145

Structural Eng. / Earthquake Eng. Vol. 4. No.2, 361s-370s. October 1987
Japan Society of Civil Engineers (Proc. of JSCE No.386,/I-8)

MODELLING CYCLIC PLASTICITY OF STRUCTURAL STEELS

By Masaru MINAGAWA*, Takeo NISHIWAKI** and Nobutoshi MASUDA***

In this paper we propose a cyclic plasticity model with high accuracy to predict
elasto-plastic behaviors of uniaxial steel members subjected to complicated repetitive
loads. The model is based on the multi surface plasticity model and material property
parameters introduced are a -couple of fundamental surface size functions and weighting
functions to describe sizes of state surfaces at arbitrary stress-strain phases. It is
revealed that the hysteretic model proposed, by which quasi-static fluctuating stress-
strain relations can be predicted, is sufficiently accurate from the engineering point of
view,
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1. INTRODUCTION

To predict elasto-plastic hysteretic behaviors-of structures or structural members made from structural
metals is one of the important problems of the day in the structural engineering”. As an effective means to
do this, numerical methods such as the finite element method are frequently used. In this case,
assumptions introduced in calculation procedures and quality of modelling for analysis objects affect on
predicted results, Especially, quality of a model for material properties affects considerably on the
accuracy of elasto-plastic behavior prediction.

In the gross analyses of structures or structural components subjected to severe hysteretic loading,
material properties are usually modeled to simplified forms such as the elastic perfectly plastic or the
bilinear model because of the complexity associated with cyclic plasticity of structural metals. The results
of prediction are not so hardly affected by modelling of material properties in these cases. On the
contrary, for the local analyses such as local buckling analyses or crack propagation analyses, a more
proper stress-strain model is needed in order to make predictions accurate?:

The isotropic hardening model® and the kinematic hardening model?-® are primary models in the field of
structural analyses, If the loading is confined to a limited region of the yield surface and to monotonous
loading, the isotropic hardening model appears to be suitable®  For cyclic loading, the kinematic hardening
model is more reasonable to represent Bauschinger effect, but it is not satisfactory because the change in
strain hardening modulus and yield stress according to load reversals can not be evaluated sufficiently. In
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order to complement the shortcomings of these primary hardening models, a lot of constitutive models had
been presented.

A model of a field of work hardening moduli, introduced by Mré6z”, corresponds to an extension of the
sublayer model? to multi axial stress conditions. In this model, the change in the strain hardening modulus
for cylic loading is represented by the concept of movements of multi surfaces defined in the stress field.
This model has a feature that a piecewise linear stress-strain relation under proportional loading is
assumed, and then the smooth transition from elastic to plastic state for reversed loading can not be
represented?. Moreover, since a lot of surfaces should be dealt with in calculating hysteretic behaviors by
using of the model, the calculation procedure appears to be complicated in general,

The two surface model was presented by Dafalias & Popov®~? and Krieg? individually in order to
prevent these shortcomings. In this model, a bound surface, as a state surface corresponding to a extreme
strain state, is introduced in addition to the yield surface. In Dafalias—PoPov Model, the strain hardening
modulus is defined by the configurations and locations of the bound surface and the yield surface. After the
presentation of the two surface model, some amendments are presented?-?. But it was pointed out by one
of the presenters that “if load reversals take place before any noticeable plastic flow took place in the
opposite sense, the updating of the key parameter cannot be done correctly. In this case a progressively
greater add greater overshooting of the probable stress path develops....”®. In order to prevent this weak
point, Petérsson and Popov presented an improved model® . In this model, infinite intermediate surfaces
were introduced between the yield surface and the bound surface and the complication due to treatment of
many surfaces was prevented by using interpolation procedure, It was adopted to the predictions of
tension-compression stress-strain relations of high strength steel as well as cyclic torsional stress-strain
relations, its effectiveness was confirmed in some degree. It was, however, shown by the authors’
investigations that the validity for material with yield plateau and conspicuous strain hardening
characteristic may be doubtful. Moreover numerical trial-and-error must be done in order to estimate all of
material property parameters introduced in the model and then a more rational method for evaluating them
should be found. When these problems are solved, this cyclic plasticity model can become more practical,

In this paper we propose a modified cyclic plasticity model by which quasi-static fluctuating
stress-strain relations of various structural steels can be predicted. In addition, presented isa reasonable
measurement method in order to estimate material property parameters introduced in the proposed model,
As an application of the model, tension-compression stress-strain relations of mild steel and high strength
steel is predicted. Then the predicted results are compared with those obtained by the corresponding
measurements and the appropriateness is verified. *

2. PETERSSON-POPOV MODEL®-"

Since a cyclic plasticity model proposed in this paper is based on Petersson-Popov Model, we refer to
this model briefly.

In Petersson-Popov Model, stress-strain relations affected by loading histories are expressed by means
of state surfaces defined in stress space. Fig.1(a) and (b) explains schematically the concept of this model
by combinations of uniaxial stress-strain relations and behaviors of bi-axial multi surfaces, These figures
show the cases of virgin material and pre-loaded material respectively.

In the former case, the elastic region pp’ in the left figure of Fig. 1 (a) is expressed by the inside of the
yield surface f, in the right figure. Stress ranges a—a’, b—b’ and c—c’ corresponding to the equivalent
plastic strain &,,, £, and &, are expressed by the intermediate surfaces f;, f, and f; respectively. In this
case, since the stress-strain curve for the tension path is nearly equal to that for the compression path®,
the surfaces f,, f,, f. and f, constitute a set of ellipses with the same origin O if von-Mises yield criterion

* A part of this study was already presented in Proceedings of the 9th Symposium on Computational Methods in Structural
Engineering and Relative Fields (1985).
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is used. In the left figure of Fig. 1 (b), a difference
between stress-strain relations of the tension path
gq-a-b-c from a reversed point q and those of the

compression path q’-a’-b’~c¢’ is represented by
movements and expansions and/or reductions of the
surfaces f,, f; and so on.

In the model, each surfaces are defined by a

surface size function x, by which the size of each

surfaces is expressed continuously, and a vector {a}
indicating those central coordinates, The surface
size function is evaluated as the weighted summa-
tion of two functions x, and x,, which are surface

size functions corresponding to two fundamental
loading phases :
x= Wxa+(1_W)lb ............................. (1 )

Where x, is the surface size function in the case

(b)Pre-loaded material

where no hysteretic effect exists and yx, is that in Fig.1 Uniaxial stress-strain relations and corresponding biaxial
the case where the hysteretic effect becomes multi surfaces in Petersson-Popov Model®.
stationary. These functions are referred to as

fundamental surface size functions in this paper. The weighting function W represents the change in the
surface size function from x, to x, due to loading histories. The functions x, and x, are determined from
experimental results obtained from a tension test and a tension-compression test and the function W is
estimated by means of numerical trial and error.

The following state variables describe the degree of hysteretic effect in this model :

tc 23
Ep= d Ep Epi= d Epy d Ep= %d e d efj ............... N eesatae et risiteaa it saaas (2)
to tc

where z, is cumulative equivalent plastic strain from the start time (Z,) of loading to the time (i) of the
last reversal on the stress-strain paths, and z,, is equivalent plastic strain increment from the time (2,) to
the time (%)) when stress-strain relation is to be predicted. For instance, in the case where the
stress-strain curve on the path g—q’-a’-b’-¢ in Fig. 1 should be predicted, cumulative equivalent plastic
strain at the point q is &,, and z,;, Z,, and Z,, corresponds to &, at the points a”, b’ and ¢’ respectively, The
surface size funetion x in a certain phase of loading can be determined as a function of ,;, by means of x,
and x,, which are functions of z,;, and the function W of g,

A vector |a} indicating the central coordinate of a state surface is updated in turn according to the
progress of loading by the following equation :

1ai}={&J}+M—io{?—0l(ij_xi) ........................................................................................... (3)
where subscript ; and j indicate surfaces in a loading phase with equivalent plastic strain increment &,; and
a phase with z,,4-d &, respectively. In Fig.1, for example, when &,=2,; and Z,;=z,+d &, the surfaces
f, and f; are the surface () and the surface (j) respectively. |0} is a stress vector, subscript o means that
£,=0 and tilde represents the state of before the updating. In the states of before and after updating,
cumulative equivalent plastic strain is g, and z,+dg, respectively. Thus, lej=la(é,+d &, ol

lad=la (8o, Emtd &), m=x(Eptd &p, Em), %y=x(Ep, Ept+d Ep).
3. PROPOSED CYCLIC PLASTICITY MODEL

The model proposed in this paper is a stress-strain model constructed by refinement of Petersson-Popov
Model to predict, with high accuracy, hysteretic stress-strain relations observed in measurements,
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Important features of this model are referred to in o (MPa) .
this section, soor ®\‘
(1) Evaluation of cumulative equivalent
plastic strain
Accumulation of equivalent plastic strain in the
process of repetitive loading is accomplished in a
way consistent with the results of measurements.

In Fig.2 a solid line shows an example of ex-

perimental results of repetitive loading tests and a
broken line shows one of monotonous loading tests,

Fig.2 Experimental stress-strain relations.

In each test unloading took place at the point (D) and
the point (I)’ respectively, If plastic strain is
accumulated over all paths, the cumulative plastic 0]
strain at the point (D) is fairly greater than that at )

the point (I’. In spite of this inference, the /

stress-strain curve on the path after the point (D) is (2)
much the same as that on the path after the point

(Q)’. From these experimental results we can 0 €
understand the fact that the plastic strain produced (3)

in repetitive loading processes has to be separated 3

in two components : one has an effect on following @)

stress-strain relations and the other does not. @/ @

Yokoo and Nakamura and et al. referred to the Fig.3 Schematical figure showing ineffectiveness of a small
following phenomenon shown in Fig. 3 as “Return strain amplitude on the following stress-strain relation.
Phenomenon”®-1" ; “If a strain amplitude corres-

ponding to a path (2) from the point ) to the point (3) is fairly small compared with its preceding strain
amplitude, the stress-strain curve from the point (3 to the point (@), after passing through the point (2
near the point (2), traces on such path that is the stress-strain curve in the case where a load reversal does
not occur at the point (2). According to such a phenomenon, the stress-strain paths (2) and (3) do not
affect the stress-strain curve following to these paths.”

Basing on the above mentioned phenomena, the cumulative equivalent plastic strain is evaluated under
the assumption that the plastic strain beyond the preceding plastic strain amplitude is effective. By the use
of the estimation method, it appears to be not easy to concern cyclic hardening or cyclic softening
phenomenon, However, the emphasis in this paper is to predict responses of structural steels under severe
hysteretic loading and then cyclic number considered is not so large that cyclic hardening or cyclic
softening occurs. As an example, thick lines in Fig. 4 show the paths on which the plastic strains are to be
accumulated in the case of uniaxial loading. Since the estimation method of the cumulative equivalent
plastic strain in the case of multi-axial loading is more complicated, we do not refer to in this paper.

(2) Choice of fundamental surface size functions and institution of weighting functions

Fig. 5 shows examples of tension-compression stress-strain relations of mild steel. In general, when a
steel specimen is stretched and the unloading occurs on the yield plateau, Bauschinger effect part appears
which is followed by an yield plateau in compression region, When it occurs at the start point of strain
hardening in tension region, the yield plateau in the compression region does not appear any longer and the
stress-strain curve becomes smooth. Although this phenomenon occurs similarly in the case where
unloading occurs in strain hardening region, the degree of Bauschinger effect is not the same,
Accordingly, the characteristic features of stress-strain relations of steels subjected to the repetitive
loading are as follows;

364s



Modelling Cyclic Plasticity of Structural Steels 149

a) the appearance of the yield plateau in the
hysteretic loading processes when the unloading occurs

on the yield plateau and its gradual disappearance in the’

successive processes,

b) the change in the degree of Bauschinger effect
when the unloading takes place in the strain hardening
region.

It appears to be one of the necessary conditions for
the stress-strain model compatible with experimental
results that the model can represent these features, In
the proposed model, to get better compatibility to
experimental results, the surface size function x,, has
been introduced as one of the fundamental surface size
functions in addition to x, and x,. The function x,, is a
surface size function of materials with loading history
corresponding to a start point of the strain hardening,

Following to the introduction of x,, W, and W, are
defined as weighting functions, The function W, ex-
presses a phenomenon that stress-strain curve changes
continuously from the virgin stress-strain curve, which
is characterized by the yield plateau and the strain
hardening region, to the smooth curve, on which
Bauschinger effect is characteristic. The function W,
stands for the cyclic softening or cyclic hardening
following to the progress of loading histories, As
shown in Fig. 6 the surface size function at a certain
hysteretic phase is defined by means of these weighting
functions as follows;

14 xa+(1_ I’Vl) Xab ;0= 5p< Ep st

x={ Ws xap+(1— Wo) x, ;ép,st<§p§§p,b'”(4)

X 3 Epb=Ep
where &, is the plastic strain at the start point of
strain hardening on virgin stress-surain curve, And
&, is that at a loading phase in which the hysteretic
effect becomes stationary. From the definitions of
these weighting functions, W,=1 at £,=0, W,=0 and
W,=1at §,—=;, ;;and W,=( at §,—¢,,,. The weighting
function W introduced in Petersson-Popov Model is

Unloading point = goccceeoo

TIME

PLASTIC STRAIN
=

Accumulation path

Fig.4 Cumulative plastic strain.

o (MPa)
400T

SM41A

d' —a00l

Fig.5 Experimental stress-strain curves with unloading.
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Fig.6 Surface size functions.

defined as a function of , and estimated by numerical trial and error as mentioned before. On the contrary,

the function in the proposed model is determined clearly by means of results of several fundamental

experiments, According to the authors’ investiations, the weighting function has a tendency to change with

Zp. Thus the weighting function in our model is defined as a function of not just g, but &,

(3) Estimation of material properties

In this section, presented is a method of experiments and its interpretation to evaluate meterial

properties x,, xa», x», W, and W,, which are necessary in order to predict hysteretic behaviors of steel by

the proposed model. Since the model is based on the assumption that the stress-strain relations on the

certain monotonous loading path or unloading path is determined by means of cumulative equivalent plastic
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strain £, at the start point of the loading or unloading, ¢ Virgin curve __ _i—
material properties can be estimated by a combination of a First path i = = o}
monotonous tension test and several tension-compression Reversed
. . . point
tests each including only one reversed point, e
- . - - g5 n
A procedure evaluating material properties is as !
0 — — €
follows, T £ p
a) Determination of x,
3 : _ 3 3 Second path
Virgin stress-plastic strain curve represents x,. Al Eo
b) Determination of surface size functions corres- -

ponding to some loading phases. Fig.7 Estimation of surface size function,

Surface sizes x,’s corresponding to the cumulative
plastic strains £,,’s have to be determined. Using the virgin stress-plastic strain curve and the
stress-plastic strain curve obtained by unloading from the point where the cumulative plastic strain reaches
Epm ’n is evaluated as the function of g,,. Fig.7 shows how to evaluate yx, corresponding to the reversed
plastic strain g, ,.

¢) Determination of x,, and x,

Since x,, corresponds to such , that its parameter &, , equals to 551, it is gained by a combination of
two curves, One of them is the virgin stress-plastic strain curve and the other is the stress-plastic strain
curve, measured in a test including unloading at the start point of strain hardening. , corresponding to the
state in which the hysteretic effect becomes stationary is x,. The stationary state in hysteretic effect
means that no difference is found among each x,’s. Accordingly in the case where x,’s do not converge within
the experiments, x, for the measured maximum Z,, is adopted as x,. In this case it will be possible to
correctly predict hysteretic behaviors within the limits where the cumulative equivalent plasic strain does
not exceed the maximum &,

d) Determination of W, and W,

By means of x,, x,;,and x,, weighting values in order to evaluate x, corresponding to the values of EpnSis
determined by the next equation,

Wi=(xn— xas)/ (Xa=— Kas) 30 6,<Zpa

Wo="(2n— x5)/ (xap— x5) s Epat=Ep

Weighting function is determined by this formula which shows the relation of the weighting values and the
corresponding £,

4. PREDICTION OF TENSION-COMPRESSION STRESS-STRAIN RELATIONS

(1) Specimens and testing apparatus
Structural steels of SM 41 A and HT 7() were used. Table 1

G
~
2
L

shows the mechanical properties of the steels presented by 1 (mm)
the steel makers. The configuration of the test specimens 96 ) G ga
I T
110

used is illustrated in Fig, 8. A testing machine with 30 tf
capacity tension-compression actuator was employed and the

12 40 12 110
284

oil pressure chucking system with 20 tf capacity was used for
setting the specimens. Fig.8 Configuration of specimens,
The load was detected by a load-cell attached to the testing

machine and the strain was detected by inelastic range strain Table 1 Mechanical properties of tested steels.
gauges, The loading is controled by the strain at the central oy 1.5, 01
section of the test specimens. For all specimens, the strain (MPa) (MPa) (%)
rates were about (). 0001 mm/mm/sec, SMA 1A 284 a1 37
(2) Experimental results and estimation of material HT70 622 661 -
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Properties
Fig.9 shows stress-plastic strain relations
obtained by the fundamental measurements in order
In these
figures the stress value is normalized by the lower

to estimate the material properties.

yield point, The fundamental surface size functions
and the weighting functions estimated from these
experimental results are shown in Fig.10 and
Fig. 11 respectivvely. The weighing function W, is
assumed previsionally to decrease linearly accord-
ing to the increase of the cumulative equivalent
plastic strain.

(3) Comparison of experimental results and

calculated results

Elasto-plastic finite element analyses were car-
ried out for round-bar steel specimens, as shown
by Fig. 8, subjected to tension-compression repeti-
Though

specimens were subjected to uniaxial loads, actual

tive loading under strain control®- ¥,

stress conditions in the specimens were expected to
be not uniaxial. So two-dimensional finite element
analyses were carried out. Assumptions introduced
in the analyses are as follows ;

a) constant strain triangular finite elements
were used,

b) initial yielding complies with von Mises
yield criterion,

¢) yielding was judged by using the r-min
method®

d) incremental method was used as a nonlinear
calculation procedure,

Fig. 12 shows stress-strain relations predicted
by the proposed model and those gained by the
These
stress-strain relations are not referred to at all as

corresponding experiments, measured
the data for the purpose of estimating material
properties used in analyses. Fig.12 (b) for
SM 4] A shows a tendency that Bauschinger effects
are underestimated early in the load cycling. As a
whole, however, in spite of the use of material
properties determined from fundamental measure-
ments only for some specimens, the stress-strain
relations predicted by F. E. M. analyses coincide
considerably with the measured stress-strain re-
lations.

Secondly, how effective are the principal fea-
tures of the proposed model for the purpose of

o/oyy
27 P
Virgin curve
8 10
ep (3)
24 Second paths
- (a) SM4T1A
olayy
Virgin curve
| '
-1 % 0 2 ] 6 8 10
ep (%)
-1
Second paths
-2 (b) HT70

Fig.9 Experimental stress-plastic strain relations for estimat-

ing material property parameters.

Ka Kab Kp

Fig.10 Fundamental surface size functions,

—e— SMATA
——A—~- HT70
1.0 &o0¢ Wi(Ep) = Wo,1(Ep)
P = Wo 2(E0) + cEpi

WZ(Ep'Ebi)
c

gy (B

Fig. 11 Weighting functions,
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improving the prediction accuracy is referred to. Fig, 13 shows stress-strain relations predicted by the
model and those calculated by using the summations of the equivalent plastic strain over all strain paths as
the cumulative equivalent plastic strain. In the latter case, according to the overestimations of the
cumulative equivalent plastic strain, stress values are estimated larger by degrees. Fig.14 shows
stress-strain relations calculated by using the proposed model compared with those gained by the model of
which fundamental surface size functions are only x, and x, in the same manner as Petersson-Popov Model.

If the surface size function xg, is not introduced, the yield plateau represented by the function x, appears in
the following processes of load repetitions, This appears to be caused by the use of the surface size
function calculated as the weighted summations of x, and x,. In order to reproduce the disappearance of the
yield plateau, the weighting value is to be zero at z,= &p,st- But the change in Bauschinger effect can not be
represented any longer when , becomes greater than

Epst. Thus for the purpose of expressing the cyclic 800 HT70(a)

plasticity of the materials with the yield plateau and the 600-]

notable strain hardening characteristic, it is necessary 2004

to use at least three fundamental surface size func-
200
tions,

5. CONCLUSIONS

o

STRESS (MPa)

~200

(1) Proposed was a new cyclic plasticity model by 4004

some refinements of the model presented by Petersson
-600

and Popov,

-800

400 SM41A(6) 800

- 7 600

HT70(b)

~
o
p=
Il
Q.
\
X
N\

| o]

(=3

STRESS (MPa)

200
~200-

' calculation

~400-1

STRESS (MPa}

experiment,

. 01 l i T
0 1 2 -200] W
~400- v Vs
SM41A(b) ”

STRAIN (%)
- -600-

400

~n

o

o
Il

~800 T T T T T T T

=]
!

v
-
o
>
=
=
»a
~—

STRESS (MPa)
=

-200 Z =P HT70(c)

-400-

o

STRAIN (Z)

s00d  SM4IACC)

STRESS (MPa)

N
o
o
1
D

2 ~200-

o

-400

STRESS (MPa)

-200-
-600+

-400

T T T T T T T T T -800 T T T T T T T T T
2 3 2 3 4
STRAIN (Z) STRAIN (2)

Fig.12 Comparisons of stress-strain relations ; experiments and calculations by the proposed model.
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400

accumulated l SMATA I SM41A

11 paths =3 400-{ xah is not introduced
over a

-
s

2004 P g q 200

0 7
1
]
200 / -200-]
7

=3

STRESS (MPa)
STRESS (MPa)

—400f -7 proposed model -400-]
T T T

1
STRAIN (%)

oad

1
STRAIN (2)

Fig. 13 Effect of estimation method of the cumulative equivalent Fig. 14 Effect of the fundamental surface size function x,,.

plastic strain.

(2) Material properties introduced in the proposed model can be easily estimated by a combination of
the monotonous tension test and several tension-compression tests each including only one unloading.

(3) Tension-compression stress-strain relations of mild steel and high strength steel were predicted
by means of the proposed model with high accuracy.

(4) The estimation method of the cumulative equivalent plastic strain as shown by Fig. 4 is effective
for improving the accuracy of the predicted stress-strain relations.

(5) Inthe case of the materials with the yield plateau and the notable strain hardening such as the mild
steel, the predictions of the actual stress-strain relations appears to be possible by the intoduction of the
surface size function at the start point of strain hardening as a fundamental surface size function.

Computations were carried out on HITAC M-200/M-280H and M-680 H/M-682H in the Tokyo
University Computer Center., A part of this study was sponsored by the Grant-in-Aid for Scientific
Research of the Ministry of Education, Science and Culture in the fiscal year of 1986.
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