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ABSTRACT

The authors have proposed a knowledge refinement method for a crack diagnostic
inference system. The inference engine was constructed for a reciprocal network
based on a min-max composition algorithm. The knowledge refinement function was
installed in the engine by applying the concept of the back-propagation algorithm. In
this paper, the inference and refinement methods are applied to the rule-base system
for selecting the retrofitting method for steel bridges damaged by fatigue. Through
some inferences for practical cases, it is confirmed that the inference engine can be
applied to this domain.
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1. INTRODUCTION

Knowledge-base acquisition, which includes the adding and modifying of rules, is still one of
the most important issue for constructing an inference system. Research has been conducted
on this issue in the field of civil engineering. Miyamoto et al. [1991] proposed a method to
refine knowledge for concrete bridge diagnosis. Kushida and Miyamoto [1995] also proposed
a knowledge update method by introducing the concepts of possibility and necessity.

Mikami et al. [Mikami 1992a, 1992b, 1994] acquired the knowledge base rules by adding
a learning function to an expert system with a causal network using neural networks
automatically generating undefined causal relations. Tanaka, Mikami, et al. also constructed
a system simultaneously using a rule-baed reasoning and a case-based reasoning [Tanaka
1995, 1996]. A case-based approach was used to design and optimize steel frames by
Arciszewski and Ziarko [1991]. By combining multimedia and case-based reasoning
technology, Maher and Balachandran [1994] developed a prototype case-based system to
assist structural designers. Reich et al. [1993] used machine learning programs to model
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engineering decision-making procedures. Melhem et al. [1996] found that such a tool was not
necessarily effective, when attempting to use a commercial machine learning tool as a means
of knowledge acquisition in addition to explicit domain extraction.

These inference systems employed various knowledge expression methods. From the
standpoint of sharing knowledge, it is important to establish a methodology theory making it
possible to reconstruct a rule base that easily reflects the inference results by using existing
systems.

For the purpose, we assumed hypotheses as nodes, and formed rule bases into a network
consisting of mutually connected nodes via links representing the relations between the
hypotheses. We thus constructed an inference system with a knowledge refinement function
and applied the inference system to the problem of inferring the factors of damage to the
reinforced-concrete (RC) floor slab of highway bridges [Minagawa 1998 and 1999]. This
paper reports on the application of our inference system to the selection of retrofitting
methods for steel highway bridges damaged by fatigue, and shows that the rule-base
refinement and inference functions of this inference system are effective.

2. OVERVIEW OF INFERENCE SYSTEM WITH RULE-BASE
REFINEMENT FUNCTION [MINAGAWA 1999]
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Figure 1 Configuration of inference system with rule-base refinement function
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Figure 2 Flowchart of the system

Fig.1 shows a schematic diagram of the inference system, which consists of nodes
representing hypotheses and links representing the relations between the nodes in the form of
a node network. The inference system has a rule-base refinement function that allows us to
refine rule bases and ordinary hypothetical inference by applying min-max operation and a
new algorithm similar to the back-propagation algorithm used in neural networks.

The possible application of effectuating each hypothesis and the strength of the relations
between hypotheses are respectively assumed as the attributes of each node and relations
between nodes, which are represented by a node value and weight given as real numbers in
the range of [0, 1]. Certainty factors are also endowed with each attribute in the range of [0,
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1]. Each node can retain the results of inferences in past cases as training samples.
Accordingly, each node representing a hypothesis has [node value, node certainty factor] and
[node training sample value, node training certainty factor] as attributes. The link between
nodes representing a relation between hypotheses is given attributes [weight, rule certainty
factor]. The certainty factors given to each nodes and links express the uncertainty of
information. If the certainty factor of the node sample is lower than the rule certainty factor,
an ordinary hypothetical inference is applied. If the certainty factor of the node sample is
higher than the rule certainty factor, rule-base refinement is applied. Thus, the inference
system also controls the hypothetical inference and rule refinement functions.

Fig.2 shows the flowchart for the hypothetical inference and rule refinement. For an
inference, a node value is calculated from a rule by a minimum operation. A node certainty
factor is also calculated from the same rule (STEP 1). If a node is the conclusion part for two
or more rules, a node value and certainty factor are linked to each set of rules by a maximum
operation and ordinary linkage of the certainty factor (STEP 2).

The following shows the refinement method. First, the difference between the node value
and node training sample obtained by inference, and the difference between the certainty
factor of the node and certainty factor of the node training sample are calculated (STEP 3). If
the difference of node certainty factors results in a positive value, the certainty factor of the
training sample is assumed to be lower than that of the node, then the node sample and its
certainty factor are updated (STEP 4-1). Here, n indicates a learning factor. If the difference
results in a negative value and a node value has been used for min-max operation for the
inference, the node value and certainty factor given to that node are updated (STEP 4-2-1). In
this case, if the weight of a rule has been adopted for min-max operation, the weight and rule
certainty factor given to that rule are updated (STEP 4-2-2).

3. RULE BASE FOR SELECTING RETROFITTING METHOD FOR
STEEL BRIDGES DAMAGED BY FATIGUE

Tanaka and others [1992b] developed an expert system (here after called TANAKA’s system)
which intended to select a retrofitting method for steel highway bridges damaged by fatigue
as the target problem. In this research, we applied the rule base used for that expert system to
our inference system.

3.1. Network configuration

As shown in Fig.3, TANAKA’s system is composed of a checklist presentation system,
factor/action force inference system and retrofitting method selection system. When damage
is found through checking and investigation based on the checklist, the external factors,
internal factors, and action force at welding are inferred from the damaged structure, damaged
part, type of welding, type of splice and damaged element by using a factor/action force
inference system. If retrofitting is judged necessary, a retrofitting method is selected by the
retrofitting method selection system based on such information as external factors, internal
factors, and action force at welding inferred by the factor/action force inference system and
the observable forms of cracks.

The checklist presentation system and factor/action force inference system, however, draw
inferences by using frames, and the processes of inference were not made clear. We assumed
the external and internal factors of cracks and action force at welding as observed facts, or
already known information, like the forms of cracks, and linked the hypotheses together to
form a network in the system as shown in Fig.4.
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Table 2 Items of retrofitting method
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A total of 54 nodes used in TANAKA’s system were set for this inference system.
Among these, 30 nodes (Nos. 1 to 30 listed in Table 1) were prepared as input items, or input
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information based on observed facts. A total of 24 nodes (Nos. 31 to 54 listed in Table 2)
were prepared as output items, or inference objects.

3.3. Presentation of rules

For the rule base used in TANAKA'’s system, the strength of causal relation is classified into
four levels: “necessity,” “high possible application,” “possible application,” and “low possible
application.” We applied the four weights (0.8, 0.6, 0.4, and 0.2) corresponding to these four
levels and constructed the initial states of the rule base. The rule base applied in our inference
system contained a total of 267 rules.

4. INFERENCE PERFORMANCE IN INDIVIDUAL CASES

4.1. Inference assuming all input information as known information

When the above rule base was applied to the inference system, node value “1.0” (true) or
“0.0” (false) was given to each of the external and internal factors of cracks and action force
at welding which were assumed to be known information, and node value “0.5” and certainty
factor “0.1” were given to the retrofitting method which were assumed to be unknown
information.

Table 3 shows the cases of actual bridges to which the inference system was applied in
this research. In this research, the certainty factor and the rule certainty factor resulting from
inference by TANAKA'’s system were respectively assumed to be “1.0” and “0.5,” and rule
base refinement was done first. Next, with the node certainty factors lowered (due to
unknown retrofitting methods in the cases) and rule certainty factors increased, hypothetical
inferences were conducted to select retrofitting methods. Fig.5 show the inference results. In
each figure, the horizontal axis indicates the node numbers representing the retrofitting
method items listed in Table 2; the vertical axis indicates the node values representing the
possible application of using each retrofitting method. Each figure also shows training
sample data for comparison purposes.

Fig.6 shows variations in the weight by each refinement count according to changes in the
learning factor. The variations were calculated by the formula shown in each figure. The
horizontal axis in each figure indicates the rule-base refinement count (logarithm); the vertical
axis indicates weight variation.
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Figure 5 Results of inference of retrofitting method

As a result, the inference system inferred that stop holes and a grinder (i.e., retrofitting
methods actually implemented) would have the highest possible application, and the overall
inference showed a tendency similar to that of training sample data. Thus, the inference
system was considered to have an effective function for selecting retrofitting methods.
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Regarding rule base refinement, the tendency of variation depended on differences in the
learning factor. However, the variations converged as the refinement count increased, and the
inference result suggested a valid solution.

Because this inference system was originally based on learning with training samples, the
inference result may have to match training sample data when a case is presented as the
training sample and the inference system is applied to the case. The inference result,
however, showed a slight difference from the training sample data. One reason for this
difference is that the external and internal factors of cracks and action force at welding were
assumed to be known information for inference by this inference system. Conversely,
TANAKA'’s system organized a network as shown in Fig.4 for selecting retrofitting methods.
The following section discusses how unknown information (as part of input information)
affects the inference result.

4.2. Inference assuming some input information as unknown information

The action force at welding is an item of input information used to select a retrofitting method
as shown in Fig.4, “Network configuration.” The action force at welding also has a causal
relation to each of the external and internal factors of cracks,  and is an output destination
inferred from information on external and internal factors. Therefore, the relation between the
action force at welding and retrofitting method must be inferred based on all these items of
information. When the action force at welding was assumed to be unknown information, the
knowledge of its causal relations to the external and internal factors of cracks in the network
configuration would not be reflected in the inference result. This can also be true regarding
the relation between the external and internal factors of cracks.
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Figure 6 Variation of weights
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Figure 8 Result of inference with action force at welding assumed as unknown information (case 1)

For the above reason, we applied the inference system under the following two conditions
to check each item of information assumed as unknown information before the inference
result was affected:

(I) Inference assuming internal factors of cracks as unknown information
(1) Inference assuming action force at splicing as unknown information

Here, “0.5” and “0.1” were respectively given as “node value” and “node certainty factor”
to the node assumed to be unknown information.

Fig.7 and 8 show the results of inferences under conditions (1) and (1) above in case 1. As
in Fig.5, the horizontal axis indicates node numbers representing the retrofitting method items
listed in Table 2; the vertical axis indicates node values representing the possible application
of retrofitting methods. Each figure also shows training sample data for comparison
purposes.

As shown in Fig.4, each item of information assumed as unknown information here is an
object of inference from another item of information. Fig.9 and 10 show the node values of
each unknown information inferred when it becomes an object of inference under conditions
(1) and (I1) together with the node value given as known information for ordinary inference.
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The horizontal axis indicates the item numbers of input information; the vertical axis indicates
node values.

4.2.1. Inference assuming internal factors of cracks as unknown information

As shown in Fig.7, the inference result differed slightly from the respective results of
inferences assuming the relevant items of information as known information. For this reason,
the internal factors of cracks could hardly affect the selection of a retrofitting method. This
was also suggested by the inference results in Fig.9. The figure shows that the node value for
the same item of information as the one assumed beforehand as known information is “0.6”
and the node values of most other items are “0” (except node value “0.2” for node No. 14).
This result suggests that the internal factors of cracks only have a marginal effect on
retrofitting method selection.

4.2.2. Inference assuming action force at welding as unknown information

As shown in Fig.8, the inference results largely differed from the result of inference assuming
the action force at welding as known information. The inference result was hardly identical to
the training sample data. This meant that information on the action force at welding could
largely affect retrofitting method selection in the network configuration. This large affect was
also suggested by the fact that the action force at welding is the object of inference from many
other nodes (input information) in the network as shown in Fig.4.

The inference result gave an extremely high possibility of “0.8” to some items given low
possibility as training sample data and by inference assuming the action force at welding as
known information. When the action force at welding was assumed to be unknown
information, only the node value of node No. 23 was “1.0.” Conversely, when the action
force at welding was assumed to be unknown information, nodes Nos. 17, 18, and 20 were
given “0.8” (i.e., extremely high value), but node No. 23 was given a very low node value of
“0.2” as shown in Fig.10. For this reason, information on the action force at welding could
largely affect the causal relations to retrofitting methods and, accordingly, may have a large
effect on retrofitting method selection.

gk mhoda va e fromd rary ik mEnce

DB‘!’ BNods vale ifermd when sssu edas
N B--o whnown nfomatin ---

Noda valia

e mal fEetors of cmck:

Figure 9 Node value representing internal factors inferred when assumed as unknown information (case 1)
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5. APPLICATION OF INFERENCE SYSTEM TO SIMILAR CASES

Table 4 Similar cases

Case No. |Bridge name Form of crack|External factor Internal factor Action force|Retrofitting method
1.1 Tomei Expressway Unknown |Transversely distributed stres|Stress concentration [@) Gas—cutting of transverse bracing
Live-load stress
1.2 King” s Bridge i Welding defect Stress concentration [@) Unknown
Material defect
1.3 King” s Bridge i Welding defect Stress concentration [@) Unknown
Material defect
1.4 U.S. Bridge 51 h Welding defect Stress concentration © Splice plate with high—strength bolts and grinde
15 Aquasabon River Bridgg g Welding defect Stress concentration [@) Mounting of cover plate by welding

Low temperature

Case No. |Bridge name |Form of crack|External factor Internal factor Action force[Retrofitting method
2.1 Prairio Du Chein Bridggl d Secondary deformation Secondary stress [©) Unknown
22 Prairio Du Chein Bridge] b Secondary deformation Secondary stress ® Connection of flange of cross beam

and diaphragm by high-strength bolts
and stop hole

23 Poplar Street Bridge d Inappropriate details Secondary-stress concentratior ® Connection of flange of main beam
and cross beam, gouging, stop hole,
and re-welding
24 Poplar Street Bridge a Inappropriate details Secondary-stress concentratiol [©) Stop hole
25 Poplar Street Bridge a Inappropriate details Stress concentration @ Splice plate with high—strength bolts
26 Chamberlain Bridge b Inappropriate details Secondary-stress concentratior] [©) Welding of flange of main beam and
vertical stiffener at top and bottom edges
2.7 Unknown b Live—load stress Secondary stress [©) Unknown

Table 5 Retrofitting methods inferred for similar cases
Case No. hferred retrofittng m ethod

11 31 33 34 38 42 43
12 31 34 38 40 42 43
13 43 47
14

15 42 43

2.1

22

33 35 39 42 43 47

24

33 35 39 42 43 47
25 32 33 34 35 38 39 :
26 32 33 35 38 42 43 47

For ﬂwé retrofitthg m ethods ndicated by numbers, see Tabks 3 :

We applied the inference system to the selection of retrofitting methods for similar cases
by using the rule base refined for cases 1 and 2. The similar cases adopted here were those
searched for through the case-based reasoning by Tanaka and others. Tables 4 show similar
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cases relevant to cases 1 and 2. These similar cases were used as verification data. In other
words, we assumed the retrofitting methods for the similar cases as unknown information and
other information as known information, and inferred the retrofitting methods by using the
rule base refined for cases 1 and 2.

Table 5 lists the results of inference. The numbers in the table indicate the retrofitting
methods selected by inference. All retrofitting methods given the highest node value of “0.8”
are listed. The numbers printed in bold face indicate the retrofitting methods inferred by
Tanaka and others. The underlined number printed in bold face (46 for case 2.3) indicates the
retrofitting method not selected by our inference, but selected by Tanaka and others. The
numbers with a shaded background indicate retrofitting methods that were actually
implemented in the past. The contents of retrofitting methods were unknown in cases for
which no bold face numbers are printed, and are not shown. Except for retrofitting method
No. 46 (connection of flanges of cross and main beams) for case 2.3, all retrofitting methods
selected by Tanaka and others were selected by our inference. Our inference could also select
some retrofitting methods not selected by Tanaka and others, but which were actually
implemented (as indicated by the shaded numbers in plain typeface.) This result suggests that
the inference system could be improved through rule base refinement for flexible application
to various cases.

6. CONCLUSION

This paper discussed whether an inference system with a rule-base refinement function
mainly designed for sharing and reusing knowledge is effective for selecting retrofitting
methods for steel bridges damaged by fatigue.

We first explained that inference results consistent with individual cases could be obtained
by refining the rule base using individual cases as training samples. Then we clarified how
much input information affects the inference result under complex causal relations among
hypotheses through trial inferences assuming that some input information as unknown.

We also applied the inference system to similar cases different from the training samples.
For this application, the inference result was affected depending on the degree of case
similarities. The information on the action force at welding, which largely affected the
inference of retrofitting methods, allowed the authors to select the same retrofitting methods
for similar cases. This result suggests that appropriate training samples improve proper rule
base refinement.

We must, therefore, increase the accuracy of rule base refinement for application to cases
having complex relations among the rules. It is also necessary to discuss how to present
knowledge with a set of rules by using such technology as knowledge discovery in database
(KDD) and data mining (DM).
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NOTATION

The following symbols are used in this paper:
a; = node value of I-th node for i-th rule

W; = weight for i-th rule

C;, = certainty factor of node value of I-th node for i-th rule

C,; = certainty factor of weight for i-th rule

a; = node value of conclusion part for i-th rule

C;, = node certainty factor of conclusion part for i-th rule

Aaio = modification value of a;

t; = training data of conclusion part for i-th rule

ACiu = modification value of C;

Cii, = certainty factor of training data of conclusion part for i-th rule
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