beam is initially straight and of uniform cross section ,that the modulus of elasticity in tension and compression are equal and tha no fiber of the beam is stressed beyond the elastic limit.	さらに、以下のことが仮定される:梁は初期に 直直ぐであり断面け均一である また 引進お
047	For any beam having a longitudinal plane of symmetry and subject to a bending moment M at a certain cross section, the normal stress acting on a longitudinal fiber at a distance y from the neutral axis of the beam is given by My/I, where I denotes the moment of inertia of the cross sectional area about the neutral axis.	長手方向に対称面を持つ梁がある断面において 曲げモーメントMを受ける場合、梁の中立軸から 距離 y における長手方向繊維に作用する垂直応 力はMy/Iにより与えられる。ここで、Iは中立軸
048	Normal stesses vary from zero at the neutral axis of the beam to the maximum at the outer fibers.	垂直応力は、中立軸上でのゼロから最っとも外 側の繊維上での最大値まで変化する。
049	When the beam acts elastically, the neutral axis passes through the centroid of the cross section, which means that the moment of inertia shown in the above equation is one about an axis through the centroid of the cross section.	もし梁が弾性的に挙動するなら、中立軸は断面
050	The ratio Z=I/y is called the section modulus and used to determine the maximum stresses by using the equation of M/Z .	比率Z=I/yは断面係数と呼ばれ、式M/Zにより最 大応力を求めるのに用いられる。

No.	English	Japanese
051	The first moment of an element of area about any axis in the plane of the area is given by the product of the area and the perpendicular distance between the element and the axis.	ある面積要素の、その面積要素を含む面内にあ る任意の軸周りの一次モーメントは、その要素 と軸の間の垂直距離と、その断面積の積により 与えられる。
052	The first moment of a finite area about any axis in the plane of the area is given by the summation of the first moments about that same axis of all the elements of area contained in the finite area.	任意の軸周りの一次モーメントは、その面積に
053	The centroid of an area is the point at which the area might be considered to be concentrated and still leave unchanged the first moment of area about any axis.	ある面積の図心は、その面積が集中して存在す るとみなされ、しかも任意の軸周りの一次モー メントが変化しない点である。
054	The perpendicular distance between the centroid of an area and any axis is determined by the first moment of area about the axis divided by the cross sectional area.	ある軸から面積の図心までの垂直距離は、面積 のその軸周りの一次モーメントをその断面積で 割ることにより求まる。
055	In a symmetrical figure such as a circle or square, the centroid coincides with the geometric center of the figure.	円や正方形などの対称図形においては、図心は それらの図の重心に一致する。
056	The moment of inertia of an element of area about any axis in the plane of the area is given by the product of the area and the square of the perpendicular distance between the element and the axis.	ある面積要素の、その面積要素を含む面内にあ る任意の軸周りの断面二次モーメントは、その 要素と軸の間の垂直距離の2乗と、その断面積 の積により与えられる。
057	The moment of inertia of a finite area about any axis in the plane of the area is given by the summation of the second moments about that same axis of all the elements of area contained in the finite area.	ある有限な面積の、その面積を含む面内にある 任意の軸周りの断面二次モーメントは、その面 積に含まれるすべての面積要素の同じ軸周りの 断面二次モーメントの総和により与えられる。
058	The units of moment of inertia are the fourth power of a length.	断面二次モーメントの単位は長さの4乗であ る。
059	The moment of inertia of an area about any axis is equal to the moment of inertia about a parallel axis through the centroid of the area plus the product of the area and the square of the prependicular distance between the two axes.	ある面積の任意の軸周りの断面二次モーメント は、その面積の図心を通る平行軸の周りの断面 二次モーメントと、それら二軸の間の垂直距離 の二乗と面積の積との和に等しい。
060	The moment of inertia of a rectangle about an axis through the centroid and parallel to the base is one- twelvth of the product of the width and the cube of the height.	長方形の、図心を通り底辺に平行な軸周りの断 面二次モーメントは、その高さの3乗と幅の積 の12分の1である。

No.	English	Japanese
061	It is convenient to imagine a cantilever beam , which has a fixed left end and is subject to a downward load at the right end, is composed of an infinite number of thin transverse fibers which are assumed to act independently of every other fiber.	左端固定で右端に下向き鉛直荷重を受ける片持 ち梁が、各々独立にふるまうと仮定された無限 個の横方向(鉛直方向の意味)の繊維より構成 されているとイメージすることは好都合であ る。
062	When the cantilever beam deflects downward, each fiber of the beam would slip against left or right fiber.	片持ち梁が下向きにたわむ場合には、梁の各繊 維は左あるいは右側の繊維に対してすべる。
063	As in the case of bending stress, let's imagine the beam to be composed of an infinite number of thin lomgitudinal fibers which are assumed to act independently of every other fiber.	曲げ応力の場合と同様に、各々独立にふるまう と仮定された無限個の長手方向の繊維より構成 されている梁をイメージしよう。
064	When the beam deflects downward, each fiber of the beam would slip against upper and lower fibers.	梁が下向きにたわむ場合、梁の各繊維は上下の 繊維に対してずべる。
065	The actual beam, however, is not divided into any fibers, and then shearing stresses must act horizontally as well as vertically on the surfaces of small rectangular element of the beam.	しかしながら,現実の梁は繊維に分割されている わけではないので、せん断応力が梁の微小な長 方形要素の表面上で水平および鉛直に作用しな ければならない。
066	The magnitudes of the vertical shearing stresses at any cross section are such that these stresses have the shearing force as a resultant.	任意断面に作用するせん断応力の大きさは、合 応力としてせん断力をもつようなものである。
067	Let us consider an element of length dx cut from a beam and isolate the upper portion of the element including the upper surface to write an equation of horizontal equilibrium.	梁から長さdxの要素を切り出し、更に、上部表 面を含むようにその要素の上部を抽出して、水 平方向のつり合い式を書くことを考えてみよ う。
068	The magnitudes of the horizontal shearing stresses are such that theses stresses valance with bending stresses acting in the longitudinal direction.	水平方向のせん断応力の大きさは、長手方向に 作用する曲げ応力とバランスするようなものと なる。
069	The change in bending moment between two sections is equal to the area of shearing force diagram between these sections	2断面間の曲げモーメントの変化はせん断力図の 面積に等しい。
070	For any beam having a longitudinal plane of symmetry and subject to a shearing force V at a certain cross section, the shearing stress acting horizontally and vertically at a distance y0 from the neutral axis of the beam is given by VQ/Ib, where b denotes the width at the position where the desired shear acts and Q denotes the first moment of the portion of the cross section that is above the level at which the shear acts.	長手方向に対称面を持つ梁がある断面において せん断力∨を受ける場合、梁の中立軸から距離 y 0における水平および鉛直方向に作用するせん断 応力はVQ/Ibにより与えられる。ここで、bはせ ん断応力が作用している位置での断面の幅であ り、Qは同じせん断応力が作用している位置より 外側の断面の中立軸周りの断面一次モーメント である。

No.	English	Japanese
071	Influence lines have important application for the design of structures that resist large live or moving loads.	大きな活荷重または移動荷重に抵抗する構造物 の設計において、影響線は重要な役割をもつ。
072	If a structure is subjected to a live or moving load, the variation of the shear and bending moment in the member is best described using the influence line.	もしある構造物が活荷重または移動荷重を受け るなら、せん断力および曲げモーメントの分材 内での変化は影響線を用いて最もよく記述され る。
073	An influence line represents the variation of either the reaction, shearing force, bending moment, or deflction at a specific point in a member as a concentrated unit load moves over the member.	影響線は、ひとつの単位集中荷重が部材上を移 動する場合の、ある特定の点における反力、せ ん断力、曲げモーメントあるいはたわみの変動 を表している。
074	Influence lines represent the effect of a moving load only at a specific point on a member, whereas shearing force or bending moment diagrams represent the effect of fixed loads at all point along the axis of the member.	影響線は、部材上のある特定の一点のみにおけ る移動荷重の効果を表すのに対して、せん断力 図あるいは曲げモーメント図は部材軸に沿った すべての点における固定荷重の効果を表してい る。
075	All statically determinate beams will have influence lines that consist of straight line segments.	すべての静定梁は直線セグメントからなる影響 線を持つ.
076	An influence line can be constructed by placing the unit load at a variable position x on the member and then computing the value of the reaction, shearing force or bending moment at the point as a function of x.	部材上の位置変数xの点に単位荷重を置き、xの 関数としてその点の反力、せん断力あるいは曲 げモーメントの値を計算することによって、影 響線は描くことができる。
077	Since beams or girders often form the main load- carrying elements of a floor system or bridge deck, it is important to be able to construct the influence lines for the reactions, shering force, or bendining moment at any specific point in a beam.	梁や桁は、しばしば床システムや橋梁の床組の 主な荷重分担要素形成するので、梁のある特定 の点における販反力、せん断力あるいは曲げ モーメントに対する影響線を構築できることは 重要である。
078	Once an influence line for a function (reaction, shear, or bending moment) has been constructed, it will then be possible to position the live loads on the beam which will produce the maximum value of the function.	ひとたび反力、せん断、曲げモーメントなどの 関数に対する影響線が構築できれば、その関数 を最大にする梁上の位置に活荷重を置くことが 可能となる。
079	For any concentrated load F acting on the beam at any position x, the value of the function can be found by multiplying the ordinate of the influence line at the position x by the magnitude of F.	任意の位置xで梁に作用するある集中荷重Fに対 して、関数の値はその位置xにおける影響線のた て座標とFの大きさをかけることにより見つける ことができる。
080	In general, the value of a function caused by a uniformy distributed load is simply the area under the influence line for the function multiplied by the intensity of the uniform load.	ー般に、等分布荷重により生じる関数の値は、 その関数に対する影響線の下の面積と。分布荷 重の強度の単なる積である。

No.	English	Japanese
081	The influence line for a function of reaction, shear, or bending moment is to the same scale as the deflected shape of the beam when the beam is acted upon by the function.	反力、せん断力あるいは曲げモーメントの関数 に対する影響線は、その梁がその関数の作用を 受けた時の梁のたわみ形状と同じスケールにな る。
082	In order to draw the deflected shape properly, the capacity of the beam to resist the applied function must be removed so the beam can deflect when the function is applied.	そのたわみ形状を適切に描くためには、その梁 の作用関数に抵抗する能力を除去する。そうす ることにより、はりはその関数が作用した場合 のたわみを生ずる。
083	If the shape of the influence line for a vertical reaction is to be determined, the pin support is first replaced by a roller guide which allow the end to move only in the vertical direction.	もし鉛直反力の影響線の形を求めたければ、ピ ン支持を鉛直方向にのみ動くローラーガイドに 置換する。
084	When the negative force is applied at the roller guide, the beam deflects to the general shape of the influence line.	ローラーガイドに負の力が作用するなら、梁は 影響線の一般形状にたわむ。
085	If the shape of the influence line for the shearing force is to be determined, the connection at the section may be symbolized by a roller guide device which can resist a bending moment and axial force but no shear .	もしせん断力に対する影響線の形状を求めたけ れば、その断面における結合は、曲げモーメン トと軸力に抵抗するがせん断に抵抗しないロー ラーガイド装置によって記号化される。
086	Applying a negative shearing force to the beam at the connection, we find the influence line shape for the shear.	その結合部に負のせん断力を作用させると、せ ん断の影響線形状が得られる。
087	If the shape of the influence line for the bending moment is to be determined, the connection at the section may be symbolized by a pin which can resist a shear and axial force but no bending moment.	もし曲げモーメントに対する影響線の形状を求 めたければ、その断面における結合は、せん断 と軸力に抵抗するが曲げモーメントに抵抗しな いピン(中間ヒンジ)によって記号化される。
088	Applying a negative moment to the beam at the connection, we find the influence line shape for the bending moment.	その結合部に負の曲げモーメントを作用させる と、曲げモーメントの影響線形状が得られる。
089	The proof of the Muller-Breslau's principle can be established using the principle of virtual work.	ミューラーブレスロウの原理は、仮想仕事の原 理を用いて証明することができる。
090	If a rigid body is in equilibrium and given an imaginary or virtual displacement, the work done by all the forces and moments acting on it must be equal to zero.	もし剛体がつりあいの状態にあって、想像上の 仮想的な変位を与えられたなら、その剛体に作 用しているすべての力およびモーメントによっ てなされる仕事はゼロと等しくなければならな い。

		date
No.	English	Japanese
091	The shearing force, divided by the area over which it acts, is called the shear stress or shearing stress and denoted by .	せん断力を、それが作用する面積で割ったもの をせん断応力と呼び、 によって表される。
092	Let us consider a bar cut by a plane perpendicular to its longitudinal axis. A normal stress is the stress acting perpendicular to this plane, while a shear stress is one acting along the plane.	長手軸に垂直な面で棒を切断してみよう。垂直 応力がこの面に垂直な方向に作用する応力であ るのに対して、せん断応力はこの面に沿って作 用するものである。
093	It is necessary to make some assumption regarding the manner of distribution of shear stresses and for lack of any more precise knowledge it will be assumed to be uniform.	せん断応力の分布の仕方に関するある仮定をす ることが必要であり、より詳細な知識がないこ とから、分布は均一であると仮定される。
094	There will be a distortion of the originally right angles of any element in a beam, and after this distortion due to the shearing stresses the element is assumued to be a parallelogram.	梁のある要素の元来直角であった角は変形し、 この変形後にせん断応力によりこの要素は平行 四辺形になる。
095	The change of angle at the corner of an originally rectangular element is defined as the shear strain which is expressed in radian and denoted by . The ratio of the shear stress to the shear strain is called the modulus of elasticity in shear or the modulus of rigidity.	もともと長方形であった要素のかどでの角度の 変化は、ラジアンで表されるせん断ひずみと定 義され、 で示される。
096	Consider a bar rigidly clamped at one end and tiwisted at the other end by a torque T=Fd applied in a plane perpendicular to the axis of the bar. Such a bar is in tension.	ー端が固定され、一端が棒の軸と直角な面内で 作用するトルクT=Fdによりねじられている棒を 考えてみよう。
097	The polar moment of inertia \Box for a solid shaft is a mathematical property of the geometry of the cross section which appears in the study of the stresses set up in a circular shaft subject to torsion.	ソリッドな棒に対する断面極二次モーメントJ は、ねじりを受ける円形断面を有する棒に生じ る応力を研究する際に現れる断面の幾何形状の 数学的特性である。
098	For either a sorid or a hollow circular shaft subject to a twisting moment T the torsional shear at a distance from the center of the shaft is given by T /J.	ねじりモーメントTを受けるソリッドあるいは中 空の円形断面を有する棒に対して、棒の中心か ら距離 におけるねじりせん断はT /」により 与えられる。
099	If a line is marked on the surface of unloaded bar, then after the twisting moment T has been applied this line moves. The angle between the final and original positions of the line is defined as the shearing strain at the surface of the bar.	無載荷の棒の表面に一本の線を刻印して、ねじ リモーメントTを作用させると、この線は動 く。この線の初期と最終の位置の間の角度 は この棒のこの表面におけるせん断ひずみと定義 される。
100	If a shaft of length L is subjected to a constant twisting moment T along its length, then the angle through which one end of the bar will twist relative to the other is TL/GJ.	長さLの棒が長さにわたって一定のねじりモー メントTを受けるなら、一端が他端に対して相 対的にねじれる角度はTL/GJである。