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ABSTRACT 

The authors have proposed a knowledge refinement method for a crack diagnostic 

inference system. The inference engine was constructed for a reciprocal network 

based on a min-max composition algorithm.  The knowledge refinement function was 

installed in the engine by applying the concept of the back-propagation algorithm.  In 

this paper, the inference and refinement methods are applied to the rule-base system 

for selecting the retrofitting method for steel bridges damaged by fatigue.  Through 

some inferences for practical cases, it is confirmed that the inference engine can be 

applied to this domain. 
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1. INTRODUCTION 

Knowledge-base acquisition, which includes the adding and modifying of rules, is still one of 

the most important issue for constructing an inference system.  Research has been conducted 

on this issue in the field of civil engineering. Miyamoto et al. [1991] proposed a method to 

refine knowledge for concrete bridge diagnosis. Kushida and Miyamoto [1995] also proposed 

a knowledge update method by introducing the concepts of possibility and necessity. 

Mikami et al. [Mikami 1992a, 1992b, 1994] acquired the knowledge base rules by adding 

a learning function to an expert system with a causal network using neural networks 

automatically generating undefined causal relations.  Tanaka, Mikami, et al. also constructed 

a system simultaneously using a rule-baed reasoning and a case-based reasoning [Tanaka 

1995, 1996].  A case-based approach was used to design and optimize steel frames by 

Arciszewski and Ziarko [1991].  By combining multimedia and case-based reasoning 

technology, Maher and Balachandran [1994] developed a prototype case-based system to 

assist structural designers. Reich et al. [1993] used machine learning programs to model 
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engineering decision-making procedures.  Melhem et al. [1996] found that such a tool was not 

necessarily effective, when attempting to use a commercial machine learning tool as a means 

of knowledge acquisition in addition to explicit domain extraction.  

These inference systems employed various knowledge expression methods. From the 

standpoint of sharing knowledge, it is important to establish a methodology theory making it 

possible to reconstruct a rule base that easily reflects the inference results by using existing 

systems. 

For the purpose, we assumed hypotheses as nodes, and formed rule bases into a network 

consisting of mutually connected nodes via links representing the relations between the 

hypotheses.  We thus constructed an inference system with a knowledge refinement function 

and applied the inference system to the problem of inferring the factors of damage to the 

reinforced-concrete (RC) floor slab of highway bridges [Minagawa 1998 and 1999]. This 

paper reports on the application of our inference system to the selection of retrofitting 

methods for steel highway bridges damaged by fatigue, and shows that the rule-base 

refinement and inference functions of this inference system are effective. 

2. OVERVIEW OF INFERENCE SYSTEM WITH RULE-BASE 

REFINEMENT FUNCTION [MINAGAWA 1999] 

Figure 1 Configuration of inference system with rule-base refinement function 
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Figure 2 Flowchart of the system 

Fig.1 shows a schematic diagram of the inference system, which consists of nodes 

representing hypotheses and links representing the relations between the nodes in the form of 

a node network.  The inference system has a rule-base refinement function that allows us to 

refine rule bases and ordinary hypothetical inference by applying min-max operation and a 

new algorithm similar to the back-propagation algorithm used in neural networks. 

The possible application of effectuating each hypothesis and the strength of the relations 

between hypotheses are respectively assumed as the attributes of each node and relations 

between nodes, which are represented by a node value and weight given as real numbers in 

the range of  [0, 1].  Certainty factors are also endowed with each attribute in the range of  [0, 
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1].  Each node can retain the results of inferences in past cases as training samples.  

Accordingly, each node representing a hypothesis has [node value, node certainty factor] and 

[node training sample value, node training certainty factor] as attributes.  The link between 

nodes representing a relation between hypotheses is given attributes [weight, rule certainty 

factor].  The certainty factors given to each nodes and links express the uncertainty of 

information.  If the certainty factor of the node sample is lower than the rule certainty factor, 

an ordinary hypothetical inference is applied.  If the certainty factor of the node sample is 

higher than the rule certainty factor, rule-base refinement is applied.  Thus, the inference 

system also controls the hypothetical inference and rule refinement functions. 

Fig.2 shows the flowchart for the hypothetical inference and rule refinement. For an 

inference, a node value is calculated from a rule by a minimum operation. A node certainty 

factor is also calculated from the same rule (STEP 1). If a node is the conclusion part for two 

or more rules, a node value and certainty factor are linked to each set of rules by a maximum 

operation and ordinary linkage of the certainty factor (STEP 2). 

The following shows the refinement method.  First, the difference between the node value 

and node training sample obtained by inference, and the difference between the certainty 

factor of the node and certainty factor of the node training sample are calculated (STEP 3). If 

the difference of node certainty factors results in a positive value, the certainty factor of the 

training sample is assumed to be lower than that of the node, then the node sample and its 

certainty factor are updated (STEP 4-1). Here,   indicates a learning factor.  If the difference 

results in a negative value and a node value has been used for min-max operation for the 

inference, the node value and certainty factor given to that node are updated (STEP 4-2-1). In 

this case, if the weight of a   rule has been adopted for min-max operation, the weight and rule 

certainty factor given to that rule are updated (STEP 4-2-2). 

3. RULE BASE FOR SELECTING RETROFITTING METHOD FOR 

STEEL BRIDGES DAMAGED BY FATIGUE 

Tanaka and others [1992b] developed an expert system (here after called TANAKA’s system) 

which intended to select a retrofitting method for steel highway bridges damaged by fatigue 

as the target problem.  In this research, we applied the rule base used for that expert system to 

our inference system. 

3.1. Network configuration 

As shown in Fig.3, TANAKA’s system is composed of a checklist presentation system, 

factor/action force inference system and retrofitting method selection system. When damage 

is found through checking and investigation based on the checklist, the external factors, 

internal factors, and action force at welding are inferred from the damaged structure, damaged 

part, type of welding, type of splice and damaged element by using a factor/action force 

inference system.  If retrofitting is judged necessary, a retrofitting method is selected by the 

retrofitting method selection system based on such information as external factors, internal 

factors, and action force at welding inferred by the factor/action force inference system and 

the observable forms of cracks. 

The checklist presentation system and factor/action force inference system, however, draw 

inferences by using frames, and the processes of inference were not made clear.  We assumed 

the external and internal factors of cracks and action force at welding as observed facts, or 

already known information, like the forms of cracks, and linked the hypotheses together to 

form a network in the system as shown in Fig.4. 
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Figure 3 Outline of retrofitting method selection system 

3.2. Setting of hypotheses (Nodes) 

 

Figure 4 Network configuration 
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Table 1 Items of input information 

 

Table 2 Items of retrofitting method 

 

Table 3 Presented cases  

 

A total of 54 nodes used in TANAKA’s system were set for this inference system.  

Among these, 30 nodes (Nos. 1 to 30 listed in Table 1) were prepared as input items, or input 
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information based on observed facts.  A total of 24 nodes (Nos. 31 to 54 listed in Table 2 ) 

were prepared as output items, or inference objects. 

3.3. Presentation of rules 

For the rule base used in TANAKA’s system, the strength of causal relation is classified into 

four levels: “necessity,” “high possible application,” “possible application,” and “low possible 

application.”  We applied the four weights (0.8, 0.6, 0.4, and 0.2) corresponding to these four 

levels and constructed the initial states of the rule base.  The rule base applied in our inference 

system contained a total of 267 rules. 

4. INFERENCE PERFORMANCE IN INDIVIDUAL CASES 

4.1. Inference assuming all input information as known information 

When the above rule base was applied to the inference system, node value “1.0” (true) or 

“0.0” (false) was given to each of the external and internal factors of cracks and action force 

at welding which were assumed to be known information, and node value “0.5” and certainty 

factor “0.1” were given to the retrofitting method which were assumed to be unknown 

information. 

Table 3 shows the cases of actual bridges to which the inference system was applied in 

this research.  In this research, the certainty factor and the rule certainty factor resulting from 

inference by TANAKA’s system were respectively assumed to be “1.0” and “0.5,” and rule 

base refinement was done first.  Next, with the node certainty factors lowered (due to 

unknown retrofitting methods in the cases) and rule certainty factors increased, hypothetical 

inferences were conducted to select retrofitting methods.  Fig.5 show the inference results.  In 

each figure, the horizontal axis indicates the node numbers representing the retrofitting 

method items listed in Table 2; the vertical axis indicates the node values representing the 

possible application of using each retrofitting method.  Each figure also shows training 

sample data for comparison purposes. 

Fig.6 shows variations in the weight by each refinement count according to changes in the 

learning factor.  The variations were calculated by the formula shown in each figure. The 

horizontal axis in each figure indicates the rule-base refinement count (logarithm); the vertical 

axis indicates weight variation. 

 

Figure 5 Results of inference of retrofitting method  

As a result, the inference system inferred that stop holes and a grinder (i.e., retrofitting 

methods actually implemented) would have the highest possible application, and the overall 

inference showed a tendency similar to that of training sample data.  Thus, the inference 

system was considered to have an effective function for selecting retrofitting methods.  
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Regarding rule base refinement, the tendency of variation depended on differences in the 

learning factor.  However, the variations converged as the refinement count increased, and the 

inference result suggested a valid solution. 

Because this inference system was originally based on learning with training samples, the 

inference result may have to match training sample data when a case is presented as the 

training sample and the inference system is applied to the case.  The inference result, 

however, showed a slight difference from the training sample data.  One reason for this 

difference is that the external and internal factors of cracks and action force at welding were 

assumed to be known information for inference by this inference system.  Conversely, 

TANAKA’s system organized a network as shown in Fig.4 for selecting retrofitting methods.  

The following section discusses how unknown information (as part of input information) 

affects the inference result. 

4.2. Inference assuming some input information as unknown information 

The action force at welding is an item of input information used to select a retrofitting method 

as shown in Fig.4, “Network configuration.”  The action force at welding also has a causal 

relation to each of the external and internal factors of cracks,   and is an output destination 

inferred from information on external and internal factors.  Therefore, the relation between the 

action force at welding and retrofitting method must be inferred based on all these items of 

information.  When the action force at welding was assumed to be unknown information, the 

knowledge of its causal relations to the external and internal factors of cracks in the network 

configuration would not be reflected in the inference result.  This can also be true regarding 

the relation between the external and internal factors of cracks. 

 

Figure 6 Variation of weights 
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Figure 7 Result of inference with internal factors assumed asunknown information (case 1) 

 

Figure 8 Result of inference with action force at welding assumed as unknown information (case 1) 

For the above reason, we applied the inference system under the following two conditions 

to check each item of information assumed as unknown information before the inference 

result was affected: 

(I)  Inference assuming internal factors of cracks as unknown information 

(II)  Inference assuming action force at splicing as unknown information 

Here, “0.5” and “0.1” were respectively given as “node value” and “node certainty factor” 

to the node assumed to be unknown information. 

Fig.7 and 8 show the results of inferences under conditions (I) and (II) above in case 1. As 

in Fig.5, the horizontal axis indicates node numbers representing the retrofitting method items 

listed in Table 2; the vertical axis indicates node values representing the possible application 

of retrofitting methods.  Each figure also shows training sample data for comparison 

purposes. 

As shown in Fig.4, each item of information assumed as unknown information here is an 

object of inference from another item of information.  Fig.9 and 10 show the node values of 

each unknown information inferred when it becomes an object of inference under conditions 

(I) and (II) together with the node value given as known information for ordinary inference.  
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The horizontal axis indicates the item numbers of input information; the vertical axis indicates 

node values. 

4.2.1. Inference assuming internal factors of cracks as unknown information 

As shown in Fig.7, the inference result differed slightly from the respective results of 

inferences assuming the relevant items of information as known information.  For this reason, 

the internal factors of cracks could hardly affect the selection of a retrofitting method.  This 

was also suggested by the inference results in Fig.9.  The figure shows that the node value for 

the same item of information as the one assumed beforehand as known information is “0.6” 

and the node values of most other items are “0” (except node value “0.2” for node No. 14). 

This result suggests that the internal factors of cracks only have a marginal effect on 

retrofitting method selection. 

4.2.2. Inference assuming action force at welding as unknown information 

As shown in Fig.8, the inference results largely differed from the result of inference assuming 

the action force at welding as known information.  The inference result was hardly identical to 

the training sample data.  This meant that information on the action force at welding could 

largely affect retrofitting method selection in the network configuration.  This large affect was 

also suggested by the fact that the action force at welding is the object of inference from many 

other nodes (input information) in the network as shown in Fig.4. 

The inference result gave an extremely high possibility of “0.8” to some items given low 

possibility as training sample data and by inference assuming the action force at welding as 

known information.  When the action force at welding was assumed to be unknown 

information, only the node value of node No.  23 was “1.0.”  Conversely, when the action 

force at welding was assumed to be unknown information, nodes Nos. 17, 18, and 20 were 

given “0.8” (i.e., extremely high value), but node No.  23 was given a very low node value of 

“0.2” as shown in Fig.10.  For this reason, information on the action force at welding could 

largely affect the causal relations to retrofitting methods and, accordingly, may have a large 

effect on retrofitting method selection. 

 

Figure 9 Node value representing internal factors inferred when assumed as unknown information (case 1)   
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Figure 10 Node value representing action force at welding inferred when assumed as unknown 

information (case 1)  

5. APPLICATION OF INFERENCE SYSTEM TO SIMILAR CASES 

Table 4 Similar cases 

 

Table 5 Retrofitting methods inferred for similar cases 

 

We applied the inference system to the selection of retrofitting methods for similar cases 

by using the rule base refined for cases 1 and 2.  The similar cases adopted here were those 

searched for through the case-based reasoning by Tanaka and others.  Tables 4 show similar 

 
Case No. Bridge name Form of crack External factor  Internal factor  Action force Retrofitting method

1.1 Tomei Expressway Unknown Transversely distributed stressStress concentration ⑫  Gas-cutting of transverse bracing
　　　 Live-load stress

1.2 King’s Bridge ｉ Welding defect Stress concentration ⑫ Unknown
Material defect

1.3 King’s Bridge ｉ Welding defect Stress concentration ⑫ Unknown
Material defect

1.4 U.S. Bridge 51 ｈ Welding defect Stress concentration ⑨ Splice plate with high-strength bolts and grinder

1.5 Aquasabon River Bridge ｇ Welding defect Stress concentration ⑩ Mounting of cover plate by welding
Low temperature

Case No. Bridge name Form of crack External factor  Internal factor  Action force Retrofitting method

2.1 Prairio Du Chein Bridge d Secondary deformation Secondary stress ③ Unknown
2.2 Prairio Du Chein Bridge b Secondary deformation Secondary stress ③ Connection of flange of cross beam

and diaphragm by high-strength bolts 
and stop hole

2.3 Poplar Street Bridge d Inappropriate details Secondary-stress concentration ③ Connection of flange of main beam
and cross beam, gouging, stop hole, 
and re-welding

2.4 Poplar Street Bridge a Inappropriate details Secondary-stress concentration ③ Stop hole
2.5 Poplar Street Bridge a Inappropriate details Stress concentration ③ Splice plate with high-strength bolts
2.6 Chamberlain Bridge b Inappropriate details Secondary-stress concentration ③ Welding of flange of main beam and 

  vertical stiffener at top and bottom edges
2.7 Unknown b Live-load stress Secondary stress ③ Unknown

 Case No. Inferred retrofitting m ethod

1.1 31 32 33 34 38 42 43 47

1.2 31 33 34 38 40 42 43

1.3 31 32 33 34 38 42 43 47

1.4 31 33 34 38 42 43

1.5 31 32 33 34 38 42 43
2.1 31 33 38 42

2.2 31 33 38 42
2.3 31 32 33 35 38 39 42 43 47 46
2.4 31 32 33 35 38 39 42 43 47

2.5 31 32 33 34 35 38 39 42 43 47

2.6 31 32 33 35 38 39 42 43 47
For the retrofitting m ethods indicated by num bers, see Tables 3 and 4.
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cases relevant to cases 1 and 2.  These similar cases were used as verification data.  In other 

words, we assumed the retrofitting methods for the similar cases as unknown information and 

other information as known information,  and inferred the retrofitting methods by using the 

rule base refined for cases 1 and 2. 

Table 5 lists the results of inference.  The numbers in the table indicate the retrofitting 

methods selected by inference. All retrofitting methods given the highest node value of “0.8” 

are listed.  The numbers printed in bold face indicate the retrofitting methods inferred by 

Tanaka and others.  The underlined number printed in bold face (46 for case 2.3) indicates the 

retrofitting method not selected by our inference,  but selected by Tanaka and others.  The 

numbers with a shaded background indicate retrofitting methods that were actually 

implemented in the past.  The contents of retrofitting methods were unknown in cases for 

which no bold face numbers are printed,  and are not shown.  Except for retrofitting method 

No. 46 (connection of flanges of cross and main beams) for case 2.3, all retrofitting methods 

selected by Tanaka and others were selected by our inference.  Our inference could also select 

some retrofitting methods not selected by Tanaka and others, but which were actually 

implemented (as indicated by the shaded numbers in plain typeface.)  This result suggests that 

the inference system could be improved through rule base refinement for flexible application 

to various cases. 

6. CONCLUSION 

This paper discussed whether an inference system with a rule-base refinement function 

mainly designed for sharing and reusing knowledge is effective for selecting retrofitting 

methods for steel bridges damaged by fatigue. 

We first explained that inference results consistent with individual cases could be obtained 

by refining the rule base using individual cases as training samples.  Then we clarified how 

much input information affects the inference result under complex causal relations among 

hypotheses through trial inferences assuming that some input information as unknown. 

We also applied the inference system to similar cases different from the training samples.  

For this application, the inference result was affected depending on the degree of case 

similarities. The information on the action force at welding, which largely affected the 

inference of retrofitting methods, allowed the authors to select the same retrofitting methods 

for similar cases.  This result suggests that appropriate training samples improve proper rule 

base refinement. 

We must, therefore, increase the accuracy of rule base refinement for application to cases 

having complex relations among the rules. It is also necessary to discuss how to present 

knowledge with a set of rules by using such technology as knowledge discovery in database 

(KDD) and data mining (DM).   
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NOTATION 

The following symbols are used in this paper:  

li
a = node value of l-th node for i-th rule 

iw = weight for i-th rule 

li
c = certainty factor of node value of l-th node for i-th rule 

iwc , = certainty factor of weight for i-th rule 

oi
a = node value of conclusion part for i-th rule 

oi
c = node certainty factor of conclusion part for i-th rule 

oi
a = modification value of 

oi
a  

oi
t = training data of conclusion part for i-th rule 

oi
c = modification value of 

oi
c  

oitc , = certainty factor of training data of conclusion part for i-th rule 


