No.	English	Japanese
201	Most energy methods are based on the conservation of energy principle.	ほとんどのエネルギー法はエネルギー保存則に基づ いている.
202	The work done by all the external forces acting on a structure is transformed into internal work or strain energy which is developed when the structure deforms.	構造物に作用するすべての外力によってなされる仕 事は,構造物が変形する際に生じる内部仕事または ひずみエネルギーに変換される.
203	As a force is gradually applied to a bar, and its magnitude builds linearly from zero to some value, the work done by the force is equal to the average force magnitude times the displacement.	力が徐々に作用し,しかもその大きさがゼロからあ る値まで線形に増加するとき,その力によってなさ れる仕事は力の平均強さと変位の積に等しくなる.
204	The work of a moment is defined by the product of the magnitude of the moment and the angle through which it rotates.	モーメントのなす仕事はモーメントの大きさと回転 する角度の積により定義される.
205	As in the case of force, if the moment is applied gradually to a structure having linear elastic response from zero to some value, the work is equal to the average moment magnitude times the angle.	力の場合と同様に,もしモーメントが線形弾性応答 をする構造物に,ゼロからある値まで徐々に作用す るならば,仕事はモーメントの平均強さと回転角の 積に等しくなる.
206	As forces are gradually applied to a beam, and its bending mement increases from zero to some value, the internal work done by the bending moment is equal to the average magnitude of the bending moment times the rotation angle. This internal work is called strain energy caused by the bending moment.	もし梁に外力が作用して,曲げモーメントがゼロか らある値まで増加したとすると,この曲げモーメン トによりなされる内部仕事は,曲げモーメントの平 均強さと回転角の積と等しい.この量は曲げによるひ ずみエネルギーと呼ばれる.
207	To obtain the strain energy, we must first determine the bending moment as a function of position in the beam and then apply the rule mentioned above.	その結果生じるひずみエネルギーを求めるためには, まず曲げモーメントを梁の中の位置の関数として求 め,その後上述のルールを適用しなければならない.
208	It should be noted that only one load may by applied to the structure, in case that we wants to determine the magnitude of a displacement by using the external work and corresponding internal work.	外部仕事と内部仕事を用いて変位の大きさを計算す る場合には,唯一の荷重のみを構造物に作用させる ということに注意しなければならない.
209	If more than one load was applied, there would be an unknown displacement under each load, and yet it is possible to write only one work equation for the beam.	二つ以上の荷重を載荷すると,各々の荷重に未知変 位があるが,梁に対してただひとつの仕事に関する 式を書くことが可能となる.(ひとつの式から二つ以 上の未知数を決めることはできない:訳者注)
210	Only the displacement under the force can be obtained, since the external work depends upon both the force and its corresponding displacement.	外部仕事は力とそれに対応する変位に依存するの で , 力の作用点のその方向の変位(displacement under the force)のみが求めらる.

No.	English	Japanese
211	The principle of virtual work was developed by John Bernoulli in 1717 and is sometimes referred to as the unit- load method.	仮想仕事の原理は,1717年にBernoulliによって開発 されたもので,単位荷重法と呼ばれることもある.
212	Unit-load method provides a general means of obtaining the displacement and slope at a specific point on a structure.	単位荷重法は,構造物の特定の点における変位やた わみ角を求める一般的な手段を提供する.
213	It is necessary that external forces and internal forces be related by the equations of equilibrium.	外力と内力はつり合い方程式によって関係付けられ なければならない.
214	External and internal displacements must be related by the compatibility of the displacements.	外部変位と内部変位(つまりひずみ)は変位の適合 条件によって関係付けられなければならない.
215	A displacement can be determined by first placing on the structure a virtual load such that this force acts in the same direction as the displacement.	はじめに,求める変位と同じ方向に作用するよう に,仮想力を構造物に作用させることにより,変位 を求めることができる.
216	The work that external virtual force acting on a structure does imaginally with respect to the corresponding real displacement is equal to the work done by virtual internal forces with respect to the corresponding real deformations.	構造物に作用する仮想外力が対応する実変位に関し て想像上になす仕事は,仮想内力が対応する実変形 に関してなす仕事と等しい.
217	In the case of truss structures, internal virtual works can be determined by summing the vritual member forces caused by the external virtual force times the real elongations of each member.	トラス構造の場合,内部仮想仕事は仮想外力によって 生ずる仮想的な部材力と対応する部材の実際の伸び の積を合計することによって得られる.
218	In case that displacement or slopes of beams or frames are to be determined, virtual bending moments caused by the external virtual force and real rotation angles are to be used to determine the magnitude of internal virtual work.	梁やラーメンの変位やたわみ角を求める場合には, 仮想外力によって生ずる仮想曲げモーメント及び, 実際の回転角が内部仮想仕事を求めるのに用いられ る.
219	In most cases, neither shearing force nor axial force is not considered as internal virtual forces, since amount of each deformation is rather small compared with bending deformation.	多くの場合,せん断変形や軸方向の変形が曲げによる 変形に比べて小さいことから,せん断力および軸方 向力は仮想内力として考慮されない.
220	The virtual unit load can be assigned any arbitrary unit, since internal virtual forces will have the same units, and as a result the units will cancel from both sides of the equation.	仮想単位荷重と内部仮想仕事は同じ単位を持つこと になり方程式の両辺で打つ消されるので,仮想単位 荷重の単位は任意に割り当ててよい.

No.	English	Japanese
221	In order to determine the shearing force and the bending moment at all sections along the beam and for this purpose two equations are usual y written to specify the shearing force and the bending moment a functions of a coordinate system along the beam axis with the origin at one end of the beam.	梁に沿ってすべての断面でのせん断力と曲げ モーメントを知るために,その目的のために,梁 の一端を原点として梁の軸に沿った座標系の関 数としてせん断力と曲げモーメントを特定する ための二つの式が通常書かれる。
222	Shearing force and bending moment diagrams represent grafically the distribution of shearing force and bending moment along the length of the beam.	せん断力図と曲げモーメント図は、梁の長さに 沿ったせん断力と曲げモーメントの分布を図で 示すものである。
223	In order to derive relationships between load intensity, shearing force and bending moment at any point in a beam, we cut out the element of length dx from the beam and draw a free body diagram of it.	梁の各点での荷重強度、せん断力、曲げモーメ ントの間の関係を導くために、梁から長さdxの 要素を切り出してその自由物体図を描く。
224	Constant shear, corresponding to a uniformy distributed load, is accompanied by a constant slope of the bending moment diagram.	等分布荷重に対応した、一定のせん断力は、曲 げモーメント図の一定勾配(すなわち直線)を もたらす。
225	A concentrated force produce an abrupt change in shear as well as in the slope of the bending moment diagram.	集中荷重は、せん断力の急激な変化と、曲げ モーメント図の勾配の急激な変化をもたらす。
226	The change in shear between two sections is equal to the area of load diagram. The shearing force increases for the negative area of loaddiagram, while it decreases for the positive area.	2断面間のせん断刀の変化は、何重図の面積に等 」い、その両積が負の提合、せん断力は増加す。
227	The load intensitty is equal to the rate of change of the shearing force with respect to the coordinate. The slope of the shearing force diagram decline for the positive load intensity.	荷重強度は、座標系に関してせん断力の変化率 に等しい。荷重強度が正の場合、せん断力図の 勾配は負になる。
228	The change in bending moment between two sections is equal to the area of shearing force diagram. In the case of positive area, the bending moment increases.	2断面間の曲げモーメントの変化は、せん断力図 の面積に等しい。面積が正の場合、曲げモーメ ントは増加する。
229	The shearing force is equal to the rate of change of the bending moment with respect to the coordinate. Positive shear is accompanied by increasing bending moment.	せん断力は、座標系に関する曲げモーメントの 変化率に等しい。
230	At a point where the seharing force is zero, the slope of the bending moment diagram is zero and the moment may have a maximum or minimum value.	せん断力がゼロとなる点では、曲げモーメント 図の勾配はゼロであり、その値は最大値または 最小値をとりうる。

2002/6/6

No.	English	Japanese
231	To compute a displacement Δ of a beam at a point, a virtual unit load acting in the direction of Δ is placed on the beam at the point, and the virtual bending moment m is determined.	梁のある点での変位∆を計算するためには、∆の 方向に作用する仮想単位荷重をその点に載荷 し、仮想曲げモーメントmを求める。
232	Provided the real loads cause linear elastic material response, a longitudinal element dx deforms or rotates by $d\theta = (M/EI)dx$. Here M is the bending moment at x caused by the real loads.	もし、実荷重に対して線形弾性材料の応答する ならば、長さ方向の要素dxは変形しdθ= (M/EI)dxだけ回転する。ここでMは実荷重に よって生じる x における曲げモーメントであ る。
233	The external virtual work done by the unit load is 1 · Δ , and the internal virtual work done by the bending moment m is m · d θ = m (M/EI)dx.	単位荷重によってなされる外部仮想仕事は1・ Δ であり、曲げモーメントmによってなされる内 部仮想仕事はm・d θ = m (M/EI)dxである。
234	Summing the effects on all the elements dx along the beam requires an integration.	梁に沿ったすべての要素dxに関して効果を総計 するには、積分が必要である。
235	In a similar manner, if the tangent rotation or slope angle θ at a point on the beam's elastic curve is to be determined, a unit couple moment is applied at the point, and the corresponding bending moment has to be determined.	同様に、梁の弾性曲線上のある点における接線 回転角あるいは傾斜角(つまりたわみ角)を求 める場合には、その点に単位の偶力モーメント を作用させ、対応する曲げモーメントを求めな ければならない。
236	Separate coordinates will have to be chosen within regions that have no discontinuity of loading.	別々の座標が、荷重の不連続のない領域内で選 択されなければならないだろう。
237	The x selected for determining the real bending moment in a particular region must be the same x as that selected for determining the virtual bending moment.	ある特定の領域内で実際の曲げモーメントを求 めるために選ばれた座標×は、仮想曲げモーメ ントを求めるために選ばれたものと同じ×でな ければならない。
238	When the structure is subjected to a relatively simple loading, and yet the solution for a displacement requires several integrations, a tabular method may be used to perform these integrations.	もし構造物が比較的単純な荷重を受けて、変位 の解を求めるのにいくつかの積分が必要なら、 表による方法がこれらの積分を実施するために 用いることができる。
239	To do so the bending moment diagrams for each member are drawn first for both the real and virtual loadings.	そのためにはまず、曲げモーメント図が実荷重 と仮想荷重の両者に対して描かれる。
240	By matching these diagrams for m and M with those given in the table, the integral can be determined from the appropriate formula.	これらのMおよびmのための図を、表に与えら れたものとマッチングすることにより、適切な 式を用いて積分が求められる。

No.	English	Japanese
241	A frame is formed by arranging moment-resisting members in the desired configuration and providing moment-resisting connections between some or all of the members which are often referred to as rigid connections.	曲げモーメントに抵抗できる部材を適切に組み 合わせ、剛結としばしば呼ばれる曲げモーメン トに抵抗できる接合をすべてあるいはいくつか の部材間に用意することによりフレームは形成 される。
242	Since loads can be applied at any point on the structures, each member is subjected to possible axial force, bending moment and shearing force.	荷重はフレームのいかなる点にも作用させるこ とができるので、各部材は軸力、曲げモーメン ト、せん断力を受ける可能性がある。
243	Provided all loadings and reactions are resolved into components acting parallel or perpendicular to the member's axis, the shearing force and bending momen produced on any cross section in any member can be determined by drawing corresponding free-body diagram.	すべての荷重と反力が部材軸に平行な成分と直 角な成分に分解されるならば、任意の部材の任 意の断面において生ずるせん断力および曲げ モーメントは自由物体図を描くことにより求ま る。
244	In calculating shearing force and bending moment produced in a frame, "downward" direction for each member of the frame should be chosen wisely, in orde to apply some rules distinguished for beams.	フレームに生ずるせん断力および曲げモーメン トを計算する際に、梁に対して確立されたいく つかのルールを適用するために、各部材に対し て " 下 " 方向が賢明に選択されるべきである。
245	At rigid connection where two members are connencted with each other with some angle, the bending moment should be continuous provided any concentrated moment is not applied there.	ある角度をなして二つの部材が剛結されている 点では、集中モーメントが作用していない限 り、曲げモーメントは連続になる。
246	At rigid connection where two members are connencted with each other with some angle, the shearing force is not continuous in general.	ある角度をなして二つの部材が剛結されている 点では、一般的にせん断力は連続にならない。
247	If two members are pin-connected, no bending is produced at the connection because pin has no capability to resist bending.	もし二つの部材がピン結合されているならば、 ピンが曲げに抵抗する能力を持たないことか ら、曲げモーメントはこの接合部に生じない。
248	If two members are pin-connected with the same longitudinal axis, no change in shearing force undergoes at the connection because no external force is applied there.	もし部材軸が一致している二つの部材がピン結 合されているならば、そこに外力が作用してい ないために、せん断力に変化はない。
249	It should be noted that the calculations of frames's support reactions are independent of the members' cross-sectional area if the frame is statically determinate.	もしフレームが静定ならば、このフレームの支 点反力の計算は、各部材の断面積とは無関係で あることに注意すべきである。
250	For typical proportioned frames, a good approximation of the deflection can usually be obtained by considering only the flexural contribution.	典型的な構成のフレームでは、曲げモーメント の寄与のみを考慮することにより、通常たわみ の良い近似を得ることができる。

No.	English	Japanese
251	We can use the method of virtual work to determine the displacement of a truss joint when the truss is subjected to an external loading, temperure change, or fabrication errors.	仮想仕事の方法は、トラスが外的な載荷、温度 変化、製作誤差を受ける場合の格点変位を求め るのに用いることができる。
252	To compute a displacement Δ of a truss at a joint a virtual unit load acting in the direction of Δ is placed at the joint, and the virtual member forces n in each truss members are determined.	トラスのある格点での変位∆を計算するために は、∆の方向に作用する仮想単位荷重がその格点 に置かれ、各トラス部材の仮想部材力 n が求め られる。
253	Provided the real loads cause linear elastic material response, each member is deformed NL/AE. Here N is the member forces in each truss members caused by the real loads.	もし、実荷重が線形弾性材料の応答を引き起こ すならば、各トラス部材はNL/AEだけ変形す る。ここでNは実荷重によって生じる各部材の部 材力である。
254	The external virtual work done by the unit load is $P\Delta$, and the internal virtual work done by all the member force n is $\Sigma nNL/AE$.	単位荷重によってなされる外部仮想仕事は1・ Δ であり、仮想部材力 n によってなされる内部仮 想仕事は Σ n NL/AEである。
255	the corresponding n and N forces when substituting	式ΣnNL/AEに力n及びNを代入する場合、対応 する力n及びNの各々に対して代数的な符号を保 持することが重要である。
256	In case we are to determine the displacement of a selected truss joint due to a temperature change, real member strain N/AE must be replaced with $\alpha\Delta T$, which gives us the equation $\Sigma h \alpha \Delta T$.	温度変化による選ばれたトラス格点の変位を決 定すべきとき、実際の部材ひずみN/AEがαΔTと 置換されなければならない。その結果、式Σnα ΔTを得る。
257	α is the coefficient of thermal expansion of member and ΔT is the change in the temperature of member.	αは部材の熱膨張係数であり、ΔTは部材の温度 変化である。
258	Occasionally, errors in fabricating the lengthes of the members of a truss may occur.	場合によって、トラスの部材長の製作誤差が起 こりうる。
259	In some cases truss members must be made slightly longer or shorter in order to give the truss a camber to prevent it from deforming downward exceeding the horizontal level of the lower chord.	時に、下弦材の水平レベルを越えて下方に変形 しないようにトラスにそりを与えるためには、 トラス部材はわずかに長くあるいは短く製作さ れなければならない。
260	If a truss member is shorter or longer than intended, the displacement of a truss joint from its expected position can be determined by the equation $\Delta = \Sigma n \delta$. Here δ is the difference in length of the member from its intended size as caused by fabrication error.	トラス部材が意図したより短いか長い場合、ト ラス格点の期待された位置からの変位は式Δ=Σ nδにより得られる。ここで、δは製作誤差によ り生ずるような、部材の意図したサイズからの 長さの相違である。

No.	English	Japanese
261	The influence line for a function of reaction, shear, or bending moment is to the same scale as the deflected shape of the beam when the beam is acted upon by the function.	反力、せん断力あるいは曲げモーメントの関数 に対する影響線は、その梁がその関数の作用を 受けた時の梁のたわみ形状と同じスケールにな る。
262	In order to draw the deflected shape properly, the capacity of the beam to resist the applied function must be removed so the beam can deflect when the function is applied.	そのたわみ形状を適切に描くためには、その梁 の作用関数に抵抗する能力を除去する。そうす ることにより、はりはその関数が作用した場合 のたわみを生ずる。
263	If the shape of the influence line for a vertical reaction is to be determined, the pin support is first replaced by a roller guide which allow the end to move only in the vertical direction.	もし鉛直反力の影響線の形を求めたければ、ピ ン支持を鉛直方向にのみ動くローラーガイドに 置換する。
264	When the negative force is applied at the roller guide, the beam deflects to the general shape of the influence line.	ローラーガイドに負の力が作用するなら、梁は 影響線の一般形状にたわむ。
265	If the shape of the influence line for the shearing force is to be determined, the connection at the section may be symbolized by a roller guide device which can resist a bending moment and axial force but no shear .	もしせん断力に対する影響線の形状を求めたけ れば、その断面における結合は、曲げモーメン トと軸力に抵抗するがせん断に抵抗しないロー ラーガイド装置によって記号化される。
266	Applying a negative shearing force to the beam at the connection, we find the influence line shape for the shear.	その結合部に負のせん断力を作用させると、せ ん断の影響線形状が得られる。
267	If the shape of the influence line for the bending moment is to be determined, the connection at the section may be symbolized by a pin which can resist a shear and axial force but no bending moment.	もし曲げモーメントに対する影響線の形状を求 めたければ、その断面における結合は、せん断 と軸力に抵抗するが曲げモーメントに抵抗しな いピン(中間ヒンジ)によって記号化される。
268	Applying a negative moment to the beam at the connection, we find the influence line shape for the bending moment.	その結合部に負の曲げモーメントを作用させる と、曲げモーメントの影響線形状が得られる。
269	The proof of the Muller-Breslau's principle can be established using the principle of virtual work.	ミューラーブレスロウの原理は、仮想仕事の原 理を用いて証明することができる。
270	If a rigid body is in equilibrium and given an imaginary or virtual displacement, the work done by all the forces and moments acting on it must be equal to zero.	もし剛体がつりあいの状態にあって、想像上の 仮想的な変位を与えられたなら、その剛体に作 用しているすべての力およびモーメントによっ てなされる仕事はゼロと等しくなければならな い。